Darker and Heavier

Spin-2 Dark Matter

Federico Urban

Keemilise ja Bioloogilise Füüsika Instituut

NICPB/KBFI

Tallinn

DSU 2017 Daejeon, Korea

July 10th, 2017

Outline

ఄ What is bigravity?!?
 ఄ A new heavy spin-2 field
 ఄ Spin-2 Dark Matter
 Phenomenology

Based on work with the FatGR-DM monster collaboration: Babichev, Marzola, Raidal, Schmidt-May, FU, Veermäe, von Strauss

arXiv:1604.08564 in PRD and arXiv:1607.03497 in JCAP

See also Aoki and Mukohyama (2016)

$$S = \int d^4x \left[\sqrt{|g|} m_g^2 R(g) + \sqrt{|f|} m_f^2 R(f) - 2m^4 \sqrt{|g|} V(g, f; \beta_n) \right]$$

- 1. R(g) is GR for the metric $g_{\mu\nu}$, with strength m_g
- 2. R(f) is GR for the metric $f_{\mu\nu}$, with strength $m_f \equiv \alpha m_g$
- 3. The interaction potential is V(g, f) and it depends on 5 parameters β_n
- 4. This action contains **no ghosts!** It took about 100 yrs to get it right

The ghost-free coupling to matter breaks the symmetry:

$$S_m = \int \mathrm{d}^4 x \sqrt{|g|} \, \mathcal{L}_\mathrm{m}(g,\Phi)$$

What's in this theory?

Expand around proportional backgrounds $f_{\mu\nu}=c\,g_{\mu\nu}$ (for technical reasons)

$$S^{(2)} = \int \mathrm{d}^4 x \sqrt{|\bar{g}|} \left[\mathcal{L}^{(2)}_{GR}(\delta G) + \mathcal{L}^{(2)}_{FP}(\delta M)
ight]$$

- \bullet We have one (linearised) GR for the field δG
- * We have one Fierz-Pauli spin-2 field δM and mass $m_{\rm FP} \sim \sqrt{\beta}_n M_{\rm Pl}$
- $\mbox{\ensuremath{\$}}$ These are mixtures of the interaction eigenstates with parameter α

$$\delta g_{\mu\nu} = \frac{1}{M_{\rm Pl}} \left(\delta G_{\mu\nu} - \alpha \delta M_{\mu\nu} \right) , \quad \delta f_{\mu\nu} = \frac{1}{M_{\rm Pl}} \left(\delta G_{\mu\nu} + \alpha^{-1} \delta M_{\mu\nu} \right)$$

PS: We have defined the physical Planck mass as $M_{\rm Pl}^2 \equiv (1+\alpha^2) m_g^2$

Matter?

Matter was coupled to $g_{\mu\nu}$ so that at tree-level...

Matter automatically couples to both massless δG and massive δM states.

The coupling of δM is proportional to $\alpha/M_{\rm Pl}$

By the way:
$$\Lambda = \frac{\alpha^2 M_{\rm Pl}^2}{1+\alpha^2} (\beta_0 + 3\beta_1 + 3\beta_2 + \beta_3) = \frac{M_{\rm Pl}^2}{1+\alpha^2} (\beta_4 + 3\beta_3 + 3\beta_2 + \beta_1)$$

How does δM gravitate?

	$\delta G^3 \mid \delta G$		$\delta^2 \delta M$	$\delta G \delta M^2$		δM^3	3
	1		0	1	I	1/α	ļ.
δG^4	$\delta G^3 \delta M$		$\delta G^2 \delta M^2$		$\delta G \delta M^3$		δM^4
1	0		1		1/lpha		$1/\alpha^2$

- i. All $\delta \emph{G}$ vertices have the same strength as in GR
- ii. There is no decay of δM into any number of δG
- iii. $\delta G \delta M^2$ is 1: the response to δG is the same as SM matter
- iv. δM self-interactions are enhanced compared to GR

Production and decay

• The massive spin-2 can be produced via freeze-in:

 \star δM decays universally into all SM particles (but not massless gravitons):

$$\Gamma(\delta M \to XX) \simeq \alpha^2 m_{\rm FP}^3 / M_{\rm Pl}^2$$

★ The froze-in DM should have the right abundance and not decay too fast: this can be arranged!

The parameter space

Wrapping it up

Bimetric automatically contains a new, massive spin-2 field:

- old It gravitates identically to normal matter
- Olt couples extremely weakly (gravitational strength) to the SM
- lt can be produced with correct abundance via freeze-in
- $\stackrel{\circ\circ}{\circ}$ It is heavy, 1÷66 TeV, and is stable enough

Thank you! – Aitäh! 💠