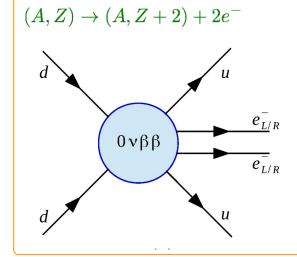


The CUPID experiment

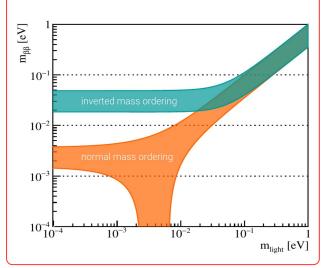
Matteo Biassoni for the CUPID Collaboration

IBS-INFN GRC Opening Meeting Daejeon, October 31st, 2025


Neutrino-less double beta decay

Double beta decay: second order nuclear process, alternative to beta decay when forbidden by negative mass difference for some even-even nuclei

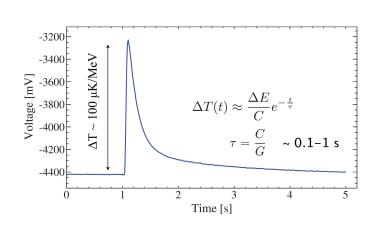
$$(A,Z) \to (A,Z+2) + 2e^- + 2\bar{\nu}_e$$

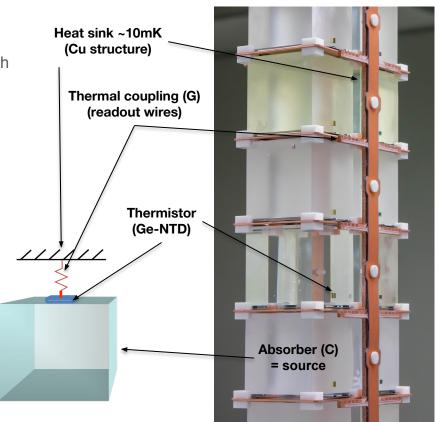

2nd order SM process, observed on nuclei with $T_{1/2} \sim 10^{18-24}$ years

- SM forbidden, lepton number violation → MATTER CREATION!
- if observed, then neutrino is a Majorana particle
- underlying mechanism can give insight into BSM physics:
 - light neutrino mass scale and hierarchy
 - heavy, sterile neutrinos

Effective neutrino mass m_{gg} :

- measures the intensity of the new-physics involved in the process
- compares different isotopes

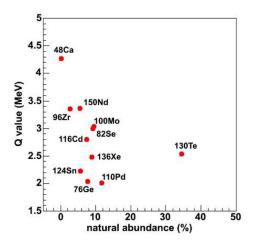



Experimental technique: low temperature detectors

Low temperature detectors:

- macroscopic (hundreds of grams) crystals instrumented with thermistors operated @10 mK → low thermal capacity
- energy deposition detected as temperature variation
- large active mass and efficiency per unit cost
- high energy resolution, model-independent signature

Experimental technique: low temperature detectors

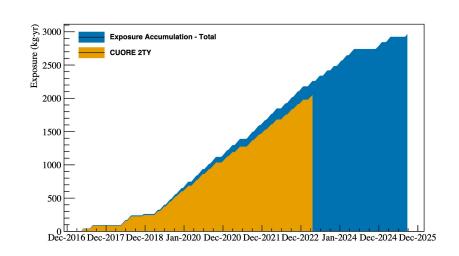


Low temperature detectors:

- macroscopic (hundreds of grams) crystals instrumented with thermistors operated @10 mK → low thermal capacity
- energy deposition detected as temperature variation
- large active mass and efficiency per unit cost
- fully active sensitive volume (= source), no dead-layer → simple response function → high energy resolution, model-independent signature

Intrinsically multi-isotope technique: many available compounds containing candidate nuclei

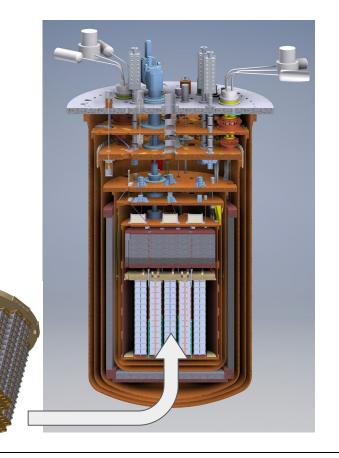
- ¹³⁰TeO₂ (CUORE)
- Li₂¹⁰⁰MoO₄ (CUPID, AMORE)
- Zn⁸²Se (CUPID-0)
- 48deplCa¹⁰⁰MoO₄
- $Na_2^{100}MoO_7$
- ⁴⁸CaF,
- o ¹¹⁶CdWO₂


Unique feature: test simultaneously multiple candidates to cross check discovery and perform precision nuclear matrix measurements!

CUPID concept: Cuore Upgrade with Particle IDentification

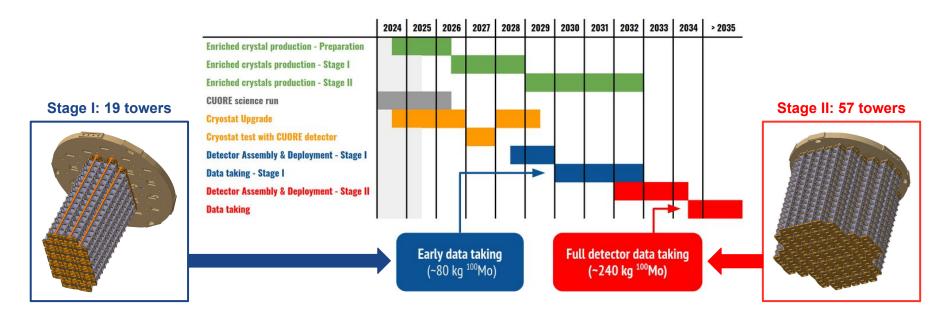
Ton-scale array of high-resolution cryogenic calorimeters for the search for $0\nu\beta\beta$ and other other rare events

- replace CUORE (TeO₂) detector with new one based on Li₂¹⁰⁰MoO₄ crystals
- same mass scale as CUORE: feasibility already demonstrated with 7 years of stable data-taking
- existing cryogenic infrastructure: cost effective, low risk, highly reliable
- additional detector functionality:
 - o particle identification
 - o pile-up rejection with fast light-detectors
 - increased number of channels (x3)

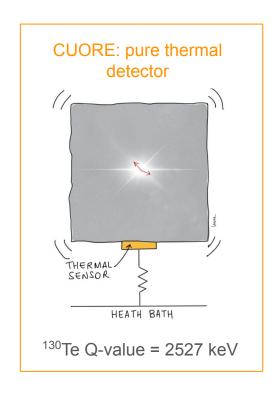


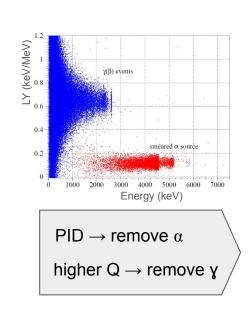
CUPID concept: Cuore Upgrade with Particle IDentification

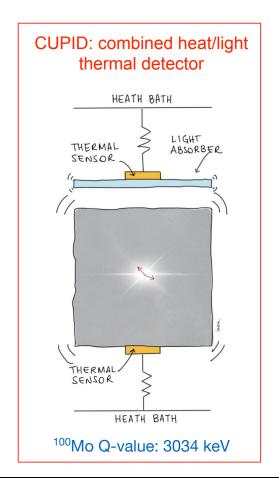
Ton-scale array of high-resolution cryogenic calorimeters for the search for $0\nu\beta\beta$ and other other rare events


- replace CUORE (TeO₂) detector with new one based on Li₂ ¹⁰⁰MoO₄ crystals
- same mass scale as CUORE: feasibility already demonstrated with 7 years of stable data-taking
- existing cryogenic infrastructure: cost effective, low risk
- additional detector functionality:
 - o particle identification
 - pile-up rejection with fast light-detectors
 - increased number of channels (x3)

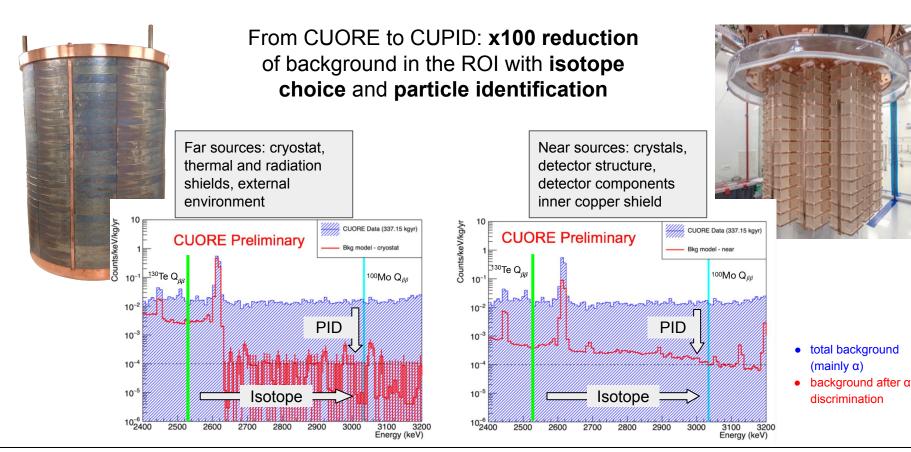
CUPID concept: staged deployment timeline




- Early delivery of science results, with world-leading sensitivity
- Technical risks mitigations
- Avoid long period without operation and scientific results → minimize risk of loss of expertise

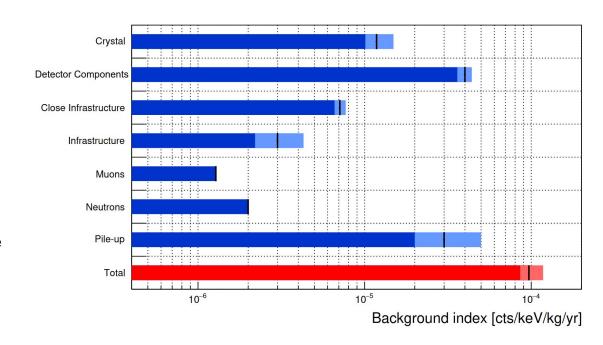


CUPID detector technology



CUPID background budget

CUPID background budget



Data-driven background budget:

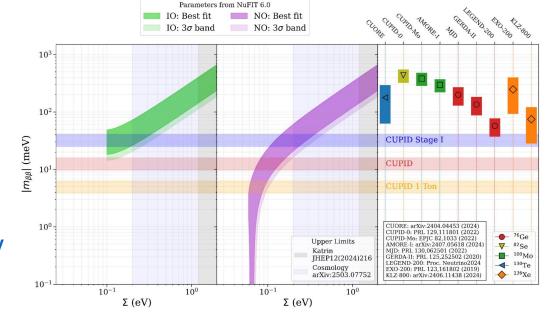
- CUORE, CUPID-0, CUPID-Mo background models
- measurements/limits already existing for all materials

Path to reach CUPID requirements = 10⁻⁴ ckky

- crystal purity quality control (required purity already demonstrated)
- cleaning of passive elements with CUORE protocols
- contamination in cryogenic infrastructure and shields well understood
- pile-up contribution well modeled and further reduction possible with current technology

The path to achieve CUPID background goal is well understood and conservative

CUPID physics reach - $0\nu\beta\beta$


CUPID Baseline (Full deployment)

- Mass: ~450 kg (**240 Kg**) of $Li_2^{100}MoO_4^{(100}Mo)$
- 10 yr runtime
- Energy resolution: 5 keV FWHM
- Background: 10⁻⁴ cts/keV.kg.yr

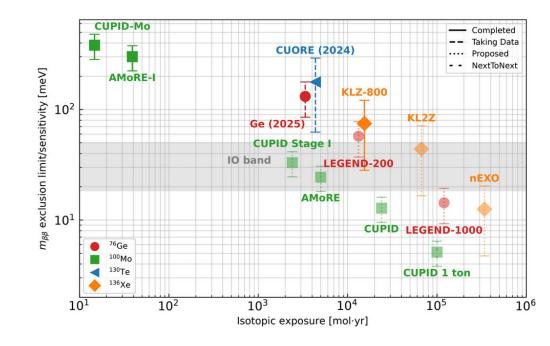
Discovery Sensitivity

- $T_{1/2} > 1.1 \times 10^{27} \text{ yrs}$
- m_{gg} ~ 9-15 meV @90% C.L.

CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

https://doi.org/10.48550/arXiv.1907.09376

CUPID physics reach - $0\nu\beta\beta$


CUPID Baseline

- Mass: ~450 kg (**240 Kg**) of $\text{Li}_2^{100}\text{MoO}_4(^{100}\text{Mo})$
- 10 yr runtime
- Energy resolution: 5 keV FWHM
- Background: 10⁻⁴ cts/keV.kg.yr

Discovery Sensitivity

- $T_{1/2} > 1.1 \times 10^{27} \text{ yrs}$
- m_{gg} ~ 9-15 meV 90% C.L.

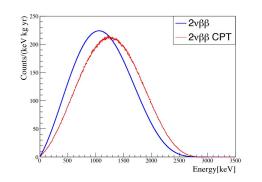
CUPID aims to cover the inverted hierarchy and a fraction of normal ordering

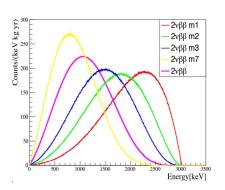
https://doi.org/10.48550/arXiv.1907.09376

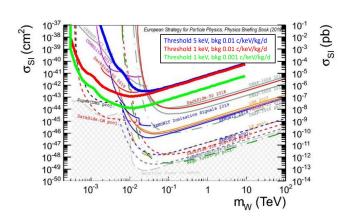
CUPID physics reach - other processes

• Precision $2\nu\beta\beta$ spectral shape analysis:

- decays to excited states
- Single State vs Higher State Dominance
- CPT violation
- Majoron emission


• Topological analysis:


- o electric charge conservation
- o Pauli exclusion principle
- Tri-nucleon decay and baryon number conservation


Low energy searches:

- direct dark matter detection
- supernova neutrinos via coherent scattering
- solar axion searches

Rich physics program

CUPID Collaboration & Project

Leverage previous collaborative experience

https://cupid-i.lngs.infn.it/doku.php?id=cupid pub:start

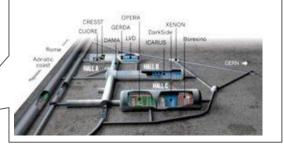
Major participants: Italy (~60 authors), US (~40 authors), France (~25 authors)
Other participants: China, Ukraine, Spain

Integrate the experience from CUPID-0 and CUPID-Mo in operating detectors with Particle Identification technology

CUPID-Mo

CUPID Collaboration & Project

Leverage previous technical experiences


Cost and time-effective reuse of the CUORE underground infrastructure

https://cupid-i.lngs.infn.it/doku.php?id=cupid pub:start

Major participants: Italy (~60 authors), US (~40 authors), France (~25 authors)
Other participants: China, Ukraine, Spain

Long-lasting and well developed interaction with LNGS services and infrastructure

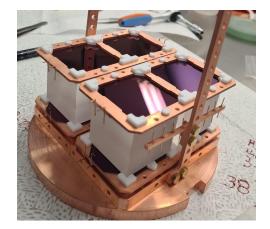
Fully leverages the CUORE cryogenic infrastructure, experience and expertise in its operation

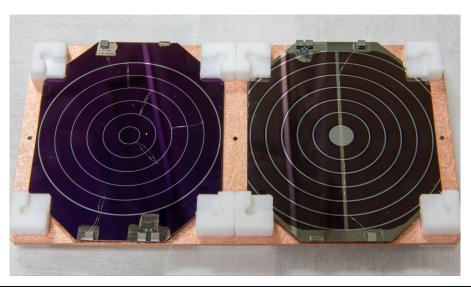
What's new and challenging in CUPID?

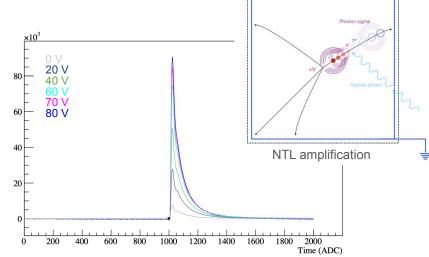
Crystals - supply chain

- SICCAS consolidated as the crystal producer with IPCE/CNNC taking care of the isotope enrichment
- Continuous interaction with INFN to establish requirements and procedures and monitor quality
- Pre-production enriched crystals are being tested to complete optimization phase and start large scale production by end of 2026

Crystals - CCVR


- Cupid Crystal Validation Run bolometric test of crystals operated as detectors in LNGS HallC
- Most sensitive tool to validate production:
 - resolution and LY in realistic conditions
 - o radio-purity assessment
- 4/8 crystals of each batch assembled in a 2x1 modules with 8/12 light detectors for light readout

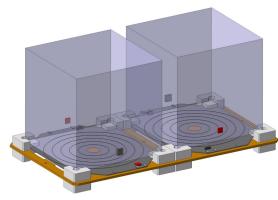


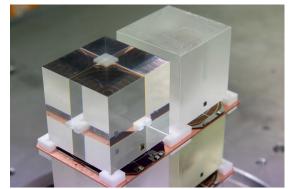

Light detectors

Key parameters:

- particle discrimination (<100 eV baseline RMS with 0.36 keV/MeV crystals sight yield large safety margin)
- o **pile-up rejection** (< 170 μ s amplitude-averaged timing resolution required)
- Implementation: Ge absorber with NTD readout and NTL amplification

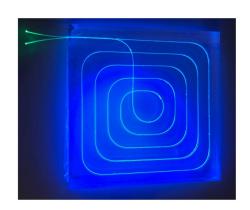
Detector Structure - from CUORE to CUPID

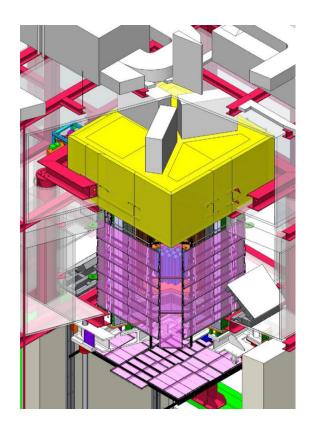

CUORE



- "gravity assisted" no vertical constraint,
 stack of crystals and
 light detectors sitting
 one on top of the other
- easy and safe assembly - no screws, self-aligning structure
- loose tolerances cost effective, easy cleaning
- laser cutting prevent copper surface recontamination

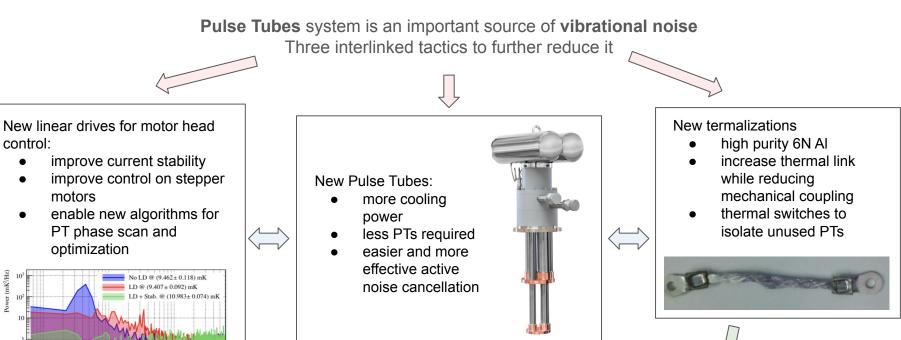
CUPID


Muon Veto & Neutron Shield



- Muons and neutrons induced background is negligible in CUORE but expected to be relevant in CUPID → increase in shielding and tagging required
- Hybrid solution:
 - plastic scintillator tails around the existing shield
 - instrumented water tanks at the top of the cryostat for combined neutron shielding - muon tagging

Both contributions are measured in CUORE:


- high multiplicity events from muon tracks and showers to constraint contribution in M1
- high energy gamma cascades from neutron capture

Cryostat Upgrades

Frequency (Hz)

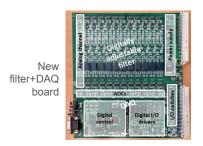
Reduce input vibration power and improve active noise cancellation efficiency

control:

motors

optimization

Front End and DAQ



CUORE uses **custom-designed room-temperature front end electronics**. Raw data is stored for offline processing

 Very stable and reliable operation for 7 years → Readout scheme proven on the field

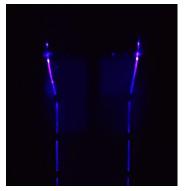
CUPID adds several challenges

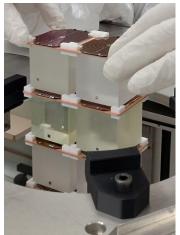
- More channels (x3), hence more power, more space, more data, etc.
- Faster signals on light detectors, required for pile-up rejection

Main upgrades:

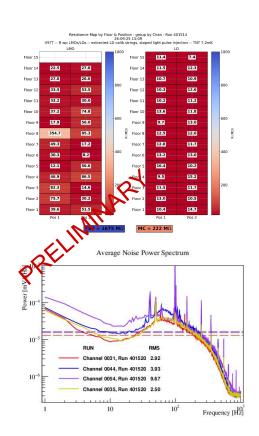
- The new frontend will save a factor of 2 in occupation space
- Keep the same power budget, optimizing preamps for light channels (same power, lower noise) and heat channels (lower power, same noise), and removing the PGA stage
- Reduce wiring capacitance to reduce input RC time constant
- Design a new board that merges anti-aliasing filters and DAQ, with tunable cut-off and 24-bit ADCs
- Update DAQ software and storage infrastructure to cope with the increased data rate

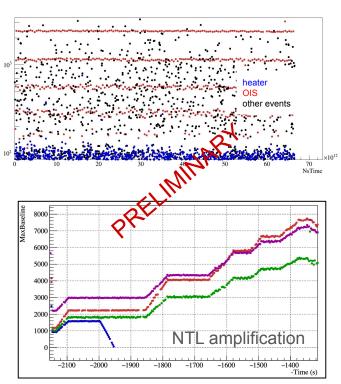
1-tower worth of channels already deployed and under testing


Detector integration test - VSTT


Vertical integration test of many subsystems:

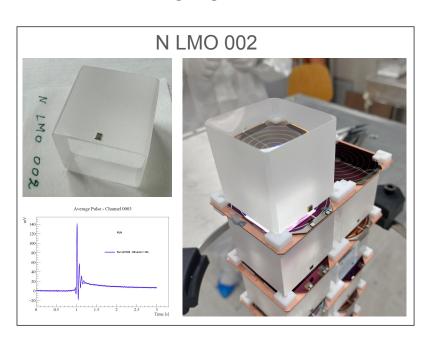
- full scale mechanical structure assembly
- sensors gluing
- readout wiring
- NTL-assisted light detectors
- Optical Injection System
- Front-end and DAQ

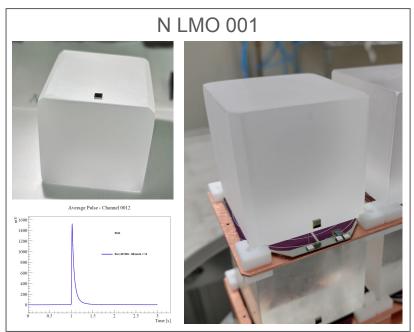




VSTT - preliminary results

- Extremely good thermalization, stable and uniform base and working temperatures
- Detector noise in line with expectations. Calibration ongoing
- Optical Injection System is able to illuminate all channels. Studies on photo-statistics ongoing
- NTL bias applied on a number of channels for preliminary test. Amplification confirmed





Detector integration test - AMoRE crystals

- Almost perfectly compatible with CUPID assembly
- Due to dimensional tolerances, 002 required manual gluing resulting in different working point
- Calibration ongoing

Detector integration test - AMoRE crystals

- Almost perfectly compatible with CUPID assembly
- Due to dimensional tolerances, 002 required manual gluing resulting in different working point

Calibration ongoing

Conclusions

- CUPID will explore inverted ordering ($T_{1/2} > 10^{27}$, $m_{gg} \sim 9-15$ meV @90% C.L.)
- Builds on an existing and well-functioning international collaborations and partnership between mainly Italy, Fr and US
- Collaboration has operational experience at LNGS for ton-scale, bolometric experiment and utilizes existing infrastructure (CUORE cryostat, experimental site).
- CUPID is timely, highly leveraged, and cost-effective; an exceptional opportunity
- Crystallization and enrichment at large scale are possible
- CUPID detector design is being extensively tested with VSTT vertical integration test
- Data-driven background model reaches baseline goal of B.I. ~ 10⁻⁴ counts/(keV kg y)

CUPID is proceeding towards construction

Complements international suite of ton-scale experiments in a world-wide program