Cosmological Dynamics of D-Blonic and DBI Scalar Field and Coincidence Problem of Dark Energy

Sirachak Panpanich, Kei-ichi Maeda (Waseda U.), and Shuntaro Mizuno (YITP)

Phys.Rev.**D** 95, 103520 (2017)

July 12, 2017

Cosmological dynamics of D-Blonic

D-Blonic (C. Burrage and J. Khoury, 2014)

The D-Blonic is one of the screening mechanisms which arises from DBI-like Lagrangian.

DBI-like action (ϕ couples conformally to matter)

$$S = \int d^4x \sqrt{-g} \left[+\Lambda^4 \sqrt{1 - \Lambda^{-4} (\partial \phi)^2} + \frac{g\phi}{M_{Pl}} T_m \right]$$

DBI action

$$S = \int d^4x \sqrt{-g} \left[-f(\phi)^{-1} \sqrt{1 + f(\phi)(\partial \phi)^2} + f(\phi)^{-1} - V(\phi) \right]$$

 \therefore Signs have been flipped \Rightarrow necessary for screening mechanism

D-Blonic screening

EOM of D-Blonic scalar field is

$$\nabla_{\mu} \left(\frac{\nabla^{\mu} \phi}{\sqrt{1 - \Lambda^{-4} (\partial \phi)^2}} \right) = -\frac{g}{M_{Pl}} T_m .$$

This consists of linear regime and non-linear regime. \Rightarrow similar to the Vainshtein mechanism.

Far from the source $r \gg r_*$,

$$\phi'(r) \simeq \Lambda^2 \left(\frac{r_*}{r}\right)^2 \to \propto \frac{1}{r^2}$$

$$\therefore F_{\phi}/F_N \simeq 2g^2$$
 Unscreened!

Close to the source $r \ll r_*$,

$$\phi'(r) \simeq \Lambda^2 \ \to {\rm constant}$$

$$\therefore F_{\phi}/F_N \simeq 2g^2 \left(\frac{r}{r_*}\right)^2 \ll 1$$

D-Blonic screening

We will find cosmological dynamics of the D-Blonic (also DBI) scalar field.

Necessary to the model

- ullet Coupling to matter \Rightarrow solves coincidence problem
- ullet Screening for fifth force \Rightarrow satisfies solar system constraints

Results

We found

- the scalar field (dark energy) dominated solution the same as in DBI theory and coupled quintessence model.
 - 2 a new scaling solution which is stable even though the coupling constant is small (in D-Blonic only).

3 However, ϕ MDE is still difficult to realise.