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Dynamical Dark Matter

● The dark-matter candidate is an ensemble consisting of a potentially 
vast number of constituent particle species.

Dynamical Dark Matter (DDM) is a theoretical framework in which 
constraints on dark matter can be satisfied without the hyperstability 

criterion (τχ >1026 s) typically required of traditional DM candidates.

In particular, in DDM scenarios...

[Dienes, BT: 1106.4546]

● The DM abundance and equation of state also exhibit a non-trivial 
time-dependence beyond that associated with Hubble expansion.

~

● The individual abundances of the ensemble constituents are balanced 
against decay rates across the ensemble such that constraints are 
satisfied.



  

Dark Matter 
Total (now) 26.8%

Atoms 
4.6%

Dark 
Energy 

72%

Will decay in the 
future

Decayed in 
the past

DDM Cosmology: The Big Picture

Time

Nothing special about 
the present time!  Dark 

matter is decaying 
before, during, and after 

the present epoch. Present Time
Abundances Established
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DDM ensembles also exhibit a variety of distinctive and characteristic 
experimental signatures:

● Characteristic features in kinematic distributions of 
SM particles produced alongside the ensemble 
consitituents. Dienes, Su, BT [1204.4183, 1407.2606]

DDM Models

Traditional 
DM

At Colliders

Traditional 
DM

DDM 
Models

● DDM ensembles also give rise to distinctive features in 
recoil-energy spectra. 

At Direct-detection experiments

Dienes, Kumar, BT [1208.0336]

And at Indirect-Detection Experiments

Dienes, Kumar, BT [1306.2959]

● In the shape of the differential flux spectra of cosmic-ray particles produced from 
dark-matter annihilation or decay.

● In characteristic features in the gamma-ray spectra of dwarf galaxies, the Galactic 
Center, etc. Boddy, Dienes, Kim, Kumar, Park, BT [1606.07440, 1609.09104]



  

● A DDM ensemble is not simply 
an arbitrary assortment of 
dark-sector states! 

●  Its structure is determined by 
an organizing principle which 
 specifies the properties of 
these states in terms of only  a 
few underlying parameters.

● This organizing principle includes three fundamental scaling relations 
which describe how masses, abundances, and decay widths scale in 
relation to each other across the ensemble:

1

2

3

Abundance Ω(m) as a function of mass

Decay width Γ(m) as a function of mass

Density of states n(m) as a function of mass 

Important: Not Just Multi-component DM!

Depend on cosmology, 
couplings to external 

fields, etc.

Reflects the internal 
structure of the 
ensemble itself

“Organizing principle”

Ensemble

In a DDM context, then, model-building means identifying 
scenarios in which the appropriate scaling relations arise.



  

Graviton

Axion

The Canonical Example: A Higher-Dimensional Axion

● Single extra spatial dimension compactified 
on S1/Z2 with radius R = 1/Mc.

3-Brane 5D Bulk

● SM and an additional gauge group G are 
restricted to the brane.  G confines at a scale 
ΛG.  Instanton effects lead to a brane-mass 
term mX for the axion.

● Global U(1)
X
 symmetry broken at scale f

X
 by a 

bulk scalar.  The bulk axion is the PNGB.

Three relevant scales:

Dienes, BT [1106.4546,1107.0721]

Density of states

Vacuum misalignment: natural 
mechanism for generating Ωn

● Ensemble constituents are mass-eigenstate 
admixtures of the KK modes of this axion.

Scaling Relations:

(KK spectrum)



  

GC stars
SN1987A
Diffuse photon spectra

Helioscopes (CAST)
DM overabundant

Collider limits
Thermal production

Eötvös experiments

● While a great many considerations constrain scenarios involving light bulk 
axions, they can all be simultaneously satisfied while Ωtot ≈ ΩCDM and η ~ O(1).

Model self-consistency

y = 1

Wtot

WCDM

≈

y = 1

Wtot

WCDM

≈

Preferred region 
for a viable DDM 

ensemble

The Result: A Viable DDM Ensemble



  

In this talk...

● Axion DDM scenarios make use of a particular (non-thermal) 
mechanism for abundance-generation: misalignment production.

So are there other abundance-generation mechanisms 
naturally give rise to DDM ensembles in other contexts?

1

2

Theories involving strongly-coupled dark sectors.

Theories with matter multiplets charged under additional, large 
symmetry groups which are spontaneously broken.

● I'll also provide two concrete examples of scenarios in which an 
appropriate set of scaling relations – and especially a density-of-states 
function n(m) – for a DDM ensemble arises in a thermal context:

These serve as yet further examples of how simple, realistic DDM 
ensembles arise naturally in scenarios for new physics!  They also 

expand the range of phenomenological possibilites for DDM. 

Q

Yes there are.  In fact, in this talk, I'll show that an appropriate 
spectrum of abundances for a DDM ensemble can even be 
generated thermally.

A



  

Dynamical Dark Matter from 
Thermal Freeze-Out   

● Keith Dienes, Jacob Fennick, and Jason Kumar [arXiv:1711.xxxxx]



  

Thermal Freezeout
● As an abundance-generation mechanism for dark matter, thermal 
freeze-out has a number of phenomenological advantages:

● Characteristic dependence of the 
abundance when χ annihilates (e.g., 
through light mediators or t-channel 
diagrams) into light fields ψ:

Insensitivity to initial conditions

Applicable to particles χ with weak-scale masses and 
couplings sufficiently large (compared to, say, axions) as to 
be relevant for collider physics, direct detection, etc.



  

The Question:

● In the regime in which m
ϕ
 > mi for all χi, all constituents annihilate 

primarily to ψ pairs via an s-channel ϕ.

● Consider an ensemble of dark-matter constituents χi which all couple 
to a common mediator ϕ which also couples to a light fields ψ. 

Thermal DDM?

Can thermal freezeout naturally provide 
the correct balancing of decay widths 
against abundances for DDM?

● Typically, Γi scales with mi to some positive power.  For a viable 
ensemble, Ωi must scale with mi to a sufficient inverse power.

● Scaling of g(mi) with mi can depend on underlying theory structure, 
renormalization, etc.  For simplicity we take gi ≡ gχ to be universal.



  

Operators (On the Dark-Matter Side)

Annihilation Cross-Sections
● The way in which the annihilation cross-section scales with mi, mϕ, and 
mψ is dictated by the structure of the pertinent Lagrangian operators:

mass dimension of 
operator coefficient

whether initial state 
can be L=0 (r = 0) or 
only L=1 (r = 1)



  

Operators (On the Light-Particle Side)

Annihilation Cross-Sections
● The way in which the annihilation cross-section scales with mi, mϕ, and 
mψ is dictated by the structure of the pertinent Lagrangian operators:

mass dimension of 
operator coefficient

whether final state 
can be L=0 (s = 0) or 
only L=1 (s = 1)

whether coupling is 
chirality-suppressed 
(t = 1) or not (t = 0)



  

● The corresponding spectrum of abundances Ωi for the ensemble is

Abundance Spectrum

● Equivalently, we can parametrize this spectrum of abundances in 
terms of an (mi-dependent) scaling exponent γ(mi):

Where we have defined



  

effect of the 
heavy mediator

effect of final-
state kinematics

overall 
scaling

“baseline” (WIMP-like scaling)

Scaling Exponent

Abundance Spectrum ● Spectrum of Ωi shown here for

fermion (S coupling)
fermion (A coupling)

scalar

● Corresponds to the parameters:

● Not a strong 
dependence on s, so 
curves basically the 
same for a simple Z' 
scenario where:

fermion (V coupling)
fermion (V coupling)

vector



  

Δγ = 1 Δγ = 2 Δγ = 3 Δγ = 4Δγ = 0

Abundance Spectra



  

Dynamical Dark Matter from 
Strongly-Coupled Dark Sectors  

● Keith Dienes, Fei Huang, and Shufang Su [arXiv:1610.04112]

1 1ψ ψ

Scenario I:

_



  

● As an example, consider a dark sector consisting of a set of Dirac 
fermions (dark “quarks”) which are charged non-trivially under a non-
Abelian gauge group G.  

● A great deal of information about the hadron spectrum can be gleaned 
by modeling the flux tubes associated with G as strings and bringing 
the full machinery of string theory to bear.

1 1ψ ψ
_

The Basic Idea 

● Assume that G becomes confining below some critical temperature TC. 

● The degrees of freedom in the confined phase – the dark “hadrons” 
– will play the role of the DDM ensemble constituents.

● One natural context in which a large number of dark particles can 
naturally arise is in theories with strongly-coupled dark sectors.



  

● The degeneracy of states gn at each energy level n has a generic 
functional form, parametrized by two constants B and C: 

● The mass spectrum of the theory consists of a tower of dark-“hadron” 
states labeled by an integer n = 0, 1, 2,... 

where
““Regge Regge 
SlopeSlope””

Modeling Dark Hadrons with Strings

The upshot: the degeneracy of states rises 
exponentially with n.  This is the well-known 

Hagedorn spectrum. 

Hagedorn Spectrum



  

String Consistency Conditions

● The constants B and C have physical 
meaning:

number of dimensions transverse 
to the string.

central charge.

*

*
● In any self-consistent string model, 
these quantities are constrained by

● Furthermore, gn should rise monotonically with n.

Best fit for 
actual QCD



  

Abundances: Boltzmann vs. Hagedorn

● At early times/high temperatures, the theory is the unconfined phase.

● However, when the temperature in the dark sector drops below some 
critical temperature TC, the dark gauge group G becomes confining.

● Residual G interactions maintain thermal equilibrium among the 
hadronic states of the confining phase at temperatures just below TC.

Primordial abundances are Boltzmann suppressed:

Hagedorn

vs.

Boltzmann
Exponentially rising 
density of states.

Exponentially falling 
abundance spectrum

If Boltzmann wins, we have a 
sensibly defined ensemble of 

dark “hadrons.”

The criterion for this is TC ≤ TH, 
where TH = Ms/C is the 

Hagedorn temperature. 



  

Decays and Constraints from Cosmology

● Total abundance:

● Equation of state:

[CMB data, Type Ia supernovae]

[CMB data, Type Ia supernovae, reionization, etc.]

rough, 
heuristic limit

● Mass of lightest constituent:
[BBN, small-scale structure]

● In general, these dark “hadrons” are unstable and decay.  There are 
two possibilities, depending on the string coupling gs: (an independent 
parameter): Large gs

Small gs

decays to lighter dark “hadrons” dominate

decays to other states dominate

● Parametrize the widths of the constituents as follows:

General scaling 
exponent

Width of lightest 
constituent

focus on 
this case

● These widths, and the other properties of the DDM ensemble are 
subject to a number of cosmological and astrophysical constraints:



  

Viable DDM Ensembles of Dark Hadrons

● Parameter space includes six parameters:

Where we have defined:

Fraction of Ωtot 
carried by all 

but the lightest 
constituent

with primordial abundance chosen such that Ωtot(tnow) = 0.26

Parameter Space for Dark-Hadron DDM



  

Evolution of Ωtot and weff: Dependence on r

Evolution of Ωtot and weff: Dependence on s



  

Distribution of the Abundance

The distribution of the abundance across the DDM ensemble tends to be 
more democratic when the mass scales involved are lower. 

● It's also interesting to examine, in a more detailed way, how the total 
dark-matter abundance is distributed across the ensemble.



  

Dynamical Dark Matter from 
Symmetry-Breaking Dynamics   

Scenario III:

● Keith Dienes, Jacob Fennick, and Jason Kumar [arXiv:1601.05094]



  

● Consider a pair of fields ϕ and η which transform respectively as a 
fundamental and and an adjoint under a SU(N) symmetry group with 
large N (which could in principle be either global or local).

● If each of these fields transforms non-trivially under a different Z
2
 

symmetry, the most general potential is

A Concrete Example

● For this talk, I'll focus on the parameter regime in which:

and

(negligible effect on vacuum structure)

Other parameters are such that

● Symmetry structures of this sort are common features in GUTs and in 
string theory.



  

● The mass-squared matrix for the component fields ϕ
i
 after the symmetry 

is broken takes the form

● In this regime, the potential is minimized for any set of VEVs va for the 
components of η which satisfy 

But otherwise, the 
particular values for the va 

are essentially random!

This dynamically-generated contribution to the mass 
matrix is also essentially random, subject to the above 

constraint on the VEVs and conditions implied by the 
structure of the generator matrices Ta.

Which way to 
fall?

Randomness and Vacuum Structure



  

DDM Ensembles and 
Random-Matrix Ensembles

Eugene Wigner

● The properties of ensembles of random matrices have 
been studied for a long time. 

● The properties of particular ensembles of random 
matrices X and their eigenvalues λi are well known:

Gaussian Unitary Ensemble (GUE):

“Fixed-Trace ” Ensemble (FTE):

SU(2) Matrix Ensemble:

Complex Hermitian matrices, 
Gaussian textures 

Complex Hermitian matrices, 
Gaussian textures, Tr[X†X] = [const.] 

Complex Hermitian matrices, Gaussian 
textures, Tr[X†X] = [const.], Tr[X] = 0

● However, the dynamically-generated piece of the mass-squared matrix 
for our DDM ensemble is drawn from a different matrix ensemble:

We need to investigate the 
properties of this ensemble!



  

Fixed-Trace Ensemble

SU(N) Matrix Ensemble

nGUE(m) 
nFTE(m) 
nWS(m) 

Density of states

~
~
~

● For (moderately) large N, the density-of-states 
functions for all of these ensembles converge 
to the Wigner semicircle distribution:

where



  

Gaussian-equivalent significance for the average χ2 
statistic for the goodness of fit between the distribution 

of masses for a single set of N eigenvalues and the 
density-of-states function n

SU(N)
(m) itself.

● Even for moderate values of N, a robust statistical prediction for the 
distribution of mass eigenvalues emerges.

A (Statistically) Predictive Mass Spectrum

Despite the inherent randomness in the 
mass matrix, the eigenvalue distribution – 
and the density of states for the ensemble 

of ϕi – are an a real sense, predictive!

The Upshot:

Thus, theories with large symmetry groups naturally give rise to ensembles of 
particles with a charactristic density of states that decreases with m.

Ideal for DDM!



  

Abundance Generation: An Example

● A spectrum of abundances for the ensemble constituents ϕi can arise 
naturally via thermal freeze-out.

● For example, let's say that the ϕi couple to a mediator – a massive U(1)' 
gauge field χμ – which also couples to some lighter fermion species ψ 
(which could in principle be an SM particle).  In this case, the freeze-out 
contribution to the abundance for each ensemble constituent scales like:  

For mχ >> m
i
, we have Ωi     mi

-2.

● Coannihilation, annihilation to on-shell χμ via t-channel processes, and 
processes involving the gauge fields associated with the SU(N) symmetry 
group (if it's local) in principle also contribute, but these contributions can 
be rendered negligible by an appropriate choice of parameters. 

Compatible with a wide variety of density-of-states 
functions, including the Wigner semicircle!

Dienes, Fennick, Kumar, BT [1711.xxxxx]



  

Example Photon Spectra

Potential Signals

● If there exists a portal between the dark and visible sectors, distinctive 
signatures of such “statistical” DDM ensembles can arise.

● For example, if an interaction with the photon field of the form ϕiF
μνFμν is 

generated via controlled breaking of the Z2 symmetry under which the ϕi 
transform, distinctive indirect-detection signatures can arise.



  

Summary
● DDM ensembles emerge naturally in a variety of BSM contexts.  In such 
scenarios, the properties of all constituent particles are determined, 
through a set of scaling relations, by only a handful of parameters.

● Despite the randomness inherent in the breaking of such symmetries, a 
characteristic form for the density-of-states function emerges which 
leads to robust statistical predictions even for moderately large values 
of N.

● In this talk, I have shown the appropriate scaling relations for DDM can 
arise in scenarios in which the dark-matter abundance is generated via 
thermal freeze-out.

● We have also examined another class of scenarios in which the masses 
of the ensemble constituents are generated by random symmetry-
breaking dynamics in the early universe.

● We have examined one class of scenarios in which the ensemble 
constituents are composite states (dark “hadrons”) in the confining 
phase of a strongly-coupled dark sector.
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