(One Scientist's Perspectives on)

Radiopurity Databases for Detector Development

Douglas Leonard
IBS, Center for Underground Physics
05/24/2017

The (obvious) Need for Assay Databases

Published data:

Clearly there is much related published assay data. Some "random" examples:

D. Leonard, et al. (EXO-200 Colab.), Nucl. Inst. Meth. A 591 (2008) 490. **225 measurements**

D. Leonard, et al (EXO-200 Colab.), Nucl. Inst. Meth (2017) in press **91 measurements** https://doi.org/10.1016/j.nima.2017.04.049

.. And many others (some referenced therein)

But no one paper contains all the world's copper measurements for example.

Conceptual Experiment Design:

- Need library of known realistically obtainable materials to design and show proof of principle of initial detector concept.
- Radiopurity.org serves well for surveying the published data to find realistic assumptions about obtainable material. (I look up my own data there often).
- o But then must source and measure new items.
- o Logs are born from materials or parts received.
 - Multiple samples and/or measurements come later.
 - History naturally fits hiearchical data structure well.
 - Radiopurity.org top level entry is a measurement.
 - Logbooks can link to measurement ID, but it's not as cohesive and ID's don't obtain conversational meaning.

Some History: Birth of a database

We've all sat in design meetings that went like this:

Joe: "What's the background if we use the new aluminum?"

Sue: "The new aluminum from last year."

Joe: "Yeah"

Matt: "40 uBq/kg... converting to ppt, I mean ppb."

Sue: "You forgot the branching ratio."

Jack: "Wait, wait, that's with *old-new* aluminum, not the *new-new* aluminum."

Joe: "Some grad student figure this out for next week."

Next week

Joe: "What's the background if we use the new aluminum?"

Sue: "The new aluminum from last year...."

Random Post doc (that was me): "Hey, let's use our e-log and write this stuff down!"

This costs real time and productivity.

More than just numbers

A real experiment needs to track complex and in-house information.

- Invoices
- Quoted text from email conversations with suppliers.
- Information on batches, quantities, locations, handling, cleaning.
- Preliminary (not always publishable) analysis results, still under discussion.
- Measurements of "trade secret" parts and materials, sometimes under active development with corporations, even with NDA's. (non-disclosure agreements).
- How material connects to internal design decisions/applications.

These things sound like experimental log books, not public data summaries.

The simple solution: PSI E-log

- In EXO-200 we gave a material or part a numbered e-log entry.
- Sub id's like 34.a and 34.b assigned by hand (text). For batches, varieties, etc.
- Extensive notes about dates, batches, handling methods etc.
- Summarized and attached analysis reports.
- Sometimes attached related MC background reports as well.
- Related entries were "linked" simply by writing about them.

Pros:

- -Very easy to setup when it was needed yesterday.
- -Encouraged communication with complete thoughts and stories.
 - -Real log-booking like scientists should do.
 - -Helps avoid tunnel vision, missing details.

Cons:

- -No structured data
- -No automated overview of assay results
- -Overview summaries were made by hand in excel.
- -No revision history or dates => updates to summaries required diligent oversight or reviewing EVERY entry for changes.

	New Logout Config Help							
Full	Summary Threaded				All entries ▼ Category			
Goto pa	age Previous 1, 2, 3 10, 11, 12 All				S			
ID♥	Date	Author	Subject	Category	Text			
19	Wednesday, 23 November 2005, 09:27:14	P.C. Rowson	LED-based liquid level sensors - GEM inc.	Data	Sensors are an off the shelf item (see weblir below) consisting of a IR transmitter/receiver and I presume a small			
18	Wednesday, 23 November 2005, 07:50:37	Carter Hall	TPC field cage resistor paste and conductive paste	Data	MD 18.1 1108 Resistor Paste Made by Dupont,			
17	Thursday, 20 October 2005, 14:10:35	D. Leonard	Norddeutsche Affinerie, Copper made May 2002 for EXO		This is the main entry for the EXO crystat copper.			
16	Wednesday, 12 October 2005, 13:15:23	D. Leonard	Original aluminum for Advanced Photonics photo diodes.	Notes	This is the original aluminum stock used for the advanced photonics			
15	Thursday, 06 October 2005, 14:04:29	D. Leonard	Doe Run Goslar lead	Notes	Edited 8/17/2007 by AP The Doe Run lead lots used for EXO were conso			
14	Monday, 03 October 2005, 16:09:37	Carter Hall	20 mil phosphor bronze wire	Data	20 mil phosphor bronze wire, annealed.			
		Carter Hall, Bob	Copper		ENTRY CLOSED - SUPERCEDED by:			

Beyond logging: Bkgd Estimations

Programmatic spreadsheet to summarize :

- 1) Materials assay (auto-linked to elog)
- 2) Monte Carlo efficiencies.

MD	Sub	Mea	s. Advanced		Last	Hyper		Analysis		40k			Th	
Number	MD#	ID	Description	Mat	Change	Link		Units	<		+/-	<		+/-
1	1	1	‡		‡	1	1	1	1	1	1	1	1	1
			Phosphor Bronze											
3	4	1	Grid wire raw material for MD47	PB	8/8/2007	34	Ge Neuchatel	g	<	369.73684		<	0.1083744	
3	4	2	Grid wire raw material for MD47	PB	8/8/2007	34	ICPMS	g	<	80			0.027	0.0
3	5	1	un-ethced spiders, 46 is final part	PB	8/8/2007	35	ICPMS	g					0.0025	0.00
1	4	1	Phosphore bronze wire	PB	2/8/2007		GDMS	g	<	23		<	0.02	
4	8	1	3/4 hard phosphor bronze	PB	2/8/2007	48	Neuchatel K+ ICPMS	g	<	284			0.04	0.0
	5		1/2 hard P-B for door seal			<u>45</u>	ICPMS	g					0.05	
4	5		1/2 hard P-B for door seal				Neuchatel	g	<	248		<	0.063	
4	5	3	1/2 hard P-B for door seal combined measurement	PB	8/8/2006	<u>45</u>	combined Neuchatel	g	<	248			0.05	0.0
			Cold Seals											
5	7	1	Inconnel seals, test material only				Neuchatel							
10	1	1	IndiumJet Seal	PB	10/12/2006	101	Patricia ICPMS Oct 06	g					0.06689	0.00
17	2		In-plated P-B test piece (New Jersey Plating) from MD45		2/17/2009		ICPMS	g					0.0441	0.00
	7 a		Jetseal: Old Batch A Door rings In plated (SLAC) from MD45		2/17/2009		See control, part e	g				<	0.0012	
	7 b		Jetseal: New Batch B unlflown rings from MD45		2/17/2009		See control, part e	g				<	0.0012	
19	7 0	- 1	lotegale: Small rings ~5 inch, plated from MD45		2/17/2000	197	See control part o	a				1	0.0012	

- 3) Parts. Could create parts on-the-fly (during meetings) to estimate backgrounds
 - Select material
 - Enter mass/quantity
 - o Choose closest existing MC (guess) efficiencies.
 - o Estimates background impact.
 - For quick decisions, MUCH faster than waiting for a new MC, and often good enough.
- Includes functions to standardize Bayesian limit calculations and prepare latex table for publication, but it wasn't very friendly to most users.

Incremental advance: Present CUP Materials Database

- Motivation again dominated by deployment speed (and learning curve/resistance).
- Reimplementation (by me) of e-log in Twiki environment.
- Does about everything E-log does (except maybe threaded replies).
- But with power of Twiki (now FosWiki):relative links, advanced search, formatting, tables, etc.

Big Advantage: Revision History

- -Can sort entries to find recent changes.
- -Can show differences and old versions, (mostly meets no-erasure logging requirements).
- Integrated with/auto-linked-from CUP assay request queues.

Cons:

Still just log entries at its core.

(Brief) Outline of a Gen 2 Database

4 Parts of an advanced Database (based on EXO-200 experience, outlined for nEXO)

1) "Material" Entries:

- Track materials and/or parts having potential bkgd impacts to experiments.
- Track samples, assays, and quantitative results.

2) Monte Carlo:

- Database for MC efficiencies in re-normalizable units: ex: hits per decay in ROI.
- Better yet, root file of full MC output, or both.

3) Detector Models,

- Multiple detectors definable for development/hypotheticals
- Consists of parts defined by:
 - o Material
 - o MC
 - o Mass or extent (cm² of reflector, cm of cable, ea PMT etc) and count. ...

4) Background Impact Estimation

- Estimate backgrounds from detector models and parts.
- Depending on level of detail stored in MC database, can be simple bkgd ROI estimates, or full virtual experiment sensitivity estimations.

Of course include revision date and history.

Full design defined efforts and interfaces in detail. Forethought is required. More detail of original concept provided in backup slides.

nEXO "Cabinet" Datbase ("Gen 2" design)

• Programmed by R. Tsang, inspired by concept above.

Sub samples, sub-measurements, sub-analyses.

Software:

r 2017

- Couchdb database engine
- Json document format
- Elasticsearch searching

Cons:

Attachments, formatting, linking etc.. less advanced than Twiki (for now).

5/24/2017 • 9

Cabinet Assay Entry

- . Title: Twisted Ethernet Cables
- · ID: R-029
- · Material Name: Cinch cat ethernet cable
- · Original Author: Tamar Didberidze
- · Intended use: Cables
- · Actual use:
- · Real or MC: Real
- Descriptions: Received from Ralph DeVoe at the University of Alabama on ~ 02/24/2015. Twisted pair: 2 25 foot lengths of Cinch cat 6 ethernet cable, part # 73-8891-25. Ordered from Related counting and analysis information on UA Elog: http://130.160.100 75/201764.
- · Remarks: Technical Drawing: EthernetCabledr-73-8891-25.pdf
- Tags:

R-029.1

Sample 1

- Sample ID: 1
- · Supplier: Mouser(Ralph DeVoe)
- · Product: Cinch cat ethernet cable
- Part number: 73-8891-25
- Lot number:
- · Normalized by (e.g. mass, area, length): -
- · Mass/Area/Length (without unit): 312.1
- · Unit (of mass/area/length): g
- · Sample descriptions: Twisted pair: 2 25 foot lengths of Cinch cat 6 ethernet cable, part #73-8891-25. Ordered from Mouser.
- · Remaining quantity:
- . Unit (for 'Remaining quantity'):
- · Location:
- Date (yyyy-mm-dd):
- · Mother sample (leave blank if from vendor):
- · Sample remarks:

Attachments

Attachments

TwistedCablesIntheGelID tector UA.jpg

TwitedCablesIntheGellDetector UA.jpg

GellBackground vs nEXOTwistedCable UniversityofAlabama Gell.pdf

EthernetCabledr-73-8891-25.pdf

SimulationofTwistedEthernetCables Gell UniversityofAlabama.pdf TwistedEthernetCables UniversityofAlabama Gell Analysis.xlsx

TwistedEthernetCable UniversityofAlabama Gell Fits.pdf

Internal ID: #75250f269e3ebe9e66512ef1512611a1

Revisions

2017/05/18

2015/03/27 11-28-24

2015/03/26 18:36:53

2015/03/26 18:20:42

2015/03/26 18-17-40

Revisions

2015/03/26 18-17-17

Show More

Measurement 1

R-029.1.1

Ge counting at UA, Gell

- · Label (e.g. 'UA, NAA, 2015-09-01'): Ge counting at
- Detector: Gell at University of Alabama
- · Measured by: Tamar Didberidze
- Date of measurement (yyyy-mm-dd): 2015-03-17
- Counted from (yyyy-mm-dd): 2015-02-26
- Counted to (yyyy-mm-dd): 2015-03-17
- Livetime [s]: 1537398.6
- · Normalized by (e.g. mass, area, length): -
- Mass/Area/Length (without unit): 312.1
- Unit (of mass/area/length): g

Analysis 1

Remarks fields

(poor example)

replaces elog text.

Tamar Didberidze

- · Analyzer: Tamar Didberidze
- · Analysis quality: -
- · Measurement type: Regular measuremer
- U-238:
 - Specific Activity:
 - Error type: Symmetric error (68% C
 - Error: 4.92
 - Alternate limit:
 - Systematic error:
 - Lower error (for asym. err.):
 - Unit of measurement: mBq/kg
- Th-232:
 - Specific Activity

Dougl

Cabinet Detector Model

- Detector models
- Built from parts.
 (defined by material, MC, etc)
- Generates background spreadsheet.

Material Database

Welcome dleonard! Logout? Edit this post.

↑ | Radioassay | Monte Carlo | Background Spreadsheet | EXO-200

- Title: Detector (ver. 15a)
- ID: D-001
- Remarks: v62: Updated cryostat masses to match the HFE tech note. The tech note uses thinner cryostat walls, based on

Attachments

electronic mass estimate 05122016.xlsx

Internal ID: #75250f269e3ebe9e66512ef151391897

Revisions

 2016/09/08
 2016/09/08
 2016/09/07

 12:50:21
 12:49:56
 09:41:19

 (Current)
 (Revision 72)
 (Revision 71)

Cabinet Background Summaries

- Many, many, tables and views provided to assess bkgd contributions.
- What-if analysis can be done at spreadsheet level or starting in database.
- Limits using Bayeseian/FC/truncated-gaussian.

Douglas Leonard, LRT 2017

(Some) Other Databases

• Radiopurity.org (previous talk)

J.C Loach, J. Cooley, G.A. Cox, Z. Li, K.D. Nguyen, A.W. P. Poon, Nucl. Instrum. Meth. A 839 (2016) 6-11

nEXO database developed independently, but ultimately very similar.

nEXO data structure more hiearchical.

- -radiopurity.org one document per measurement, very suitable for published data.
- -nEXO document vaguely defines a "material" with many "samples",
- "measurements" and "analyses"
- Majoranna: N. Abgrall et. al. Nucl. Instrum. Meth. A 779 (2015) 52-62.
 - o Also couchdb, json, (and I think elasticsearch from discussion with Robert Varner)
 - o Parts tracking database, NOT an assay database.
 - Three record types: parts, assemblies, histories.
 - In my experience, this is important, difficult, and potentially lacking in other solutions.
 - But also difficult to structure.
 - O Paper notes the flexibility of json documents (and difficulty of generic queries).
- Kamioka: Next talk.

(Some) Other Databases contd..

LZ Information Repository

Database:	Screening	Cleanliness Controls	Analytics	Parts			
eLog:	Screening	Cleanliness Controls	Materials	Parts			
Tools:	Custom QR generator	Calculators	Geo-location	Apply account			
Auxiliary:	WindChill	PMT test@Brown	LZ Twiki	Help			

- Maintained by Joseph Hor and Jerry Busenitz. University of Alabama.
- Similarly includes tools for:
 - Assay measurements
 - o Cleaning protocols and related docs
 - o Parts tracking
 - o Background calculations, with what-if scenarios.
 - O Uses QR labels to find web entry.
 - o Based on MongoDB (like couchdb, holds json documents)

• Others? Probably far from exhaustive list.

Final Thoughts

- Real experiments complicate software and data structure demands.
- Json is flexible (extensible), difficult to query, but unanimous favorite.
- Hieararchy may limit compatibility though.
- Can databases be similar enough to easily transfer data to a world database?
 Probably yes, but will it anyone spend time on automated translation?
- Published data needs review of details anyway.
- Now considering Cabinet (nEXO) database for future of CUP experiments (and elsewhere?)
 - May use professional development support.
 - o Other similar efforts ongoing, let's keep in touch when possible.
- Is too much structure bad?
 - o Do people still pause to write down what happened?
 - o Do they see a logbook?
 - ... Or a computer system with check boxes?
 - o Do they just ask (ok, ok, but which boxes do you want me to tick?)
 - o Is e-log (or the Twiki replacement) still the best?
 - o Can we ever know all the data structure we'll need?
 - Is json flexibility enough to overcome that (does nothing without human work)?
- Fast estimates from existing MC and assay are crucial to efficient design cycle.
- Decisions are facilitated by structured databases providing the latest answers and summaries.

Douglas Leonard, LRT 2017