Direct and indirect tests of low-scale seesaw models at colliders
(The seminar where you are the hero)

Cédric Weiland

Institute for Particle Physics Phenomenology, Durham University, UK

Focus Meeting on Collider Phenomenology
14 December 2016
Neutrino phenomena

- Neutrino oscillations (best fit from nu-fit.org):

 solar $\nu_e \rightarrow \nu_{\text{others}}$: $\theta_{12} \approx 34^\circ$, $\Delta m^2_{21} \approx 7.5 \times 10^{-5}\text{eV}^2$

 atmospheric $\nu_\mu \rightarrow \nu_\tau$: $\theta_{23} \approx 42^\circ$, $|\Delta m^2_{23}| \approx 2.5 \times 10^{-3}\text{eV}^2$

 reactor $\bar{\nu}_e \rightarrow \bar{\nu}_{\text{others}}$: $\theta_{13} \approx 8.5^\circ$

 accelerator $\nu_\mu \rightarrow \nu_{\text{others}}$

- Different mixing pattern from CKM, ν lightness \leftrightarrow Majorana ν

- Neutrino oscillations $=$ Neutral lepton flavour violation

 What about charged lepton flavour violation (LFV) ?

- Oscillations give no information on:

 Absolute mass scale \rightarrow cosmology $\sum m_{\nu_i} < 0.23\text{ eV}$ [Planck, 2016]

 β decays $m_{\nu_e} < 2.05\text{ eV}$ [Mainz, 2005; Troitsk, 2011]

 Dirac/Majorana nature of neutrinos $\rightarrow 0\nu 2\beta$ decays

 $m_{2\beta} < 0.061 - 0.165\text{ eV}$ [KamLAND-ZEN, 2016]
Massive neutrinos and New Physics

- Standard Model \(L = (\nu_L, \ell_L), \tilde{H} = (H^0, H^-) \)
 - No right-handed neutrino \(\nu_R \rightarrow \) No Dirac mass term
 \[\mathcal{L}_{\text{mass}} = -Y_\nu \bar{L}\tilde{H}\nu_R + \text{h.c.} \]
 - No Higgs triplet \(T \rightarrow \) No Majorana mass term
 \[\mathcal{L}_{\text{mass}} = -\frac{1}{2}mLTL^c + \text{h.c.} \]

- Necessary to go beyond the Standard Model for \(\nu \) mass
 - Radiative models
 - Extra-dimensions
 - R-parity violation in supersymmetry
 - Seesaw mechanisms \(\rightarrow \) \(\nu \) mass at tree-level
 - + BAU through leptogenesis
Dirac neutrinos?

- Add gauge singlet (sterile), right-handed neutrinos \(\nu_R \quad \Rightarrow \quad \nu = \nu_L + \nu_R \)

\[
\mathcal{L}^\text{mass}_{\text{leptons}} = -Y_\ell \bar{L}H\ell_R - Y_\nu \bar{L}\tilde{H}\nu_R + \text{h.c.}
\]

- After electroweak symmetry breaking \(\langle H \rangle = (0)_v \)

\[
\mathcal{L}^\text{mass}_{\text{leptons}} = -m_\ell \bar{\ell}_L\ell_R - m_D \bar{\nu}_L\nu_R + \text{h.c.}
\]

- 3 light active neutrinos: \(m_\nu \lesssim 1\text{eV} \Rightarrow Y^\nu \lesssim 10^{-11} \)
Majorana neutrinos?

- Add **gauge singlet** (sterile), right-handed neutrinos ν_R

\[
\mathcal{L}_{\text{mass}}^{\text{leptons}} = - Y_\ell \bar{L} H \ell_R - Y_\nu \bar{L} \tilde{H} \nu_R - \frac{1}{2} M_R \bar{\nu}_R \nu^c_R + \text{h.c.}
\]

\Rightarrow After electroweak symmetry breaking $\langle H \rangle = (0)^0$

\[
\mathcal{L}_{\text{mass}}^{\text{leptons}} = - m_\ell \bar{\ell} \ell_R - m_D \bar{\nu}_L \nu_R - \frac{1}{2} M_R \bar{\nu}_R \nu^c_R + \text{h.c.}
\]

\Rightarrow 6 mass eigenstates: $\nu = \nu^c$

- ν_R gauge singlets
 \Rightarrow M_R not related to SM dynamics, not protected by symmetries
 \Rightarrow $M_R \bar{\nu}_R \nu^c_R$ is gauge and Lorentz invariant, renormalizable

- $M_R \bar{\nu}_R \nu^c_R$ violates lepton number conservation $\Delta L = 2$
The seesaw mechanisms

- Seesaw mechanism: New fields with a mass $M >$ EW scale (in general) and Majorana mass terms
 ⇒ Generate m_ν in a renormalizable way and at tree-level
- 3 minimal tree-level seesaw models ⇒ 3 types of heavy fields
 - type I: right-handed neutrinos, SM gauge singlets
 - type II: scalar triplets
 - type III: fermionic triplets

\[
m_\nu = -\frac{1}{2} Y_\nu^T \frac{v^2}{M_R} Y_\nu
\]

\[
m_\nu = -2 Y_\Delta v^2 \frac{\mu \Delta}{M_\Delta^2}
\]

\[
m_\nu = -\frac{1}{2} Y_\Sigma^T \frac{v^2}{M_\Sigma} Y_\Sigma
\]
The inverse seesaw mechanism

- Inverse seesaw: Consider fermionic gauge singlets $\nu_R (L = +1)$ and $X (L = -1)$ [Mohapatra and Valle, 1986]

$$\mathcal{L}_{\text{inverse}} = -Y_\nu \bar{L} H \nu_R - M_R \nu_R^c X - \frac{1}{2} \mu_X \bar{X}^c X + \text{h.c.}$$

with $m_D = Y_\nu v$, $M^\nu = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M_R \\ 0 & M_R^T & \mu_X \end{pmatrix}$

$$m_\nu \approx \frac{m_D^2}{M_R^2} \mu_X$$

$$m_{N_1,N_2} \approx \bar{M}_R + \frac{\mu_X}{2}$$

2 scales: μ_X and M_R

- Decouple neutrino mass generation from active-sterile mixing
- Inverse seesaw: $Y_\nu \sim \mathcal{O}(1)$ and $M_R \sim 1$ TeV
 \Rightarrow within reach of the LHC and low energy experiments
Why supersymmetry?

- The SM doesn’t only lack neutrino masses, e.g. no dark matter, hierarchy problem

- Extended frameworks to address SM issues:
 - Strongly coupled theories (e.g. Technicolor, Composite Higgs)
 - Extra-dimensions (e.g. Randall-Sundrum, Large extra dimension)
 - Extending the SM field content/gauge group (e.g. 2HDM, Little Higgs, GUT)
 - Supersymmetric extensions (e.g. MSSM)

- Advantages of supersymmetry (SUSY)
 - Most general extension of the Poincaré algebra
 - Gauge coupling unification
 - Dark matter candidate
The supersymmetric inverse seesaw model

- No ν_R in the MSSM \Rightarrow Massless neutrinos
 \rightarrow Implement a seesaw mechanism
- MSSM extended by singlet chiral superfields \hat{N} and \hat{X} with $L = -1$ and $L = +1$

$$\mathcal{W} = Y_d \hat{D} \hat{H}_d \hat{Q} + Y_u \hat{U} \hat{Q} \hat{H}_u + Y_e \hat{E} \hat{H}_d \hat{L} - \mu \hat{H}_d \hat{H}_u$$
$$+ Y_\nu \hat{N} \hat{L} \hat{H}_u + M_R \hat{N} \hat{X} + \frac{1}{2} \mu_X \hat{X} \hat{X}$$

- New couplings, e.g. $A_{Y_\nu} Y_\nu \hat{N} \hat{L} \hat{H}_u + \text{h.c.}$
- Work with a flavour-blind mechanism for SUSY breaking
 $\Rightarrow Y_\nu$ as the only source of LFV
- Right-handed sneutrino mass:

$$M_{\hat{N}}^2 = m_{\hat{N}}^2 + M_R^2 + Y_\nu Y_\nu^\dagger v_u^2 \sim (1\,\text{TeV})^2$$

\Rightarrow Natural Yukawa couplings with a TeV new Physics scale
Probing the seesaw models

- Lepton number conservation is **accidental** in the SM (gauge group, field content and renormalizability)

- **Unique** dimension 5 operator for all seesaw mechanisms
 → Violates lepton number \(L \) ⇒ Majorana neutrinos

\[
\delta \mathcal{L}^{d=5} = c_5 \frac{LLHH}{\Lambda_{NP}}
\]

- To probe the several seesaw mechanisms, either
 - **Directly produce** the heavy states (LHC, LC, FCC)
 - Look for **dimension \(\geq 6 \)** operator effects → charged lepton flavour violation (cLFV), non-standard interactions, etc
(SUSY) Inverse seesaw experimental signatures

- **Collider signatures**
 - single lepton + dijet + missing energy [Das and Okada, 2013]
 - di-lepton + missing p_T [Bhupal Dev et al., 2012, Bandyopadhyay et al., 2013]
 - LFV di-lepton + dijet [Arganda, Herrero, Marcano and CW, 2015]
 - tri-lepton + missing E_T [Mondal et al., 2012, Das et al., 2014]...
 - invisible Higgs decays [Banerjee et al., 2013]

- **Low-energy / high-intensity:**
 - deviations from lepton universality [Abada, Das, Teixeira, Vicente and CW, 2013]
 - (semi)leptonic decays of mesons [Abada, Teixeira, Vicente and CW, 2014]
 - charged lepton flavour violation [Bernabéu et al., 1987]...
 - neutrinoless double beta decay [Awasthi et al., 2013]...
 - charged lepton anomalous magnetic moment [Abada et al., 2014a]
 - charged lepton electric dipole moment [Abada and Toma, 2016]

- **Dark matter candidate:** sterile neutrino [Abada et al., 2014] / sneutrino [De Romeri and Hirsch, 2012, Banerjee et al., 2013, Guo et al., 2014]...
Something changed in 2012

- \(\nu\) oscillations \(\Rightarrow\) Extension of the SM that generates \(\nu\) masses and mixing

- Numerous studies on TeV-scale neutrinos:
 - direct production at colliders
 - loop-induced effects
 - imprint on decays of hadrons, leptons and gauge bosons

Discovery of a scalar boson at the LHC in 2012, with properties compatible with the SM Higgs [ATLAS, 2012; CMS, 2012]

- New experimentally accessible observables and searches

- TeV-scale neutrinos + Large Yukawa couplings \(\Rightarrow\) Possibly large deviations from SM properties in the Higgs sector
Neutrinos impact on Higgs properties

- Effort to measure Higgs properties: mass, width, couplings
- We focused on two couplings: HHH and $H \bar{\ell}_i \ell_j$ with $i \neq j$

$H \bar{\ell}_i \ell_j$:
- 0 at tree-level → LFV from higher order processes
- 1-loop contribution negligible in the SM → evidence of new physics if observed
- probe the origin of lepton mixing

HHH:
- Measure needed to reconstruct the scalar potential and validate the Higgs mechanism as the origin of EWSB
- Sizeable SM 1-loop corrections ($\mathcal{O}(10\%)$) → Quantum corrections cannot be neglected
- One of the main motivations for future colliders

You decide to study:

- LFVHD
- HHH
- $\mu \tau jj$
Experimental searches of LFV

- Radiative decays, e.g. $\text{Br}(\mu \rightarrow e\gamma) < 4.2 \times 10^{-13}$ [MEG, 2016]

- 3-body decays, e.g. $\text{Br}(\tau \rightarrow 3\mu) < 2.1 \times 10^{-8}$ [Belle, 2010]

- Neutrinoless muon conversion,
e.g. $\mu^-, \text{Au} \rightarrow e^-, \text{Au} < 7 \times 10^{-13}$ [SINDRUM II, 2006]

- Meson decays, e.g. $\text{Br}(B^0 \rightarrow e\mu) < 2.8 \times 10^{-9}$ [LHCb, 2013]

- Z decays, e.g. $\text{Br}(Z^0 \rightarrow e\mu) < 1.7 \times 10^{-6}$ [OPAL, 1995]

- Higgs decays, e.g. $H \rightarrow \tau\mu$: $\text{Br} < 1.51\%$ [CMS, PLB749(2015)337]
 $\text{Br} < 1.43\%$ [ATLAS, 1604.07730]
In the Feynman-'t Hooft gauge, same as [Arganda et al., 2005]:

Formulas adapted from [Arganda et al., 2005]

Diagrams 1, 8, 10 → dominate at large M_R

Enhancement from:
- $\mathcal{O}(1)$ Y_ν couplings
- TeV scale n_i
Most relevant constraints

- Neutrino data → Use specific parametrization

\[\mu_X = M_R^T Y^{-1}_\nu U^*_{\text{PMNS}} m_\nu U^\dagger_{\text{PMNS}} Y^{T-1}_\nu M_R v^2 \]

- Charged lepton flavour violation
 → For example: \(\text{Br}(\mu \rightarrow e\gamma) < 5.7 \times 10^{-13} \) \[\text{[MEG, 2013]}\]

- Lepton universality violation: less constraining than \(\mu \rightarrow e\gamma \)

- Electric dipole moment: 0 with real PMNS and mass matrices

- Invisible Higgs decays: \(M_R > m_H \), does not apply
Large LFV Higgs decay rates from textures I

What can we learn from a LHC discovery of LFV Higgs decays?
→ Look for the largest possible $\text{Br}(H \rightarrow \tau \mu)$

Strongest experimental constraint: $\mu \rightarrow e \gamma$

\[
\text{Br}^{\text{approx}}_{\mu \rightarrow e \gamma} = 8 \times 10^{-17} \text{GeV}^{-4} \frac{m_\mu^5}{\Gamma_\mu} \left| \frac{v^2}{2M_R^2} (Y_\nu Y_\nu^\dagger)_{12} \right|^2
\]

\[
\text{Br}^{\text{approx}}_{H \rightarrow \mu \bar{\tau}} = 10^{-7} \frac{V^4}{M_R^4} \left| (Y_\nu Y_\nu^\dagger)_{23} - 5.7 (Y_\nu Y_\nu^\dagger Y_\nu Y_\nu^\dagger)_{23} \right|^2
\]

\[
= 10^{-7} \frac{V^4}{M_R^4} \left| 1 - 5.7 [(Y_\nu Y_\nu^\dagger)_{22} + (Y_\nu Y_\nu^\dagger)_{33}] \right|^2 |(Y_\nu Y_\nu^\dagger)_{23}|^2
\]

Solution: Textures with $(Y_\nu Y_\nu^\dagger)_{12} = 0$ and $\left| \frac{Y_{ij}}{4\pi} \right|^2 < 1.5$
Large LFV Higgs decay rates from textures II

- Textures with \((Y_\nu Y_\nu^\dagger)_{12} = 0\) and \(\frac{|Y_{ij}|^2}{4\pi} < 1.5\)

\[
Y^{(1)}_{\tau\mu} = f \begin{pmatrix} 0 & 1 & -1 \\ 0.9 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad Y^{(2)}_{\tau\mu} = f \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}, \quad Y^{(3)}_{\tau\mu} = f \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 0.8 & 0.5 & 0.5 \end{pmatrix}
\]

- Flavour composition of the heavy neutrinos:
 \(Y_{\tau\mu}^{(1)}\):
 \(N_{1/2}\) - 1, \(N_{3/4}\) - 2, \(N_{5/6}\) - 3

- Flavour composition of the heavy neutrinos:
 \(Y_{\tau\mu}^{(2)}\):
 \(N_{1/2}\) - 1, \(N_{3/4}\) - 2, \(N_{5/6}\) - 3

- Flavour composition of the heavy neutrinos:
 \(Y_{\tau\mu}^{(3)}\):
 \(N_{1/2}\) - 1, \(N_{3/4}\) - 2, \(N_{5/6}\) - 3

- 3 very different flavour patterns

- Heavy neutrino mixing of \(\tau - \mu\) type is always present
Producing large $H \to \tau \mu$ rates

- Numerics done with the full one-loop formulas
- $f = \sqrt{6\pi}$
- Dotted: excluded by $\tau \to \mu\gamma$
 Solid: allowed by LFV, LUV, etc
- $\text{Br}^{\text{max}}(H \to \mu\bar{\tau}) \sim 10^{-5}$
- Same maximum branching ratio with hierarchical heavy N

- Similarly, $\text{Br}^{\text{max}}(H \to e\bar{\tau}) \sim 10^{-5}$ for $Y^{(i)}_{\tau e} (= Y^{(i)}_{\tau \mu}$ with rows 1 and 2 exchanged)

- Out of LHC reach, within the reach of future colliders
LFV in supersymmetric seesaw models

- Typically in SUSY, LFV appears through RGE-induced slepton mixing
 \[(\Delta m^2_L)_{ij}\; [\text{Borzumati and Masiero, 1986, Hisano et al., 1996, Hisano and Nomura, 1999}]\]
 \[\Rightarrow (\Delta m^2_L)_{ij} \propto (Y_{\nu}^\dagger Y_{\nu})_{ij} \ln \frac{M_{\text{GUT}}}{M_R}\]

- Contribute to all LFV observables
 \[\rightarrow \text{Dominant in most of the SUSY seesaw models}\]

- Type I seesaw \((Y_{\nu} \sim 1, M_R \sim 10^{14}\text{GeV}) \rightarrow (\Delta m^2_L)_{ij} \propto 5\)

- Inverse seesaw \((Y_{\nu} \sim 1, M_R \sim 1\text{TeV}) \rightarrow (\Delta m^2_L)_{ij} \propto 30\)
 \[\rightarrow \text{one-loop } \tilde{N}\text{-mediated processes are no longer suppressed}\]

- Similar enhancement in non-SUSY contributions [Ilakovac and Pilaftsis, 1995, Deppisch et al., 2006, Forero et al., 2011, Alonso et al., 2013, Dinh et al., 2012]
In the Feynman-'t Hooft gauge, same as [Arganda et al., 2005]:

- Formulas adapted from [Arganda et al., 2005]
- Enhancement from: $-\mathcal{O}(1) \, Y_\nu$ couplings
 - TeV scale $\tilde{\nu}$
Dependence on M_R

- M_R degenerate and real, $m_A = 800$ GeV,
squark parameters safe from LHC (direct searches, Higgs mass)

- ▲: allowed by LFV radiative decays, ×: excluded

- At low M_R: dominated by chargino-sneutrino loops
 At large M_R / small f: dominated by neutralino-slepton loops

- Can adjust other parameters (A_ν, $m_{\tilde{\nu}_R}$) to reach $\text{Br}(h \rightarrow \tau \bar{\mu}) \sim 1\%$
 Dependence on A_{ν}

- M_R degenerate and real, $m_A = 800$ GeV, $M_R = m_{\tilde{L}} = m_{\tilde{\nu}_R} = m_{\tilde{X}} = 1$ TeV
- ▲: allowed by LFV radiative decays, ×: excluded
- A_{ν} in both $h^0 - \tilde{\nu}_L - \tilde{\nu}_R$ coupling and $\tilde{\nu}_L - \tilde{\nu}_R$ mixing
 → Dips when dominated by chargino loops
- Dips in BR($h \rightarrow \tau \bar{\mu}$) and BR($\tau \rightarrow \mu \gamma$) do not exactly coincide
Summary of cLFV Higgs decays

- **cLFV Higgs decays**: *complementary* to other cLFV searches

- Enhancement from the inverse seesaw but largest values excluded by \(\tau \rightarrow \mu \gamma / \tau \rightarrow e\gamma \)

- **non-SUSY ISS**: \(\text{Br}(H \rightarrow \bar{\tau}\mu) \leq 10^{-5} \)
 \(\text{Br}(H \rightarrow \bar{\tau}e) \leq 10^{-5} \)

- **SUSY loops**: \(\text{Br}(h \rightarrow \tau\bar{\mu}) \leq \mathcal{O}(1\%) \)

- SUSY contributions are within the LHC reach

- \(\tau\mu \) and \(\tau e \) will be probed at future LHC runs and future colliders

You decide to further study:

You are tired and want to end your travels:
Experimental prospects for the HHH coupling

- Extracted from HH production

- Future sensitivities to the SM HHH coupling:
 - HL-LHC: \(\sim 50\% \) for ATLAS or CMS [CMS-PAS-FTR-15-002]
 \(\sim 35\% \) combined
 - ILC: 27\% at 500 GeV with 4 ab\(^{-1}\) [Fujii et al., 2015]
 10\% at 1 TeV with 5 ab\(^{-1}\) [Fujii et al., 2015]
 - FCC-hh: 8\% per experiment with 3 ab\(^{-1}\) using only \(b\bar{b}\gamma\gamma \) [Yao, 2016]
 \(\sim 5\% \) combining all channels
Modified HHH coupling

SM 1-loop corrections

taken from [Arhrib et al., 2015]

- tree-level: $\lambda_{HHH}^0 = -\frac{3M_H^2}{v}$

- Dominant contribution from top-quark loops
 [Kanemura et al., 2004]

$$\lambda_{HHH}(q^2, m_H^2, m^{*}_H) = -\frac{3m_H^2}{v} \left[1 - \frac{1}{16\pi^2} \frac{16m_t^4}{v^2m_H^2} \right]$$

$$\times \left\{ 1 + \mathcal{O}\left(\frac{m_H^2}{m_t^2}, \frac{q^2}{m_t^2}\right) \right\}$$

Cédric Weiland (IPPP Durham)
Beyond SM: simplified 3+1 model (PRD94(2016)013002)

- A first approach to clearly illustrate the impact of a new, TeV-scale fermion

- Simplified model with 3 light active and 1 heavy sterile Dirac neutrinos, parametrized by masses m_1, \ldots, m_4 and active-sterile mixing in B

- Modified couplings to W^\pm, Z^0, H

\[
\mathcal{L} \equiv - \frac{g_2}{\sqrt{2}} \bar{\ell}_i \gamma^\mu W^-_\mu B_{ij} P_L n_j - \frac{g_2}{2 \cos \theta_W} \bar{n}_i \gamma^\mu Z_\mu (B^\dagger B)_{ij} P_L n_j - \frac{g_2}{2 M_W} \bar{n}_i (B^\dagger B)_{ij} H (m_n P_L + m_{n_j} P_R) n_j
\]

\[
B_{3\times 4} = \begin{pmatrix} \bar{B}_{e1} & \bar{B}_{e2} & \bar{B}_{e3} & \bar{B}_{e4} \\ \bar{B}_{\mu 1} & \bar{B}_{\mu 2} & \bar{B}_{\mu 3} & \bar{B}_{\mu 4} \\ \bar{B}_{\tau 1} & \bar{B}_{\tau 2} & \bar{B}_{\tau 3} & \bar{B}_{\tau 4} \end{pmatrix}
\]
New contributions and constraints

- **Sterile ν** gives rise to new 1-loop diagrams and new counterterms → Evaluated with *FeynArts* and *LoopTools*

- Strongest experimental constraints on active-sterile mixing: EWPO

 $|B_{e4}| \leq 0.041$
 $|B_{\mu4}| \leq 0.030$
 $|B_{\tau4}| \leq 0.087$

- Loose (tight) perturbativity of λ_{HHH}:

 $\left(\frac{\max \left| (B^\dagger B)_{i4} \right| g_2 m_{n4}}{2M_W} \right)^3 < 16\pi \left(2\pi \right)$

- Width limit: $\Gamma_{n4} \leq 0.6 m_{n4}$
Modified HHH coupling

Momentum dependence

- $\Delta^{(1)} \lambda_{HHH} = \frac{1}{\lambda^0} \left(\lambda^{1r}_{HHH} - \lambda^0 \right)$
- Assume $B_{\tau 4} = 0.087$, $B_{e 4} = B_{\mu 4} = 0$
- Deviation of the BSM correction with respect to the SM correction in the insert
- $(B^\dagger B)_{44} m_{n_4} = m_t \rightarrow m_{n_4} = 2.7 \text{ TeV}$
 - tight perturbativity of λ_{HHH} bound: $m_{n_4} = 7 \text{ TeV}$
 - width bound: $m_{n_4} = 9 \text{ TeV}$

- Largest positive correction at $q_{H}^* \simeq 500 \text{ GeV}$, heavy ν decreases it
- Large negative correction at large q_{H}^*, heavy ν increases it
Results in 3+1 simplified model

\[\Delta_{BSM} = \frac{1}{\lambda_{r,SM}^H} \left(\lambda_{r,full}^{HHH} - \lambda_{r,SM}^{HHH} \right) \]

- Red line: tight perturbativity of \(\lambda_{HHH} \) bound
- Heavy \(\nu \) effects at the limit of HL-LHC sensitivity (35%)
- Heavy \(\nu \) effects clearly visible at the ILC (10%) and FCC-hh (5%)
- Similar behaviour for active-sterile mixing \(B_{e4} \) and \(B_{\mu4} \)
From the 3+1 Dirac model to the ISS

- TeV-scale neutrino induces **sizeable corrections to** λ_{HHH}
 - Decrease at $q_H^* \approx 500 \text{ GeV}$
 - Increase at large q_H^*

- Effects could be used to **constrain the active-sterile mixing** at the ILC and FCC-hh

- What are the effects in a realistic, appealing low-scale seesaw model?
 - Additional constraints need to be included
Most relevant constraints for the ISS

- Accomodate low-energy neutrino data using parametrization

\[\mu_X = M_R^T Y^{-1}_\nu U^*_{\text{PMNS}} m_\nu U^\dagger_{\text{PMNS}} Y_T^{-1} M_R v^2 \text{ and beyond} \]

- Charged lepton flavour violation

- Global fit to EWPO and lepton universality tests [Fernandez-Martinez et al., 2016]

- Yukawa coupling perturbativity \(\rightarrow |\frac{y^2}{4\pi}| < 1.5 \)
Results in the ISS

- Similar diagrams to the 3+1 Dirac scenario but with Majorana neutrinos
- μ_X-parametrization extended beyond the standard seesaw limit
- Assume Y_ν diagonal, hierarchical heavy neutrinos, $m_1 = 0.01$ eV
- $\Delta_{BSM}^{max} \simeq +30\%$, at the limit of the HL-LHC sensitivity (35\%)
- Effects clearly visible at the ILC (10\%) and FCC-hh (5\%)
- Effects generically larger than 3+1 but stronger constraints

Preliminary

\[
\begin{array}{c}
\Delta_{BSM} \text{ map with } q_{H^*} = 2500 \text{ GeV} \\
\end{array}
\]
Summary of HHH coupling

- Corrections to the HHH coupling from heavy ν as large as 30%: measurable at future colliders
 - Larger effects when additional heavy neutrinos are present
 - Can probe a new part of the parameter space, unconstrained otherwise
 - Would deliver new constraints on active-sterile mixing: impact on astroparticle physics, cosmology, neutrino physics

- **Generic effect**, expected to be present in all models including multi-TeV fermions with large Higgs couplings

- **New observable** to probe ν mass models in a regime difficult to access

- Could similar diagrams lead to a modified Higgs production cross-section at colliders? 😊

You decide to further study:
You are tired and want to end your travels:
Heavy neutrinos production and decays at the LHC

Main production channel: Drell-Yan

$\tau - \mu$ mixing in N

$\Rightarrow \mu^{\pm} \tau^{\mp} jj$ signal with no E_T

$W\gamma$ fusion relevant at large M_R [Dev et al., 2014, Alva et al., 2015]

Contribute to $\mu^{\pm} \tau^{\mp} jj$ signal if extra-jets are soft or collinear

$\rightarrow p_T < p_T^{\max}$

Numerics done with MadGraph5 and NNPDFQED, M_R real and degenerate
Most relevant constraints

- Neutrino data → Use specific parametrization

\[\mu_X = M_R^T Y_{\nu}^{-1} U_{\text{PMNS}}^* m_{\nu} U_{\text{PMNS}}^\dagger Y_{\nu}^{T-1} M_R v^2 \]

- Charged lepton flavour violation
 → For example: \(\text{Br}(\mu \rightarrow e \gamma) < 5.7 \times 10^{-13} \) [MEG, 2013]

- EWPO:
 \[|B_{e4}|^2 < 3.0 \times 10^{-3} \]
 \[|B_{\mu4}|^2 < 3.2 \times 10^{-3} \]
 \[|B_{\tau4}|^2 < 6.2 \times 10^{-3} \]

- Yukawa perturbativity: → \(|\frac{Y_{\nu}^2}{4\pi}| < 1.5 \)
Enhanced cross-sections from textures I

- What can we learn from a LHC discovery of LFV Higgs decays?
 → Look for the largest possible \(\text{Br}(H \to \tau \mu) \)

- Strongest experimental constraint a priori: \(\mu \to e\gamma \)

\[
\text{Br}^{\text{approx}}_{\mu \to e\gamma} = 8 \times 10^{-17} \text{GeV}^{-4} \frac{m_{\mu}^5}{\Gamma_{\mu}} \left| \frac{v^2}{2M_R^2} (Y_{\nu} Y_{\nu}^\dagger)_{12} \right|^2
\]

- What is the largest possible \(\sigma(pp \to \mu\tau jj) \)?
 → Suppress \(\text{Br}(\mu \to e\gamma) \)

- Solution: Textures with \((Y_{\nu} Y_{\nu}^\dagger)_{12} = 0 \) and \(\frac{|Y^i_j|^2}{4\pi} < 1.5 \)
Enhanced cross-sections from textures II

- Textures with $(Y_\nu Y_\nu^\dagger)_{12} = 0$ and $|Y_{ij}|^2 < 1.5$

$$Y^{(1)}_{\tau\mu} = f \begin{pmatrix} 0 & 1 & -1 \\ 0.9 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \ Y^{(2)}_{\tau\mu} = f \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & -1 \\ -1 & 1 & -1 \end{pmatrix}, \ Y^{(3)}_{\tau\mu} = f \begin{pmatrix} 0 & -1 & 1 \\ -1 & 1 & 1 \\ 0.8 & 0.5 & 0.5 \end{pmatrix}$$

- Flavour composition of the heavy neutrinos:

- 3 very different flavour patterns
- Heavy neutrino mixing of $\tau - \mu$ type is always present
Large production at LHC14:
\[\sigma \sim 0.1 - 100 \text{fb} \]

Associated lepton depends on \(N_i \)

Decays behave similarly
\[pp \rightarrow \mu \tau jj \text{ events at LHC14 for } Y_{\tau \mu}^{(3)} \]

Lower line: production only from Drell-Yan

Shaded regions: \(W \gamma \) fusion added with \(p_T^{\text{max}} = 10, 20, 40 \text{ GeV} \)

(darker to lighter)

Up to \(\mathcal{O}(100) \) events, naively background free
N production and decays

pp → μτjj events at LHC14 for Y_{τμ}^{(1)}

- Lower line: production only from Drell-Yan
- Shaded regions: $Wγ$ fusion added with $p_T^{max} = 10, 20, 40$ GeV (darker to lighter)

Excluded by τ → μγ

- $\sqrt{s} = 14$ TeV
- $\mathcal{L} = 300$ fb$^{-1}$
- $Y_{τμ}^{(1)}$

DY + γW

DY

- $f = 1$
- $f = 1/3$
- $f = 1/10$

M_R (GeV)

- Lower line: Up to $\mathcal{O}(10)$ events, naively background free
$pp \rightarrow \mu\tau jj$ events at LHC14 for $Y_{\tau\mu}^{(2)}$

Excluded by $\tau \rightarrow \mu \gamma$

$\sqrt{s} = 14 \text{ TeV}$

$\mathcal{L} = 300 \text{ fb}^{-1}$

$Y_{\tau\mu}^{(2)}$

- Lower line: production only from Drell-Yan
- Shaded regions: $W\gamma$ fusion added with $p_T^{\text{max}} = 10, 20, 40 \text{ GeV}$ (darker to lighter)
- Up to $\mathcal{O}(200)$ events, naively background free
Production at a 100 TeV collider

- Production dominated by gluon fusion → specific to 100 TeV collider
- NLO adds 15 – 40% to $\sigma(pp \rightarrow N\ell^\pm)$
- Model file and details available in [Degrande et al., 2016]
pp → µτjj events at 100 TeV

(\text{arXiv:1606.00947})

\[\sqrt{s} = 100 \text{ TeV, } L = 10 \text{ ab}^{-1} \]

- ▲: allowed by experimental constraints
- ×: excluded
- Contributions from \(N_{5/6} \) only, inclusive production
- Up to \(\mathcal{O}(10^5) \) events

\[Y^{(1)}_{\tau \mu} \]

\(N_{1/2} \)

\(N_{3/4} \)

\(N_{5/6} \)

\(e \)

\(\mu \)

\(\tau \)
Summary of $pp \rightarrow \mu \tau jj$

- Signal that can probe all low-scale seesaw models
- Exotic LFV $\mu \tau jj$ signal with $M_{jj} = M_W$, naively background free
- 10-200 events would be expected at LHC14
- $O(10^5)$ events would be expected at a 100 TeV collider

You decide to further study: LFVHD
You are tired and want to end your travels: end
Conclusions

* It’s the end.
Conclusions

* ASRIEL blocks the way!
Conclusions

- ν oscillations \rightarrow **New physics is needed** to generate masses and mixing

- Inverse seesaw: appealing example of low-scale seesaw mechanisms
 - $Y_\nu \sim \mathcal{O}(1)$ and $M_R \sim 100 \text{ GeV} - 10 \text{ TeV}$

- **Complementarity** of LFV lepton decays and Higgs decays because of their different dependence on the seesaw parameters

- non-SUSY ISS: $\text{Br}(h \rightarrow \bar{\tau}\mu) \leq 10^{-5}$
 - $\text{Br}(h \rightarrow \bar{\tau}e) \leq 10^{-5}$

- SUSY ISS: already within CMS and ATLAS reach
Conclusions

- Corrections to the HHH coupling from heavy ν as large as 30%: measurable at future colliders
 - Larger effects when additional heavy neutrinos are present
 - Can probe a new part of the parameter space, unconstrained otherwise
 - Would deliver new constraints on active-sterile mixing: impact on astroparticle physics, cosmology, neutrino physics

- Generic effect, expected to be present in all models including multi-TeV fermions with large Higgs couplings

- Exotic LFV $\mu\tau jj$ signal with $M_{jj} = M_W$, naively background free

- 10-200 events at LHC14, $O(10^5)$ at a 100 TeV collider

- Can we find other collider processes to search for heavy neutrinos? 😊
Conclusions

* you won... congratulations.
Backup slides
Renormalization procedure for the HHH coupling I

- No tadpole: \(t_H^{(1)} + \delta t_H = 0 \implies \delta t_H = -t_H^{(1)} \)
- Counterterms:

\[
M_H^2 \rightarrow M_H^2 + \delta M_H^2 \\
M_W^2 \rightarrow M_W^2 + \delta M_W^2 \\
M_Z^2 \rightarrow M_Z^2 + \delta M_Z^2 \\
e \rightarrow (1 + \delta Z_e)e \\
H \rightarrow \sqrt{Z_H} = (1 + \frac{1}{2} \delta Z_H)H
\]

(1)

- Full renormalized 1–loop triple Higgs coupling: \(\lambda_{HHH}^{1r} = \lambda^0 + \lambda_{HHH}^{(1)} + \delta \lambda_{HHH} \)

\[
\frac{\delta \lambda_{HHH}}{\lambda^0} = \frac{3}{2} \delta Z_H + \delta t_H \frac{e}{2 M_W \sin \theta_W M_H^2} + \delta Z_e + \frac{\delta M_H^2}{M_H^2} \\
- \frac{\delta M_W^2}{2 M_W^2} + \frac{1}{2} \cos^2 \theta_W \left(\frac{\delta M_W^2}{M_W^2} - \frac{\delta M_Z^2}{M_Z^2} \right)
\]
Renormalization procedure for the HHH coupling II

- OS scheme

\[\delta M_W^2 = Re \Sigma_{WW}^T (M_W^2) \]
\[\delta M_Z^2 = Re \Sigma_{ZZ}^T (M_Z^2) \]
\[\delta M_H^2 = Re \Sigma_{HH}^T (M_H^2) \]

(2)

- Electric charge:

\[\delta Z_e = \frac{\sin \theta_W}{\cos \theta_W} \frac{Re \Sigma_{\gamma Z}^T (0)}{M_Z^2} - \frac{Re \Sigma_{\gamma \gamma}^T (M_Z^2)}{M_Z^2} \]

- Higgs field renormalization

\[\delta Z_H = -Re \left. \frac{\partial \Sigma_{HH}^T (k^2)}{\partial k^2} \right|_{k^2=M_H^2} \]
NLO terms in the μ_X-parametrisation

- Weaker constraints on diagonal couplings \rightarrow Large active-sterile mixing $m_D M_R^{-1}$ for diagonal terms

- Previous parametrizations built on the 1st term (LO) in the $m_D M_R^{-1}$ expansion \rightarrow Parametrizations breaks down

- Solution: Build a parametrization including the next order terms

- The NLO μ_X-parametrisation is then

\[
\mu_X \simeq \left(1 - \frac{1}{2} M_R^{*-1} m_D^\dagger m_D M_R^{T-1} \right)^{-1} M_R^T m_D^{-1} U_{PMNS}^\dagger m_\nu U_{PMNS}^\dagger m_D^T M_R^{-1} M_R \\
\times \left(1 - \frac{1}{2} M_R^{-1} m_D^T m_D^* M_R^{*-1} \right)^{-1}
\]
Finding the dominant contribution (JHEP1411(2014)048)

- Non-degenerate μ_X and $R \neq 1$: large $\tau - \mu$ rates and ok with $\mu - e$ within the reach of Belle II
- At low M_R / high M_{SUSY}: dominant contributions from non-SUSY boxes and Z-penguins
- At low M_{SUSY} / high M_R: dominant contributions from SUSY γ-penguins
- Ratios: sensitive to the dominant contribution (SUSY or non-SUSY)
Modified Casas-Ibarra parametrization [Casas and Ibarra, 2001]

\[\nu Y_{\nu}^T = V^\dagger \text{diag}(\sqrt{M_1}, \sqrt{M_2}, \sqrt{M_3}) \ R \ \text{diag}(\sqrt{m_1}, \sqrt{m_2}, \sqrt{m_3}) \ U_{PMNS}^\dagger \]

\[M = M_R \mu_X^{-1} M_R^T \]
Constraints: focus on $\mu \rightarrow e\gamma$

- M_R and μ_X real and degenerate, Casas-Ibarra (C-I) parametrization
- Constrains μ_X
- Perturbativity $\rightarrow |\frac{Y_{\nu}^2}{4\pi}| < 1.5$ (Dotted line = non-perturbative couplings)

\[
\frac{v^2(Y_{\nu}Y_{\nu}^\dagger)_{km}}{M_R^2} \approx \frac{1}{\mu_X} \left(U_{PMNS} \Delta m^2 \frac{U_{PMNS}^T}{2m_{\nu_1}} \right)_{km}
\]
Dependence on ISS parameters: μ_X and M_R

$BR_{H\rightarrow\mu\tau}^{\text{approx}} = 10^{-7} \left(\frac{v^4}{M_R^4} \right) \left| (Y_{\nu} Y_{\nu}^\dagger)_23 - 5.7 (Y_{\nu} Y_{\nu}^\dagger Y_{\nu} Y_{\nu}^\dagger)_23 \right|^2$

- $R = 1$, M_R and μ_X degenerate and real, C-I parametrization
- Dips come from interferences between diagrams
- Can be understood using the mass insertion approximation

$$\frac{v^2 (Y_{\nu} Y_{\nu}^\dagger)_km}{M_R^2} \approx \frac{1}{\mu_X} \left(\frac{U_{\text{PMNS}} \Delta m^2 U_{\text{PMNS}}^T}{2m_{\nu_1}} \right)_{km}$$

and

$$\frac{v^2 (Y_{\nu} Y_{\nu}^\dagger Y_{\nu} Y_{\nu}^\dagger)_km}{M_R^2} = \frac{M_R^2 (U_{\text{PMNS}} \Delta m^2 U_{\text{PMNS}}^T)_km}{v^2 \mu_X^2}$$
Conclusion

Dependence on Casas-Ibarra parameters: R matrix

- M_R and μ_X degenerate and real
- Independent of R for real mixing angles
- Increase with complex angles, but increase limited by $\mu \rightarrow e\gamma$
 \Rightarrow Complex R matrix doesn’t change our results
Searching for maximal $\text{Br}(H \to \bar{\tau} \mu)$

- M_X and μ_X degenerate and real
- Excluded by $\mu \to e\gamma$
- Non-perturbative Y_ν
- $\text{Br}(H \to \bar{\tau} \mu) \leq 10^{-10}$
- End of the story?

$R = 1$

$m_{\nu_1} = 0.1 \text{ eV}$
Hierarchical heavy N

- Similar growth with M_{R_3} and μ_X as in the degenerate case with M_R and μ_X

- Excluded by $\mu \rightarrow e\gamma$

- Non-perturbative Y_ν

- $\text{Br}(H \rightarrow \bar{\tau}\mu) \leq 10^{-9}$
Impact of the R matrix for hierarchical N

- Contrary to degenerate case, R dependence
- Varying θ_1: Same conclusions as before
- Dotted = non-perturbative couplings
 Cross = Excluded by $\mu \rightarrow e\gamma$
- $\theta_2 \sim \pi/4$:
 $\text{Br}(H \rightarrow e\tau) > \text{Br}(H \rightarrow \mu\tau)$
- Results quite insensitive to θ_3
Conclusion

Dependence on $m_{\tilde{\nu}_R}$ and $m_{\tilde{X}}$

- M_R degenerate and real, $m_A = 800$ GeV
- ▲: allowed by LFV radiative decays, ×: excluded

- At low $m_{\tilde{\nu}_R}$: dominated by chargino-sneutrino loops
 - At large $m_{\tilde{\nu}_R}$: dominated by neutralino-slepton loops

- Can reach allowed values up to $\text{BR}(h \rightarrow \tau \bar{\mu}) = 1.1\%$