Dark Parity Violation and sin²θ_W(Q²) running DAVOUDIASL, LEE, MARCIANO * After Qweak Result based on R. Carlini PANIC 2017

> William J. Marciano "Light Dark World 2017" Pittsburgh Oct. 21, 2017

Dark Parity Violation

<u>Generic Dark Photon Model</u> SU(3)_CxSU(2)_LxU(1)_γxU(1)_D + Kinetic Mixing + Dark Higgs Singlet <φ>=v_d + Dark Matter Sector

 $\begin{array}{l} L_{U(1)YxU(1)d} = -\frac{1}{4} (B_{\mu\nu}B^{\mu\nu}-2\epsilon/\cos\theta_W B_{\mu\nu}D^{\mu\nu} + D_{\mu\nu}D^{\mu\nu}) \\ B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu} \quad D_{\mu\nu} = \partial_{\mu}D_{\nu} - \partial_{\nu}D_{\mu} \\ \epsilon = \mbox{ small mixing parameter } \leq O(10^{-3}) \mbox{ loops} \end{array}$

$$\begin{array}{l} A_{\mu} \twoheadrightarrow A_{\mu} + \epsilon \gamma_{d\mu} & Z_{\mu} \twoheadrightarrow Z_{\mu} + \epsilon \tan \theta_{W} \gamma_{d\mu} \\ L_{int} = -e\epsilon (J_{\mu}^{em} - 1/2\cos^{2}\theta_{W} J_{\mu}^{NC}) \gamma_{d}^{\mu} \\ J_{\mu}^{NC} = (T_{3f} - 2Q_{f}\sin^{2}\theta_{W}) f\gamma_{\mu} f - T_{3f} f\gamma_{\mu} \gamma_{5} f \quad axial \ current \end{array}$$

1

<u>Example</u>

One Loop gamma- γ_d Kinetic Mixing (Through Heavy Charged Leptons) That also carry U(1)_d charge Expect $\epsilon \sim eg_d QQ_d/8\pi^2 \leq O(10^{-3})$

eε(1/2cos²θ_WJ_µ^{NC}) γ_d^μ violates parity! Cancelled by γ -Z- γ_d mass diagonalization

Left with $O(\epsilon^2) Z - \gamma_d$ mixing effects: $\Delta \sin^2 \theta_W / \sin^2 \theta_W \approx -\epsilon^2 (m^2 \gamma_d / Q^2 + m^2 \gamma_d)$ For $\epsilon < 10^{-3}$ (see bounds) $\rightarrow < 10^{-6}$

Unobservably small Currently $\Delta sin^2 \theta_W / sin^2 \theta_W \sim O(10^{-3})$ sensitivity $sin^2 \theta_W (m_Z)_{MS} = 0.23125(15)$ Z Pole Ave. NA48/2 Updated Bounds on Dark Photon Simple g_{μ} -2 discrepancy solution ruled out Assumes BR($\gamma_d \rightarrow e+e-$) ~1

5

The Dark Z_d Model DAVOUDIASL, LEE, MARCIANO

 $\gamma_d - Z \underline{Mass Mixing} \Rightarrow Z_d (dark Z) \& Z$ Add second SU(2)_L Dark Higgs Doublet H₂ Three Higgs Multiplets H₁, H₂ & φ_d Vacuum expectation values v₁, v₂ & v_d Mixing $\epsilon_z = m_{zd}/m_z \delta$ $\delta = v_2^2/v_1 v_d$ small ~ O(m_{zd}/m_z)~O(10⁻³)

Find $\Delta \sin^2 \theta_W / \sin^2 \theta_W \approx -2\epsilon (m^2 \gamma_d / Q^2 + m^2 \gamma_d)$ <u>Potentially of order 10⁻³ for low Q²</u> γ_d -Z Mass Mixing $\rightarrow \epsilon_z = \delta m_{Zd}/m_Z$

- Potentially Observable Effects, for δ~O(10⁻³), over a range of 10MeV<m_{zd}<15GeV in
- *Weak mixing angle running at low <Q>

 $BR(K \rightarrow \pi Z_d) \approx 4 \times 10^{-4} \delta^2$

BR(B→KZ_d) ≈0.1δ²

 $^{*}\Gamma(H \rightarrow ZZ_{d})/\Gamma_{H}(125 \text{GeV})_{SM}=16\delta^{2}$

<u>δ roughly probed to <10⁻³</u>

Z_d Discovery would revolutionize particle physics

Two Best Z Pole Measurements

Good agreement suggests not much BSM room Similar Tevatron and LHC Results . <u>Radiative Corrections:</u> (Running sin²θ_w(Q)!) sin²θ_w(Q)=e²(Q/)g²(Q)

Electroweak radiative corrections (γ -Z mixing) cause running of $sin^2\theta_W(Q^2)$. Shift by about 3% for $0 < Q^2 < m_Z^2$. [Marciano & Sirlin PRL1981] [Czarnecki & Marciano PRD1996]

1 loop contributions to $sin^2\theta_w(Q^2)$ running Q²< m_Z²

Fig. 2. $\gamma - Z$ mixing diagrams and W-loop contribution to the anapole moment.

Measurements of running $\sin^2\theta_W(Q^2)$ Pre New Qweak

Possible A_{RL} Measurements

12

Recent Qweak Result

R. Carlini PANIC 2017

Measurement of $Q_{in}(p)=1-4\sin^2\theta_{in}$ +Rad. Corr. SM predicts $Q_{M}(p)^{SM}=0.0708(3)$ small E=1.1GeV, Q²~0.03GeV², Pol=85±1%→A_{RI} (ep)≈3x10⁻⁷ small Q² & A_{RI} required long running Some hadronic uncertainties Lattice strange form factor input to reduce error $Q_{weak}(2017): \sin^2\theta_w(m_z)_{MS} = 0.2319(9)$

Best Off Z Resonance Measurements of $\sin^2\theta_W(m_Z)_{MS}$ (Z pole value 0.23125(15))

Reaction	sin²θ _w (m _z) _{MS}	<q></q>
Cs APV	0.2283(20)	2.5MeV
E158 ee	0.2329(13)	160MeV
Q _{weak} ep (2013)	0.2329(50)	160MeV
*Q _{weak} ep (2017)	<u>0.2319(9)</u>	160MeV
6GeV Dis eD	0.2299(43)	1.5GeV
NuTeV v _u N	0.2356(16)	3-4GeV
<u>NuTeV</u> sin²θ _w (m _z) _{MS} = <u>0.2356(16)</u> (2.5 sigma High)		
\wedge (oo) $\sin^2\theta$ (m	-0.2220(12) Vo	ny Clean Theory

 $A_{RL}(ee) \sin^2\theta_W(m_Z)_{MS} = 0.2329(13)$ Very Clean Theory!

 $Q_{W}(ep)$ Now Best Low Energy $\sin^{2}\theta_{W}(m_{z})_{MS}$

Low energy SM Agreement After Qweak (2017)

Weighted Ave.of 4 best Off Pole Exps. . $sin^2\theta_W(m_Z)_{MS} = 0.2324(6)$ Approx. 1.8 sigma difference with Z pole value: $\Delta sin^2\theta_W(m_Z)_{MS} = 0.0012(6)$ was 0.0015(9)

If only Q_W(ep) & E158 Q_W(ee) are averaged sin²θ_W(m_z)_{MS}=0.2322(7) 1.3 sigma from SM (Without Lattice Input, More Consistent with SM)

New Qweak Result (+Lattice)

New Qweak Result & Future Proposals

<u>Dark Z Effect on electron scattering</u> Photon-Z Mixing through Z_d Kinetic + Mass Mixing

Pre- 2017 Qweak 15GeV Dark Z Fit to Low Energy Data

Potential 300MeV Dark Z Effects on Running $|\Delta sin^2 \theta_w(0)| \le 0.002$ Could start to show up in Qweak

Examples of the effect of "Light" Z_d on Running H. DAVOUDIASL, H-S LEE, W. MARCIANO

Present & Future

Precise, $sin^2\theta_W(Q^2)$ PV Experiments at low Q^2

 $Q_{weak} sin^2 \theta_W(m_z)_{MS} = 0.2319(9)$ (with LQCD input) Deviation of average low energy from pole: 0.0012(6)

Next PVES(¹²C) MESA at Mainz elastic eC scattering $\Delta sin^2 \theta_W(m_z)_{MS}$ =±0.0007 (Pol. Uncertainty!)

Future (Z pole competitive) P2 in Mainz (A_{RL}(ep)) ∆sin²θ_w(m_z)_{MS}=±0.00037

<u>Moller at JLAB Goal</u> $\Delta sin^2 \theta_w(m_z)_{MS} = \pm 0.00027!$

"New Physics" in form of Light (150MeV -15GeV) Z_d 5+ sigma Discovery Potential

Non PV sin² θ_{W} at very low Q²

Eg. Vector – Like gauged B-L No Parity Violating Effect Reactor ν_ebar-e scattering Q~2MeV Goal ±0.5% in sin²θ_W Currently ~ +/-10% Explore low mass bosons & g_{B-L} of O(10⁻⁷) Down to low masses ~ 5MeV