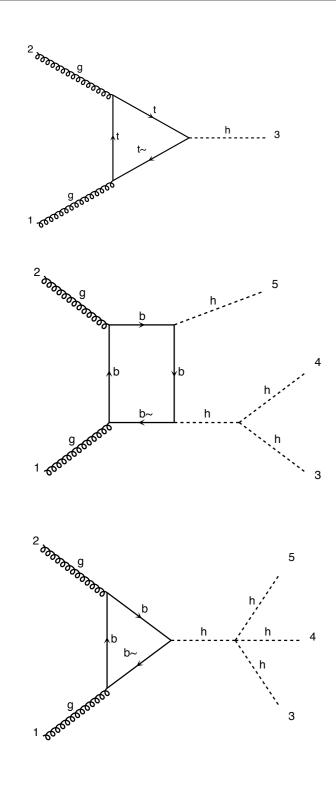
Monte-Carlo methods for Multi-Higgs Production

Olivier Mattelaer CP3/UCLouvain

based on:


V. Hirschi, OM: arXiv:1507.00020

C.Degrande, V.Khoze, OM: 1605.06372

OM:1607.00763

M. Backović et al:1505.04190

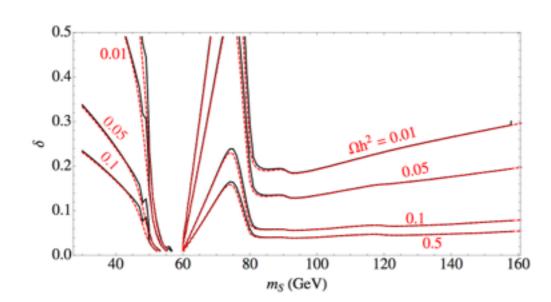
Motivation

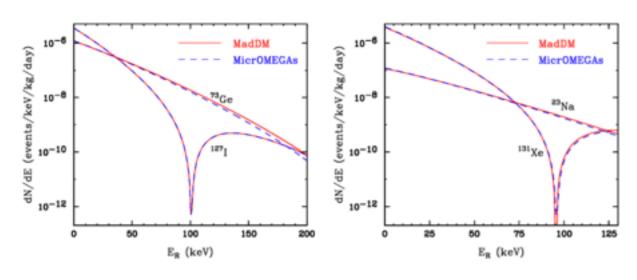
- Low multiplicity
 - →Measuring the Higgs potential is a deep test of the EWSB mechanism
 - →Multiple Higgs production is the only way to probe this experimentally
- Large multiplicity:
 - → Are we sensitive to the scalar unitary breaking of the perturbative expansion

Plan of the talk

- MG5aMC@NLO: short presentation
- Loop-induced computation in MG5aMC
 - →re-weighting and direct computation
 - **→** 1507.00020/1607.00763
- High multiplicity Higgs production
 - **→** 1605.06372

Red Line


 Multi-Higgs production from one to hundred(s) of Higgs


MG5_aMC@NLO

- MadGraph5_aMC@NLO
 - generate events/ compute cross-sections both at LO/NLO in QCD in SM/BSM
 - results available for EW corrections
 - NLO+PS in progress
 - · is a matrix-element provider
 - new framework to customize output
 - is a platform allowing to run tools
 - parton-shower/re-weighting/plot/...

Dark Matter

Computation of relic density

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = -2\langle \sigma_{eff} v \rangle \left(n_{\chi}^2 - (n_{\chi}^{EQ})^2 \right),$$

- Computation of direct detection
 - → various type of experiment
- In progress: indirect detection

Backovic, Kong, McCaskey 1308.4955 Backovic, Martini, OM et al1505.04190 Multi-Higgs: Low Multiplicities

Computation method

ReWeighting

$$W_{sm} = \frac{|M_{sm}|^2}{|M_{heft}|^2} W_{heft}$$

- Start by an EFT theory
- change the weight associated to each event

Exact Integration

$$\int |M_{loop}|^2$$

- Easy extension to any loop-induced processes
- Allow BSM study
- No validity issue

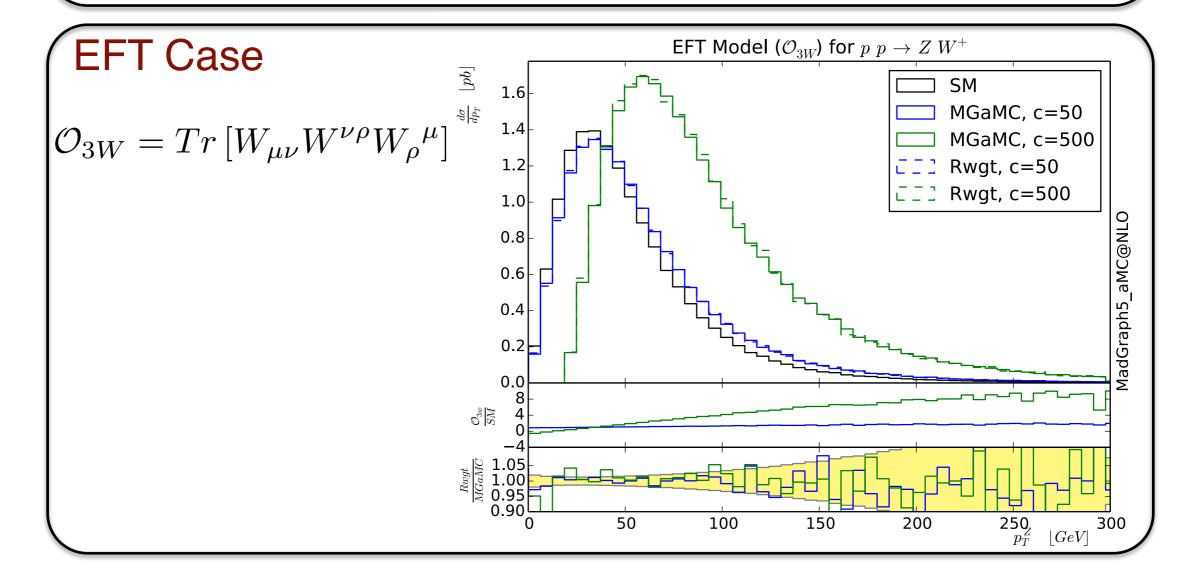
BSM Re-Weighting

Re-weighting are everywhere

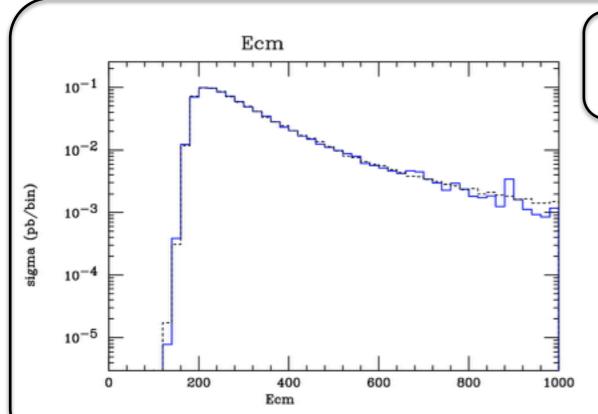
- scale and pdf uncertainties (available both for LO and NLO computation)
- matching/merging
- · experimental re-weighting

BSM Re-weighting

- Change the events weights of a LHEF for various BSM theories.
- Re-use the same parton shower and detector simulation


LO

Re-Weighting


1404.7129

Change the weight of the events

$$W_{new} = \frac{|M_{new}|^2}{|M_{old}|^2} * W_{old}$$

Re-Weighting Limitation

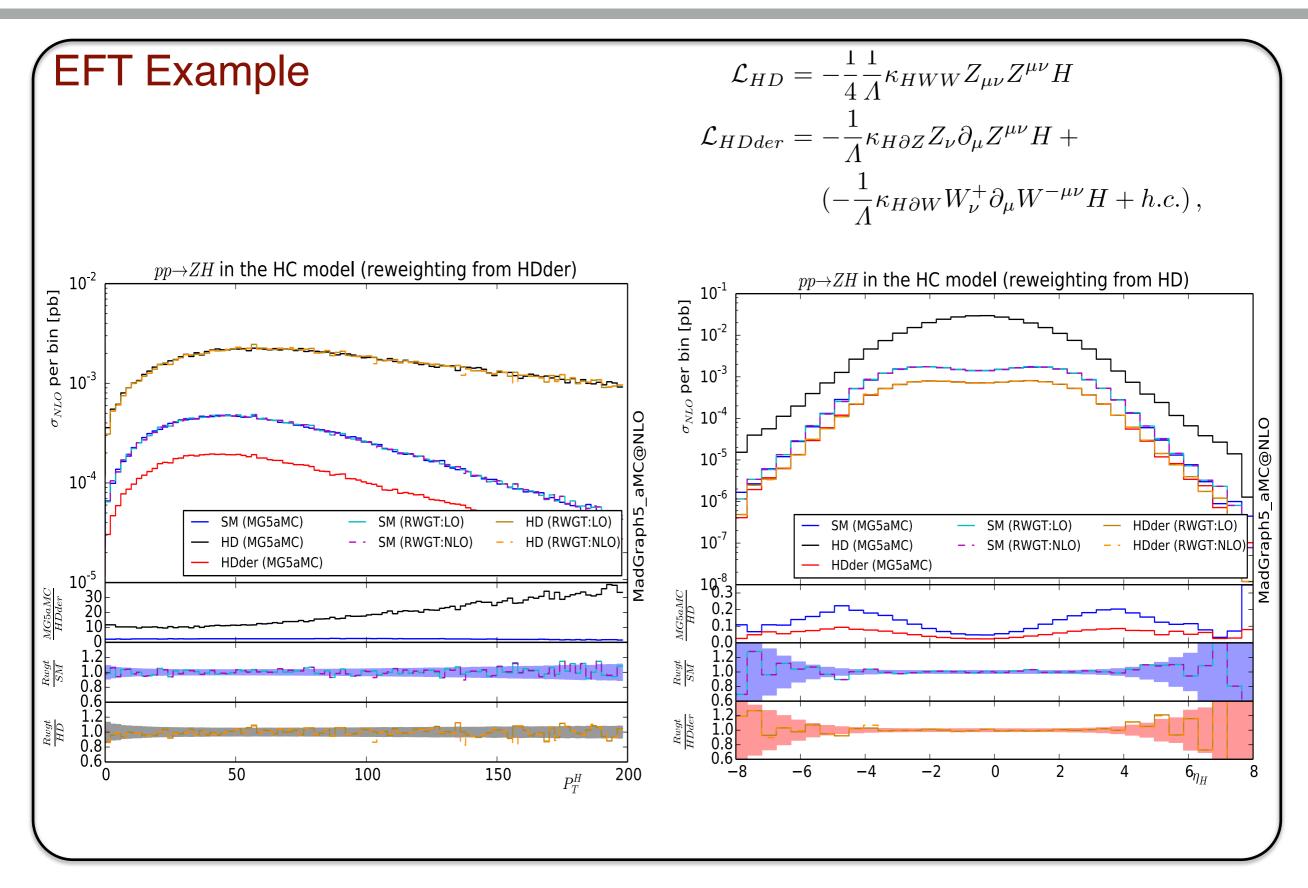
$$\Delta \sigma_{new} = \frac{\sigma_{new}}{\sigma_{old}} \Delta \sigma_{new} + \text{Var}_{wgt} \, \sigma_{old}$$

- statistical uncertainty can be enhanced by the re-weighting
- better to have wgt<1

- You need to have the same phase-space (more exactly a subset)
- Mass scan are possible only in special case
 - only for internal propagator
 - for small mass variation (order of the width)

NLO Re-Weighting

NLO method


 tracks the dependencies in the various matrixelements (born, virtual, real)

$$d\sigma^{\alpha} = f_1(x_1, \mu_F) f_2(x_2, \mu_F) \left[\mathcal{W}_0^{\alpha} + \mathcal{W}_F^{\alpha} \log (\mu_F/Q)^2 + \mathcal{W}_R^{\alpha} \log (\mu_R/Q)^2 \right] d\chi^{\alpha},$$

$$\mathcal{W}_{\beta}^{\alpha} = \mathcal{B} * \mathcal{C}_{\beta,B}^{\alpha} + \mathcal{B}_{CC} * \mathcal{C}_{\beta,B_{CC}}^{\alpha} + \mathcal{V} * \mathcal{C}_{\beta,V}^{\alpha} + \mathcal{R} * \mathcal{C}_{\beta,R}^{\alpha}$$

- re-weight each part according to the associated matrix-element
- compute the weight by summing each part

NLO Re-Weighting

BSM Physics@NLO


Model Generation

FeynRules

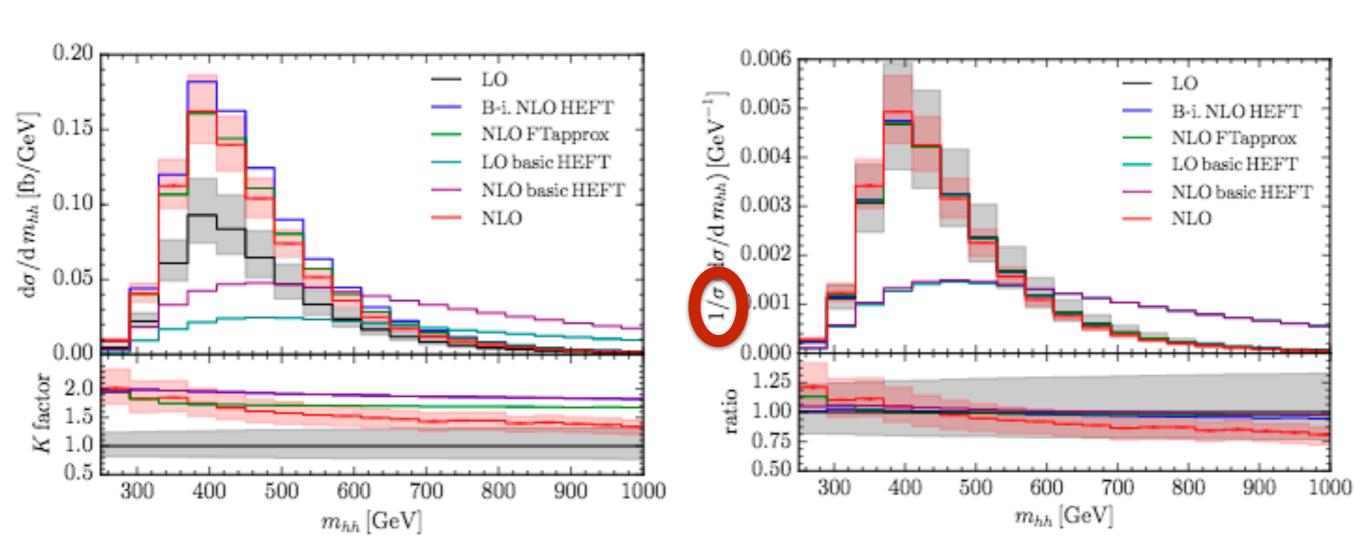
NLOCT

Duhr et al 1310.1921

Degrande 1406.3030

private version for EFT

What new information?


- UV counter-term (Renormalization)
- R2: Finite part of the one-loop computation
 - → All computation are done in 4 dimension and not in d-dim
 - → R2 is a process independent correction term to the loop $\int d^d l \, \frac{N(l,l)}{\bar{D}_0 \, \bar{D}_1 \, \bar{D}_2 \cdots \bar{D}}$
 - → Epsilon part of the numerator

Loop-Improved

_oop-Improved re-weighting

- For loop-induced in absence of 2-loop
- Start by an EFT at NLO
- Use the NLO de-composition
- Re-weight the virtual part by the Born matrixelement
 - Allow to re-introduce mass-effect

Di-Higgs

B.i. NLO HEFT: All matrix-element re-weighted by Born ratio NLO FTapprox: other name for loop-improved (re-weight real/ MC counter-term by the real

Borowka et al 1608.04798

Exact Integration

Difficulties?

- The phase-space integration is based on the tree diagrams
- Need Leading Color information for writing events
- Loop evaluation are extremely slow

New Solution

- Contract the loop to have tree-level diagrams which drive the integration multichannel
- Compute the loop with the color flow algebra
- Use Monte-Carlo over helicity
- Increase parallelization

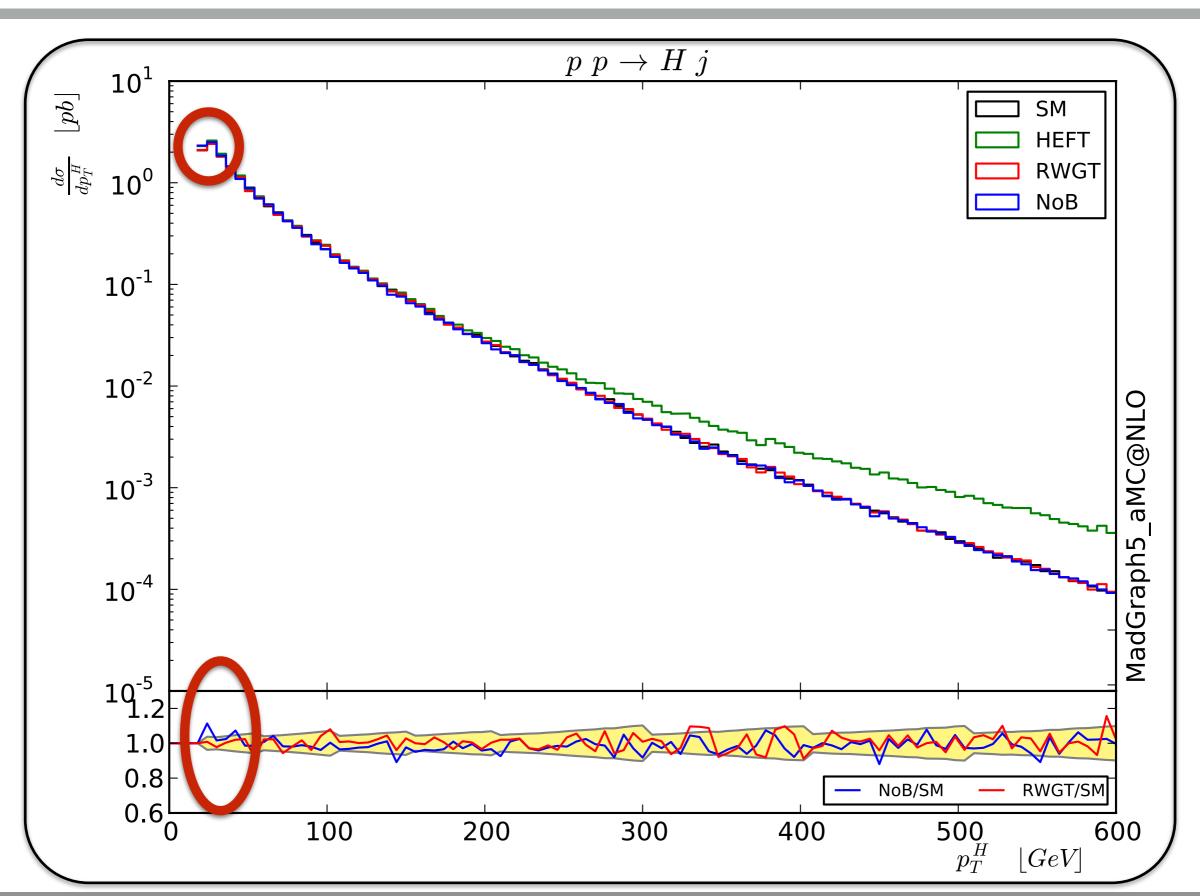
Available since 2.3.0

SM Tables

Process Single boson + jets	Syntax	Cross section (pb) $\sqrt{s} = 13$	μ 1 D 1	Ref.
a.1 $pp \rightarrow H$ a.2 $pp \rightarrow Hj$ a.3 $pp \rightarrow Hjj$	p p > h [QCD] p p > h j [QCD] p p > h j j QED=1 [QCD	17.79 ± 0.060 12.86 ± 0.030 6.175 ± 0.020	$+42.3\% +0.6\% \\ -27.7\% -0.9\%$	[49] [49] [49]
*a.4 $gg \rightarrow Zg$ *a.5 $gg \rightarrow Zgg$	gg>zg[QCD] gg>zgg[QCD]	43.05 ± 0.060 20.85 ± 0.030	20.170 1.070	[34] [50]
$^{\dagger} a.6 gg \rightarrow \gamma g$ $^{\dagger} a.7 gg \rightarrow \gamma gg$	gg > ag [QCD] gg > agg [QCD]	75.61 ± 0.200 14.50 ± 0.030	$\begin{array}{c} +73.8\% \ +0.7\% \\ -41.6\% \ -1.1\% \\ +76.2\% \ +0.6\% \\ -40.7\% \ -1.0\% \end{array}$	[-]

Proce Doubl	$\frac{1}{1}$ ss le bosons $+$ jet	Syntax	Cross section (pb) $\sqrt{s} = 13$	$\Delta_{\hat{\mu}}$ Δ_{PDF} ΓeV	Ref.
b.1 b.2 *b.3 *b.4 *b.5	$pp \rightarrow HH$ $pp \rightarrow HHj$ $pp \rightarrow H\gamma j$ $gg \rightarrow HZ$ $gg \rightarrow HZg$	<pre>p p > h h [QCD] p p > h h j [QCD] p p > h a j [QCD] g g > h z [QCD] g g > h z g [QCD]</pre>	$1.641 \pm 0.002 \cdot 10^{-2}$ $1.758 \pm 0.003 \cdot 10^{-2}$ $4.225 \pm 0.006 \cdot 10^{-3}$ $6.537 \pm 0.030 \cdot 10^{-2}$ $5.465 \pm 0.020 \cdot 10^{-2}$	$\begin{array}{c} +30.2\% \ +1.1\% \\ -21.7\% \ -1.2\% \\ +45.7\% \ +1.2\% \\ -29.2\% \ -1.2\% \\ +38.6\% \ +0.4\% \\ -25.9\% \ -0.7\% \\ +29.4\% \ +1.0\% \\ -21.3\% \ -1.1\% \\ +46.0\% \ +1.2\% \\ -29.4\% \ -1.3\% \end{array}$	[48] [51] [52] [53] [52]
b.6 *b.7 b.8 *b.9	$gg ightarrow ZZ$ $gg ightarrow ZZg$ $gg ightarrow Z\gamma$ $gg ightarrow Z\gamma g$	g g > z z [QCD] g g > z z g [QCD] g g > z a [QCD] g g > z a g [QCD]	1.313 ± 0.004 0.6361 ± 0.002 1.265 ± 0.0007 0.4604 ± 0.001	$\begin{array}{c} -29.4\% & -1.3\% \\ +27.1\% & +0.7\% \\ -20.1\% & -1.0\% \\ +45.4\% & +1.0\% \\ -29.1\% & -1.2\% \\ +30.2\% & +0.6\% \\ -22.2\% & -1.0\% \\ +43.7\% & +0.8\% \\ -28.4\% & -1.1\% \end{array}$	[42] [54] [42] [55]
b.10 *b.11	$gg \to \gamma \gamma gg \to \gamma \gamma g$	g g > a a [QCD] g g > a a g [QCD]	$5.182 \pm 0.010 \cdot 10^{+2}$ 19.22 ± 0.030	+72.3% $+1.0%-43.4%$ $-1.3%+59.7%$ $+0.7%-35.7%$ $-1.0%$	[42] [56]
b.12 *b.13	$gg \to W^+W^-$ $gg \to W^+W^-g$	g g > w+ w- [QCD] g g > w+ w- g [QCD]	4.099 ± 0.010 1.837 ± 0.004	+26.5% +0.7% $-19.7% -1.0%$ $+45.2% +0.9%$ $-29.0% -1.1%$	[57] [58]

SM Tables

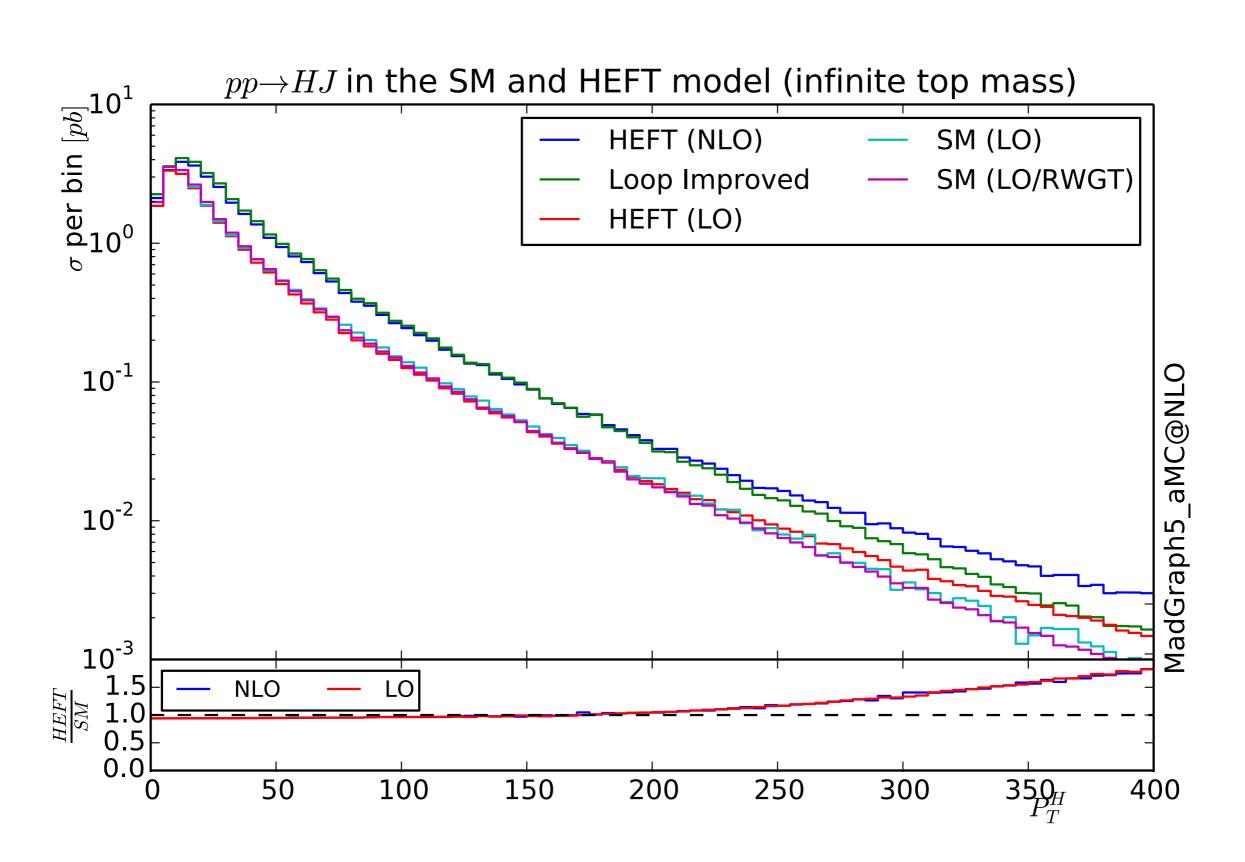

Proce	ess e bosons	Syntax	Cross section (pb) $\sqrt{s} = 13$	$\Delta_{\hat{\mu}}$ Δ_{PDF}	Ref.
			$\sqrt{s} = 10$		
*c.1	$pp {\to} HHH$	p p > h h h [QCD]	$3.968 \pm 0.010 \cdot 10^{-5}$	+31.8% +1.4% -22.6% -1.4%	[59]
$^{\dagger}\mathrm{c.2}$	$gg\!\to\! HHZ$	g g > h h z [QCD]	$5.260 \pm 0.009 \cdot 10^{-5}$	+31.2% +1.3% -22.2% -1.3%	[-]
$^{\dagger}\mathrm{c.3}$	$gg\! \to\! HZZ$	g g > h z z [QCD]	$1.144 \pm 0.004 \cdot 10^{-4}$	+31.1% +1.2% -22.2% -1.3%	[-]
$^{\dagger}\mathrm{c.4}$	$gg\!\to\! HZ\gamma$	g g > h z a [QCD]	$6.190 \pm 0.020 \cdot 10^{-6}$	+29.3% +1.0% -21.2% -1.2%	[-]
$^{\dagger}\mathrm{c.5}$	$pp \rightarrow H \gamma \gamma$	p p > h a a [QCD]	$6.058 \pm 0.004 \cdot 10^{-6}$	+30.3% $+1.1%$ $-21.8%$ $-1.3%$	[-]
*c.6	$gg \rightarrow HW^+W^-$	g g > h w+ w- [QCD]	$2.670 \pm 0.007 \cdot 10^{-4}$	+31.0% +1.2% -22.2% -1.3%	[60]
$^{\dagger}\mathrm{c.7}$	$gg \rightarrow ZZZ$	gg>zzz[QCD]	$6.964 \pm 0.009 \cdot 10^{-5}$	$+30.9\% +1.2\% \\ -22.1\% -1.3\%$	[-]
$^{\dagger}\mathrm{c.8}$	$gg\! o\! ZZ\gamma$	gg>zza[QCD]	$3.454 \pm 0.010 \cdot 10^{-6}$	$+28.7\% +0.9\% \\ -20.9\% -1.1\%$	[-]
*c.9	$gg \! o \! Z \gamma \gamma$	gg>zaa[QCD]	$3.079 \pm 0.005 \cdot 10^{-4}$	+28.0% $+0.7%$ $-20.9%$ $-1.0%$	[61]
†c.10	$gg \rightarrow ZW^+W^-$	g g > z w+ w- [QCD]	$8.595 \pm 0.020 \cdot 10^{-3}$	+26.9% +0.6% -19.5% -0.6%	[-]
†c.12	$gg \rightarrow \gamma W^+W^-$	g g > a w+ w- [QCD]	$1.822 \pm 0.005 \cdot 10^{-2}$	+28.7% +0.9% -20.9% -1.1%	[-]

Process Bosonic decays	Syntax	Partial width (GeV)	Ref.
g.1 $H \rightarrow jj$	h > j j [QCD]	$1.740 \pm 0.0006 \cdot 10^{-4}$ $3.413 \pm 0.010 \cdot 10^{-4}$ $1.654 \pm 0.004 \cdot 10^{-4}$	[49]
*g.2 $H \rightarrow jjj$	h > j j j [QCD]		[49]
†g.3 $H \rightarrow jjjj$	h > j j j QED=1 [QCD]		[-]
g.4 $H \rightarrow \gamma \gamma$	h > a a [QED]	$9.882 \pm 0.002 \cdot 10^{-6}$ $7.448 \pm 0.030 \cdot 10^{-13}$ $1.546 \pm 0.006 \cdot 10^{-14}$	[67]
†g.5 $H \rightarrow \gamma \gamma j j$	h > a a j j [QCD]		[-]
†g.7 $H \rightarrow \gamma \gamma \gamma \gamma$	h > a a a a [QED]		[-]
\star g.8 $Z \rightarrow ggg$	z > g g g [QCD]	$3.986 \pm 0.010 \cdot 10^{-6}$	[34]

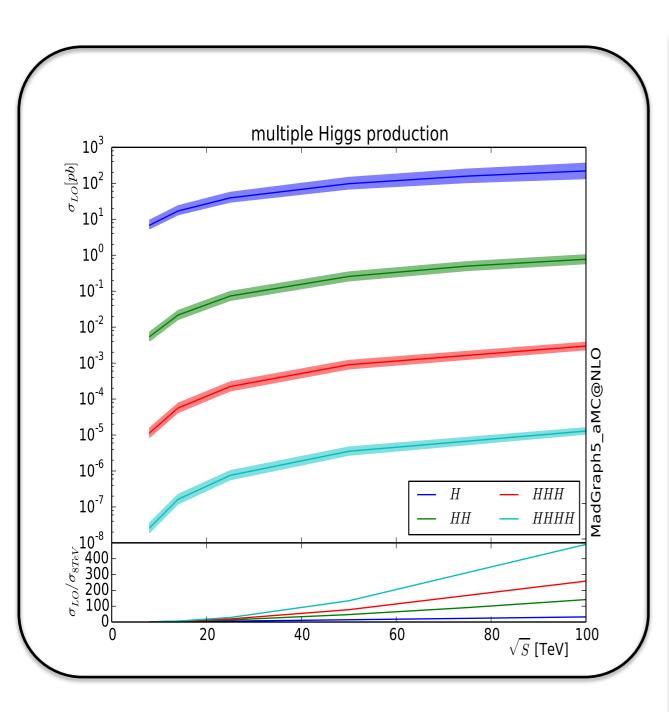
SM Tables

Proc	$cess$ $cted 2 \to 4$	Syntax	Cross section (pb) $\sqrt{s} = 13 \text{ T}$	$\Delta_{\hat{\mu}}$ Δ_{PDF}	Ref.
†d.1 *d.2 †d.3 †d.3 d.4 †d.5	$pp ightarrow Hjjj$ $pp ightarrow HHjj$ $pp ightarrow HHHj$ $pp ightarrow HHHH$ $gg ightarrow e^+e^-\mu^+\mu^ pp ightarrow HZ\gamma j$	<pre>p p > h j j j QED=1 [QCD] p p > h h j j QED=1 [QCD] p p > h h h j [QCD] p p > h h h h [QCD] p p > h h h h [QCD] g g > e+ e- mu+ mu- [QCD] g g > h z a g [QCD]</pre>		$\begin{array}{c} +75.1\% & +0.6\% \\ -39.8\% & -0.6\% \\ +62.1\% & +1.2\% \\ -35.8\% & -1.3\% \\ +46.3\% & +1.4\% \\ -29.6\% & -1.4\% \\ +33.3\% & +1.7\% \\ -23.4\% & -1.7\% \\ +26.4\% & +0.7\% \\ -19.4\% & -1.1\% \\ +45.8\% & +1.2\% \\ \end{array}$	[62] [63] [-] [-] [64] [-]
	nadronic processes	8 8 2432	$\sqrt{s} = 500 \text{ GeV},$	-29.3% -1.3% no PDF	L J
*e.1 †e.2 †e.3 *e.4	$e^+e^- \rightarrow ggg$ $e^+e^- \rightarrow HH$ $e^+e^- \rightarrow HHgg$ $\gamma\gamma \rightarrow HH$	e+ e- > g g g [QED] e+ e- > h h [QED] e+ e- > h h g g [QED] a a > h h [QED]	$2.526 \pm 0.004 \cdot 10^{-6}$ $1.567 \pm 0.003 \cdot 10^{-5}$ $6.629 \pm 0.010 \cdot 10^{-11}$ $3.198 \pm 0.005 \cdot 10^{-4}$	+31.2% $-22.0%$ $+19.2%$ $-14.8%$	[65] [-] [-] [66]
Misce	ellaneous		$\sqrt{s} = 13 \text{ T}$	TeV	
†f.1	$pp \to tt$	pp > tt [QED]	$4.045 \pm 0.007 \cdot 10^{-15}$	$+0.2\% +0.9\% \\ -0.8\% -1.0\%$	[-]

Validation p p > h j



Validation p p > h j




- b effect only important at low pt
- at large pt, this is just a re-scaling

Higgs + Jet

Multi-Higgs

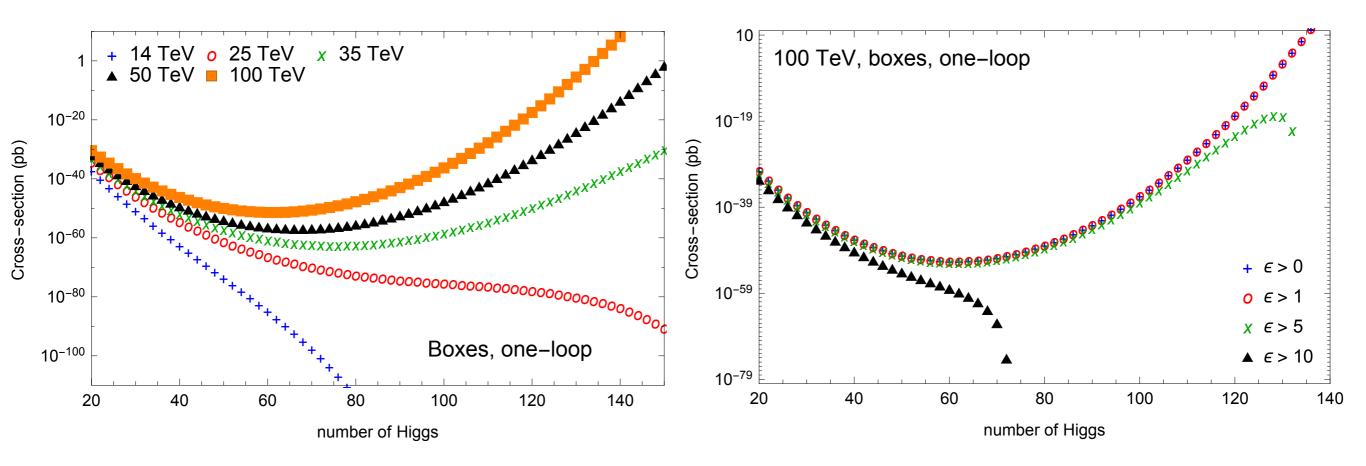
Large Multiplicities

h > N h

Motivation

- Amplitude for off-shell Higgs to N on-shell Higgs is know to break perturbativity
- form of the amplitude know analytically
 - → recently fitted thanks to MG5aMC
- What is the impact for LHC and future collider?
 - → should we care about this?

Scaling


No PDF	$\sigma_{gg o hh}$	$\sigma_{gg o hhh}$	$\sigma_{gg o hhhh}$
Triangles	$y_t^2 \frac{m_t^2 M_h^2}{s^3} \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \frac{M_h^2}{v^2}$	$y_t^2 \frac{m_t^2}{s^2} \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \frac{M_h^4}{v^4}$	$y_t^2 \frac{m_t^2}{s^2} \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \frac{M_h^6}{v^6}$
Boxes	$y_t^4 \frac{1}{s}$	$y_t^4 \frac{1}{s} \frac{M_h^2}{v^2}$	$y_t^4 \frac{1}{s} \frac{M_h^4}{v^4}$
Pentagons	_	$y_t^6 \frac{m_t^2}{s^2} \log^4 \left(\frac{m_t}{\sqrt{s}} \right)$	$y_t^6 \frac{m_t^2}{s^2} \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \frac{M_h^2}{v^2} $
Hexagons	_	_	$y_t^6 \frac{m_t^2}{s^2} \log^4 \left(\frac{m_t}{\sqrt{s}}\right) \frac{M_h^2}{v^2}$ $y_t^8 \frac{1}{s}$

- At High-Energy only even loop contributes
- For high Higgs multiplicity, the boxes is expected to dominate (all even loop are expected to be of the same order for threshold)

$$\varepsilon := \frac{\sqrt{s} - nM_h}{nM_h}.$$

$$\mathcal{A}_{gg>n\times h}^k \approx (\frac{1}{1+\epsilon})^{k-2}$$

Multi-Higgs

- Approximation using semi-classical solution
- Perturbative theory breaks down
 - → Not for 14 TeV
 - → For 50/100 TeV regime

Conclusion

- Loop-induced computation
 - Fully available for any NLO model
 - All SM cases have been tested
- Re-weighting method
 - Available both at LO and NLO
- High multiplicity Higgs production
 - At 100 TeV collider, we should be sensitive to a breaking of unitarity in

$$h^* \to n \times h$$