Identification of ²¹⁰Pb and ²¹⁰Po in the bulk of copper with low background alpha counter

K. Kobayashi (ICRR, Univ. of Tokyo) May 24th, 2017 Low Radioactivity Techniques 2017 at Seoul, South Korea

Low background alpha-counter (XIA Ultra-Lo-1800)

We installed it at clean room in Kamioka underground to understand the surface background in Jan. 2015. We have been studied surface/bulk ²¹⁰Po contents.

	specification
efficiency	>90% of 2pi
energy resolution	<9%FWHM at 4.6MeV
energy range	1-10MeV
sample size	707cm² (φ30cm disk), 1800cm² (42cm*42cm)
maximum sample weight	9kg
maximum sample thickness	6.3mm
achievable background level	10 ⁻⁴ alpha/cm ² /hr

Stability of alpha counter

Using surface ²¹⁰Po 5.3MeV, we are constantly monitoring the energy scale.

Background estimate by Silicon wafer measurement

run#	218 (707cm ² active region)	
purge	Omin (no sample change)	
duration	11.69days (Nov. 17 th , 2016 - Nov. 30 th , 2016)	
sample	Silicon wafer (polished silicon wafer made by Shin-Etsu chemical. Φ300mm and 775um in thick. Resistivity is 1~100Ωcm. Boron doped.) First 1 day data cut.	

Background emissivity is $(1.1 \pm 0.3) \times 10^{-4} \alpha/cm^2/hr$. They are mainly from ²²²Rn and ²²⁰Rn and their energy is higher. In 2.5<E<4.8MeV, background emissivity is $(5.6 \pm 5.6) \times 10^{-6} \alpha/cm^2/hr$.

Red: alpha events from sample surface

Background of daughter nuclei from ²²²Rn and ²²⁰Rn in Ar gas

How the bulk signal looks like in alpha counter?

- Alpha range in copper is $\sim 10 \mu m$.
- Energy distribution is continuous.
- According to the MC estimate, events in 2.5<E<4.8MeV come from 2<d<6um mainly (d: distance from alpha generation point to the copper surface.).
- Conversion factor from emissivity to bulk contamination is 249 (Bq/kg)/(alpha/cm2/hr) in 2.5<E<4.8MeV → Backgroun

6

→ Background level corresponds to 1.4mBq/kg

To measure ²¹⁰Pb/²¹⁰Po contamination in copper bulk:

- 1. Background from the alpha particle counter itself should be small.
 - UltraLo-1800 was installed underground. Background level in 2.5<E<4.8MeV is $(5.6\pm5.6)x10^{-6}\alpha/cm^2/hr$.
- 2. Radioactive contamination on the sample surface should be minimized.
 - We apply electro-polish to remove surface RI. Also we confirmed the surface activity before EP is not large.
 - Sample exchange is done in a clean room.
 - We kept the samples in the EVOH (ethylene-vinylalcohol copolymer) bag during storage.
 - We don't use the surface energy region (around 5.3MeV). In 2.5<E<4.8MeV, contribution from surface events is <5%.
- 3. The sample surface roughness should be much smaller than track length of alpha-rays (~10μm).
 - After the EP, surface roughness is <<1µm by laser microscope check.
- 4. Alpha-rays from radioactive nuclei other than ²¹⁰Po should be negligible.
 - By GD-MS, we confirmed <100ppt in ²³⁸U and ²³²Th → <1.2mBq/kg in ²³⁸U and <0.4mBq/kg in ²³²Th.

Large ²¹⁰Pb contaminated sample (coarse copper) Energy (surface) events data (coarse copper) Energy vs. risetime Bulk MC (5.3MeV) 90 Ъ Surface MC (5.3MeV) Number Number 60 60 50 40 40 30 30 Energy 20 region 20 for bulk **10**E 10 analysis Enerav (MeV) ′ = 8 9 1 Energy (MeV) 5

- In coarse copper sample MMC provided, large ²¹⁰Po activity in bulk region is seen.
- Energy selection for bulk analysis is determined to 2.5<E<4.8MeV through this comparison
- Shape of energy distribution in data agrees with that of MC.

Calculation method to derive

210 Pb/210 Po contamination $N_{0}(t) = N_{0}(0)e^{-\frac{t}{\tau_{0}}}$ $\frac{1}{\tau_{0}}\left(e^{-\frac{t}{\tau_{0}}} - e^{-\frac{t}{\tau_{1}}}\right) + N_{1}(0)e^{-\frac{t}{\tau_{1}}}$ T_1

 $\tau_0 = 32.17$ yr (lifetime of ²¹⁰Pb)

 τ_1 =0.55yr (lifetime of ²¹⁰Po)

Ns are numbers measured by alpha counter (after background subtraction. Background is measured by Si wafer sample).

 N_0 (t): amount of ²¹⁰Pb in 1kg at t=t

 N_1 (t): amount of ²¹⁰Po in 1kg at t=t

t=0: the time when the samples are delivered.

Equilibrium is largely broken. ²¹⁰Pb: 52.1±1.2Bq/kg, ²¹⁰Po: 14.8±2.1Bq/kg The result is consistent with that of HPEGe: 55.6 ± 1.5 (stat.)+16.7-5.6(syst.)Bg/kg \rightarrow We confirmed that this method work well.

Time evolution (coarse copper)

OFC (oxygen free copper, C1020) samples (rolled)

	²¹⁰ Pb	²¹⁰ Po
	(mBq/kg)	(mBq/kg)
OFC#2	18.6±5.1	30.3±12.5
(MMC)		
OFC#3	24.8±6.8	144±23
(MMC)		
OFC#4	25.7±5.9	160 ± 14
(MMC)		
OFC#5	15.6±5.7	40.2 ± 16.7
(SH copper products)		
OFC#6	24.5±7.4	21.8±15.2
(SH copper products)		

MMC: Mitsubishi Material Corporations

- Equilibrium is largely broken. Though ²¹⁰Po is widely ranged (21.8~160mBq/kg), ²¹⁰Pb are within 15.6~25.7mBq/kg. This is the first measurement of ²¹⁰Pb in OFC bulk.
- OFC Class 1 was also investigated. ²¹⁰Pb contamination is same level as OFC C1020.

Copper production

MMC (Mitsubishi Material Corporation) kindly cooperated for our study to understand the origin of ²¹⁰Pb in OFC. They provided us copper samples in each production step: coarse copper, bare copper, and OFC (ingot). All samples are machined (NOT rolled) and electro-polished (50um). We measured several times.

Coppers in each production step

	²¹⁰ Pb	²¹⁰ Po	
	(mBq/kg)	(mBq/kg)	
Coarse copper	52.1±1.2	14.8±2.1	
Bare copper	7.0±5.8	107±24	
OFC ingot	20.7 ± 7.2	117±27	

- ²¹⁰Pb contamination in Bare copper and OFC is ~1/1000 of coarse copper.
- OFC ingot is consistent with OFC samples (rolled) measurement (15.6-25.7mBq/kg).
- It indicates most of the ²¹⁰Pb is removed in the electrolysis process but the same does not seem to be true for the the daughter isotopes, ²¹⁰Bi and ²¹⁰Po.

6N copper

6N (99.9999% pure copper) is made by another cycle of electrolysis in clean environment. -> Low ²¹⁰Pb contamination is expected. We purchased this 6N copper from MMC.

Electro-formed copper

- Electro-formed copper plate is made by a different company from MMC. 0.5mm thickness copper is electro-formed (345mmx345mm) on SUS plate (35cmx40cmx4mm) and is electro-polished ~0.1mm.
- Event rate is consistent with background.
- ²¹⁰Pb: <2.8mBq/kg.

6N and electro-formed copper are the lowest ²¹⁰Pb contamination copper among our measured samples.

Application to other materials

- This method to measure ²¹⁰Pb and ²¹⁰Po contamination in copper bulk could apply to other materials. We generate MC simulations and estimate the sensitivity. We checked aluminum, stainless steel, titanium, tungsten, quartz glass, PTFE. The sensitivities are similar to copper, 0.75-2.29mBq/kg.
- Because the neutron from (α,n) reaction in material bulk is one of the expected background in the future dark matter experiment. It is important to measure not only upper U-chain contamination, but also ²¹⁰Pb contamination. This method is useful for the ²¹⁰Pb contamination understanding.

summary

- We established a new method to measure the ²¹⁰Pb and ²¹⁰Po contamination in copper bulk. The sensitivity to ²¹⁰Pb and ²¹⁰Po contamination is a few mBq/kg.
- Due to this high sensitivity, we succeeded in identifying and measuring the ²¹⁰Pb and ²¹⁰Po contamination in OFC bulk (²¹⁰Pb:15-26 mBq/kg). This ²¹⁰Pb is interpreted as a small residual from the electrolysis process based on the investigation of the coppers in each production step.
- The 6N and the electro-formed copper contaminate ²¹⁰Pb one order or more lower than OFC.
- The method we established here to measure the copper bulk contamination could apply to other materials. Our method can improve material screening and preparation for low background experiments.

Paper is now in preparation

backup

Laser microscope check (Ra)

	Before EP	After EP
Coarse copper	0.463um (2015.12.09)	0.684um (2016.01.27)
		0.186um (2016.02.05)
Bare copper	0.113um (2015.12.09)	0.015um (2016.01.25)
OFC	0.143um (2015.12.09)	0.096um (2016.02.04)
6N copper	1.906um (2015.10.29)	0.073um (2016.01.12)
OFC (SH copper)	0.349um (2015.10.29)	
RFB copper		0.142um (2015.10.06)
6N copper (10cmx10cm)		0.017um (2016.05.02)
OFC EP+EP		0.017um (2016.01.18)
Shimosada copper	0.382um (2016.11.29)	

GDMS result

All the samples (coarse, bare, OFC, 6N copper) are investigated by GDMS by company.

	Coarse coper	Bare copper	OFC	6N copper
S	27	6.7	3.5	0.1
Cl	0.008	9.1	0.02	0.006
Ag	1100	8.6	16	0.15
²⁰⁸ Pb	2200	0.19	0.98	0.002
²⁰⁹ Bi	240	0.06	0.26	0.001
²³² Th	<0.0001	<0.0001	<0.0001	<0.0001
²³⁸ U	<0.0001	<0.0001	<0.0001	<0.0001

- ²³⁸U and ²³²Th are all <0.1ppb.
- ²⁰⁸Pb ratio (coarse, bare, OFC) is similar to ²¹⁰Pb of alpha counter measurement. -> ²¹⁰Pb in 6N copper is expected to be ~0.05mBq/kg

Summary of sensitivity study for bulk measurement by MC simulation

	Atomic mass (g/mol)	Density (g/cm³)	Conversion factor (1alpha/cm ² /hr(2.5< E<4.8MeV)=??Bq/kg)	5.3MeV alpha-ray Range estimated by MC (μm)	Current sensit by alpha cour (mBq/kg)	tivity Iter
Aluminum	26.98	2.70	361	22.0	2.02	
Silicon	28.08	2.329	375	24.3	2.10	
Titanium	47.87	4.506	306	15.7	1.72	
Iron	55.85	7.874	282	9.9	1.58	All the Consitivities
SUS304		8.03	280	9.6	1.57	All the sensitivities $(0.75, 2.20 \text{mBg/kg})$
Kovar		8	272	10.2	1.52	(U.75-2.2911Dq/kg)
copper	63.545	8.94	249	10.0	1.39	(1.20mBa/ka)
Zinc	65.38	7.14	248	12.6	1.39	(1.59ПБЦ/кg).
Tin	118.7	7.365	198	15.3	1.11	
Tungsten	183.84	19.25	134	8.5	0.75	
Lead	207.2	11.34	139	15.1	0.78	
Quartz glass		2.5	359	30.8	2.01	
PTFE		2.14	410	24.3	2.29	