Flavor and light scalars

Ahmed Ismail

University of Pittsburgh

Light Dark World 2017

October 19, 2017

with B. Batell, A. Freitas and D. McKeen

Light SM singlet scalars

Motivated by hints of new physics / questions in SM

- muon g 2
- proton radius
- strong CP
- dark matter

Compared to light vectors, no anomaly cancellation issues

this talk

axion-like, see

axion-like, see talk by Sang Hui Im

Possible couplings: $S\bar{Q}H_cU$, $\partial_{\mu}S\bar{Q}\gamma^{\mu}Q$

Flavor structure

New couplings generally break flavor symmetry, leading to significant flavor changing neutral currents

$$\frac{(c_S)_q^u}{M} S \bar{Q}^q H_c U_u$$

Compare with SM, where Yukawas break $U(3)^5$ to $U(1)_B \times U(1)_L \times U(1)_Y$

$$(Y_u)_q^u \bar{Q}^q H_c U_u, (Y_d)_q^d \bar{Q}^q H D_d$$

Minimal flavor violation: assume Yukawas are only source of symmetry breaking \rightarrow all FCNCs are proportional to CKM matrix, i.e. $c_s \sim Y_u$

Beyond MFV

MFV = new physics preserves $U(3)^3$ of quark sector

Next-to-minimal flavor violation = new physics couples only to third generation, respecting $U(2)^3$

Agashe, Papucci, Perez, Pirjol hep-ph/0509117

Meson mixing is proportional to misalignment between interaction basis of new physics and Yukawas

Generalize: a coupling to a single quark preserves $U(2)^2 \times U(3)$

Flavor for up-specific scalar

Orientation of single up-type quark interacting with scalar in mass eigenbasis determines FCNCs

- e.g. S coupling to O(1) mixture of u and c mass eigenstates faces stringent D meson bounds

→ Assume that chiral symmetry broken by S interactions = symmetry broken by up quark mass

$$c_S \sim egin{pmatrix} 1 & 0 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix}$$
 quark mass eigenbasis

Flavor for up-specific scalar

All flavor violation now goes as Y_d with appropriate CKM elements; in basis with diagonal up Yukawas,

$$Y_d = V_{\text{CKM}} Y_d^D$$

In up sector, have flavor-violating correction

$$\frac{1}{M} \left(V_{\text{CKM}} Y_d^D (Y_d^D)^{\dagger} V_{\text{CKM}} c_S^{\dagger} \right)_q^u S \bar{Q}^q H_c U_u$$

Small down-type Yukawas, off-diagonal CKM elements yield negligible D mixing

Flavor for up-specific scalar

Down-type scalar couplings induced at loop level

Both flavor-conserving and flavor-violating couplings go as $Y_{_{II}} Y_{_{d}} c_{_{S}}$ and are loop suppressed

$$\frac{1}{M} \left(V_{\text{CKM}}^{\dagger} c_S(Y_u^D)^{\dagger} V_{\text{CKM}} Y_d^D \right)_q^d S \bar{Q}^q H D_d$$

Naturalness: scalar potential

New scalar suffers from usual hierarchy problem
Assume new physics regulates divergence at scale M

$$- - \frac{S}{U} - \frac{H}{U} - \frac{S}{U} - \frac{S}{U} - \frac{S}{U} - \frac{S}{U} = \frac{S}{U}$$

$$(c_S)^{ij} \lesssim (16\pi^2) \frac{m_S}{M} \approx (3 \times 10^{-3}) \left(\frac{m_S}{0.1 \text{ GeV}}\right) \left(\frac{5 \text{ TeV}}{M}\right)$$

Naturalness: scalar potential

For low *M*, diagrams with Higgs vevs dominate naturalness constraints

$$\delta m_S^2 \lesssim m_S^2 \to (c_S)^{ij} \lesssim (4\pi\sqrt{2}) \frac{m_S}{v}$$

→ small Higgs-S mixing

Scalar vev

Protected by combination of S shift symmetry and chiral symmetry

$$--\frac{\mathcal{S}}{\mathbf{U}} - \frac{\mathcal{H}}{\mathbf{U}} \qquad v_S \approx -\frac{\delta_S}{2m_S^2} \sim \frac{c_S^\dagger Y_u}{2(16\pi^2)^2} \left(\frac{M}{m_S}\right)^2 M$$

S vev generally larger than scalar mass for $M>>m_{_{\rm S}}$

 S^n operators for n > 2 don't significantly affect scalar potential when generated radiatively

Scalar vev

Immediately gives correction to quark mass which is technically natural but still dangerous for $m_{_{S}}$ << M

$$\delta m_{u_1} \sim \frac{(c_S^{11})^2}{2(16\pi^2)^2} \left(\frac{M}{m_S}\right)^2 m_{u_1}$$

Leads to similar bound on c_s as S mass correction

UV completions

Can get dimension 5 S coupling by integrating out heavy vector-like fermion or scalar

Full theory can have additional contributions to scalar potential, changing power counting for naturalness relative to effective theory

UV completions

New vector-like quark Q' with same SM charge as Q

$$y_S S \bar{Q} Q_R' + M \bar{Q}_L' Q_R' + y' \bar{Q}_L' H_c U \rightarrow \frac{y_S y'}{M} S \bar{Q} H_c U$$

Naturalness bounds slightly different

$$---\underbrace{(y_S)^{ij} \lesssim (4\pi)\frac{m_S}{M}}_{\text{compare with effective theory}} \\ (y')^{ij} \lesssim (4\pi)\frac{v}{M} \\ (c_S)^{ij} \lesssim (16\pi^2)\frac{m_S}{M}$$

$$(c_S)^{ij} \lesssim (16\pi^2) \frac{m_S}{M}$$

Summary so far

MFV-inspired symmetry principle for flavored scalar couplings

Spurion analysis gives small scalar potential terms

Different UV completions possible

Applies equally well to scalar coupling to a single up quark, down quark, or lepton

Muon-specific scalar

Can explain muon anomalous magnetic moment

Chen, Davoudiasl, Marciano, Zhang 1511.04715; Batell et al. 1606.04943

We use same UV completion as quark case, with vector-like lepton L'

Muon-specific scalar

$$y_S S \bar{L} L_R' + M \bar{L}_L' L_R' + y' \bar{L}_L' H E$$

Tuned unless UV completion is nearby

μ beam signatures

p beam signatures

At SHiP, some K mesons from proton beam decay before being stopped

Look for K $\rightarrow \mu \nu S$, S $\rightarrow \gamma \gamma$

~10¹⁸ kaons produced, can decay between 55 and 125 m downstream

Electroweak precision

$$(\bar{\mu}_L \quad \bar{\mu'}_L) \begin{pmatrix} y_{\mu}v & y_sv_s \\ y'v & M \end{pmatrix} \begin{pmatrix} \mu_R \\ \mu'_R \end{pmatrix} \qquad \theta_R \approx \frac{y'v}{M} \lesssim 0.05$$

LEP EWWG

Mixing between fermions modifies electroweak RH muon coupling

Add dark matter

 $\chi\chi \to \mu\mu$ annihilation through S can give relic density

Minimal $S\mu\mu$ coupling implied for thermal relic χ and perturbative $S\chi\chi$ coupling

If $m_s < m_\chi$, $\chi\chi \to SS$ annihilation also possible, but unrelated to muon coupling

Testing a muon-philic scalar

Summary

Generalization of MFV allows generation-specific couplings of new light scalar, with possibly suppressed flavor signatures

Technical naturalness bounds require small couplings

Leptophilic case: resolution of muon g-2 with naturalness implies nearby accessible states from UV completion

Upcoming experiments will probe natural couplings

Backup slides

S lifetime

 $m_s > 2 m_u$: prompt decay to muons

$$\Gamma(S \to \mu^+ \mu^-) = \frac{y_S^2 y'^2 v^2}{16\pi M^2} m_S \left(1 - \frac{4m_\mu^2}{m_S^2} \right)^{3/2}$$

 $m_{\rm s}$ < 2 $m_{\rm u}$: slow decay to photons

$$\Gamma(S \to \gamma \gamma) = \frac{\alpha^2 m_{\mu}^2 y_S^2 y'^2 v^2}{8\pi^3 m_S M^2} \left| 1 + \left(1 - \frac{4m_{\mu}^2}{m_S^2} \right) f\left(\frac{4m_{\mu}^2}{m_S^2} \right) \right|^2$$