Probing the Big Bounce Scenario with Cuscuton

HyungJin Kim

arXiv:1704.01131 Supranta S. Boruah, Hyung J. Kim, Ghazal Geshnizjani

July 12, 2017

Introduction

- Cosmological Perturbation Theory
- Scale-invariant power spectrum from adiabatic vacuum fluctuation

Observational Data

- Accelerated expansion (Inflation)
- Or the issues of
 - Null Energy Condition $((\rho + P) < 0)$
 - Superluminal signal propagation
 - Sub-Planckian energy densities

Cuscuton: Theory for modifying gravity

Causal Scalar Field Theory with Non-dynamical Degree of Freedom
⇒ Cuscuton Field¹

$$\mathcal{L}_{\it cuscuton} = \pm \mu^2 \sqrt{X} - V(\varphi), \quad \text{ where } X = g^{\alpha\beta} \nabla_{\alpha} \varphi \nabla_{\beta} \varphi \qquad (1)$$

ullet In the presence of another scalar field π with a canonical kinetic term,

$$\dot{H} = \mp \mu^2 a \mid \dot{\varphi}_0 \mid -\frac{1}{2} \dot{\pi}_0^2 \tag{2}$$

Conclusion

The action to second order in perturbed quantities

$$\delta S_2 = \int d^3 \mathbf{k} d\tau \ z(\mathbf{k}, \tau)^2 \left[\zeta_k^{\prime 2} - c_s(\mathbf{k}, \tau)^2 \ \mathbf{k}^2 \zeta_k^2 \right]$$
 (3)

In the UV Limit where $\mathbf{k} \to \infty$

$$\delta S_2 = \int d\tau d^3 \mathbf{k} \left\{ a^2 \frac{\pi_0^{'2}}{2\mathcal{H}^2} \left[\zeta_{\mathbf{k}}^{'2} - \mathbf{k}^2 \zeta_{\mathbf{k}}^2 \right] \right\}$$
 (4)