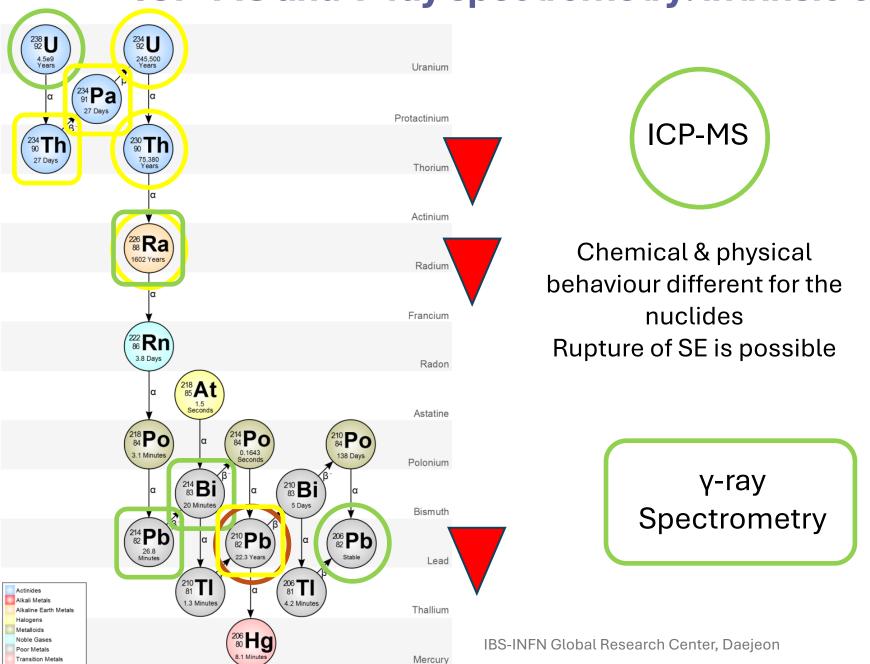


Mass Spectrometry facility at LNGS for the screening of radio-pure material


S. Nisi

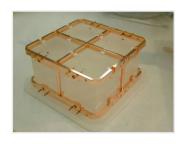
Laboratori Nazionali del Gran Sasso

Chemistry Department

stefano.nisi@lngs.infn.it

ICP-MS and Y-ray spectrometry: intrinsic complementary

LRT's performance comparison


		ICPMS LNGS (LSC)	ULB GRS LNGS (LSC)	ULB GRS+NAA LENA-Pavia
		Primordial parents	Y emettitors	Primordial parents
		Surface/bulk	BulK	Surface/bulk
Destructive		Yes	No	Yes
DL (Cu sample)	[10 ⁻¹² g/g]	Th=0.5 U=0.5	Th= 10-20 U= 10-20	Th(²³³ Pa)= 0.1 U(²³⁹ Np)= 3-5
Sample size	[g]	0.1-10	1-10000	100
Sample treatment		Contamination risk not negligeble	Almost free	Hot sample handling Low cont risk
Analysis Time		days	weeks	days-week

R&MS are often applied both to check secolar equilibrium of decay chain

Screening material examples

≈ 200 Complex samples/year

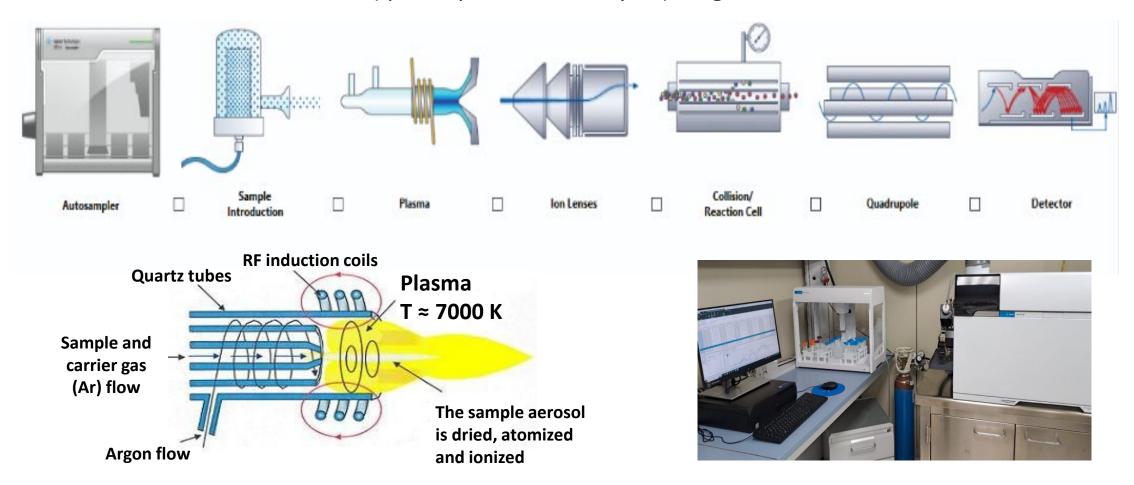
- Hundreds ready samples/ year (water and reagents)

Crystal and raw material

Metal & alloy

Heterogeneous material

(PCB)

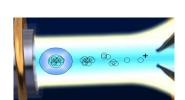

Sensitivity for copper				
	pg/g	uBq/Kg		
Th	0,5	2,0		
U	0,2	2,4		
Sensitivity for UP water				
²²⁶ Ra	0,000002	70		
Th	0,005	0,02		
U	0,005	0,06		
K in Nal crystal				
K	3000	90		

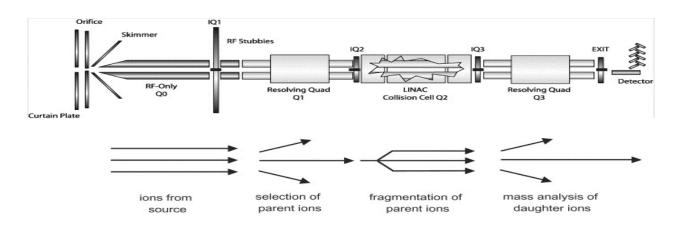
Issues in ICP-MS ultra-trace analysis

- **Isobaric interferences:** polyatomic species, isotopes of different elements and double charged ions (38 Ar 1 H $^{+}$ on K $^{+}$, 184 W 16 O $_{3}$ $^{+}$ on 232 Th)
- **Sensitivity** especially for solid samples (the instrument does not tolerate high matrix content, dilution is necessary) and **matrix effect**
- **Background** instrumental and method. Vial conditioning, ultrapure reagent, Clean room)
- **Risk of contamination** during sample preparation and measurement (we are looking for very very low concentrations!!!)
- Lack of Certified Reference Material (spike technique, method validation, inter-calibration)

ICP mass spectrometers @ LNGS

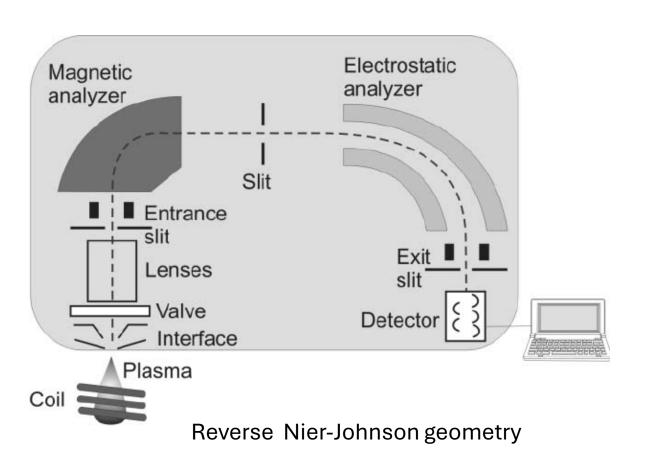
ICP QMS (quadrupole mass analyzer) – Agilent 7850

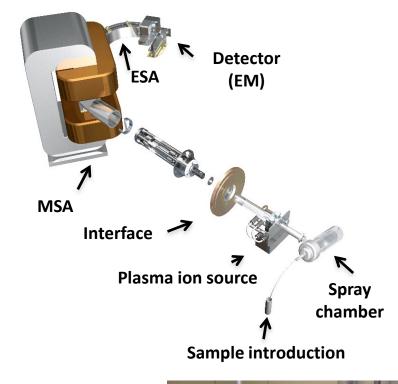



General use to avoid contamination and memory effect for QQQ-ICP-MS and HR-ICP-MS

ICP mass spectrometers @ LNGS

LA-ICP-QQQMS (quadrupole mass analyzer) – Agilent8900




Installed at beginning 2025

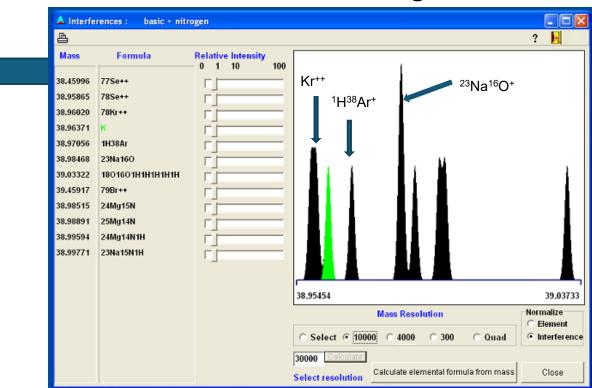
- > Typically used with laser ablation system to analyse of solid sample
- > Spatial distribution and depth concentration profile
- Specific application requiring reaction gases (H₂, O₂, NH₃...)

Sector Field ICP-Mass Spectrometer

The strengths of double focusing ICP-MS are sensitivity and the mass resolution

Drawbacks in ICP-MS 39K measurement in Nal

Dilution is requested (at least 100)


- Sensitivity reduction
- Matrix effect (St. Add.method)
- Ultrapure reagents
- ISO6 Clean room
- Vials conditioning

	33	34	35	36	37	38	39	40	41
S	0.76	4.29		0.02					
CI			75.78		24.22				
Ar				0.337		0.0%		99.60	
V							93.26	0.012	6.730
Ca								96.94	

	Mass (amu)	Resolution
⁷⁸ Kr ⁺⁺	38.96020	11100
³⁹ K+	38.96371	
¹ H ³⁸ Ar ⁺	38.97056	5690
²³ Na ¹⁶ O ⁺	38.98468	1860

HR-ICP-MS performance

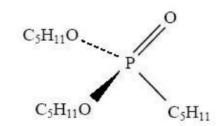
Detection limit calculated with 3*SD_{BLK6} for Nal solid=3ppb

Recovery test

	B5	B5+13.25	Mesured	Recovery %
ppb	13.3 ± 2.5	27 ± 3	28 ± 5	105 ± 25

Techniques and labs comparison

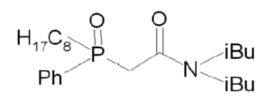
Technique	Laboratory	DL [ppb]
HR-ICP-MS	LNGS	3
ICP-QMS	SICCAS	10
ICP-OES	Ametek R&D	5
ICP-QQQ-MS	PNNL	0.6

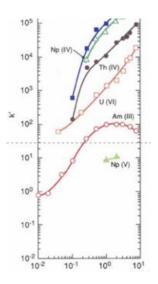

Without matrix separation, the DLs achieved in different labs using different instrumentation are at ppb level

Development of new ICP-MS method for radiopurity assay of lead

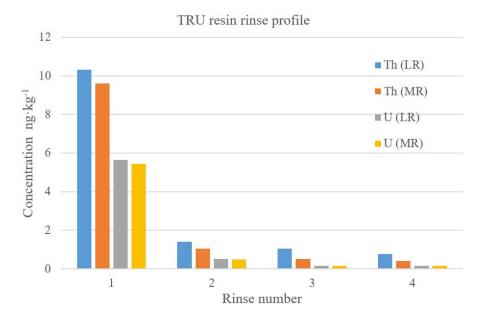
Literature (Hoppe et al. 2014)

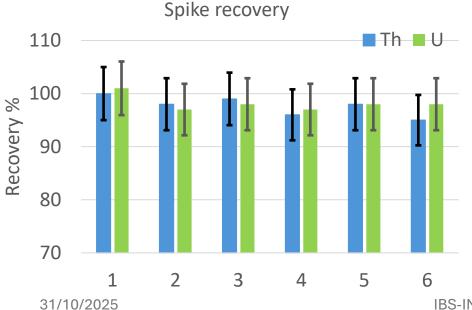
- Th U pre-concentration based on chromatographic resin UTEVA
- Recovery 45% for Th 12% for U
- Use of ²²⁹Th and ²³³U used as tracers
- Detection limit: 0,23 ng·kg⁻¹ for Th 0,5 ng·kg⁻¹ for U


UTEVA
Dipentyl Pentyl Phosphate



TRU
CMPO+TBP
(Carboamoyl Phosphine Ox
+ Tributylphosphate)




Development of method **based on TRU** resin (ammonium oxalate as eluting solution) to improve the recovery for Th and U resulting in a rapid and reliable measurement **without** use of artificial isotopes

Validation & Performance of the method

Process Blank & DLs $(3\sigma_{BLK})$

	Average	ST Dev	DL
	pg∙g ⁻¹	pg⋅g ⁻¹	pg⋅g ⁻¹
²³² Th (LR)	0.50	0.05	0.5
²³² Th (MR)	0.49	0.06	0.5
²³⁸ U (LR)	0.32	0.02	0.2
²³⁸ U (MR)	0.31	0.02	0.2

- TRU resin has been used for long time at LNGS to preconcentrate Th and U from several material (Cu, Steel, GSO, ...)
- Proper preparation of the column is crucial
- Recovery is 98 ± 2 for both (Th and U)
- Pb removal is very efficient (>99,95%)
- Process blanks are quite low and very reproducible
- Excellent DLs: 0,5 pg·g⁻¹ for Th, 0,2 pg·g⁻¹ for U
- DLs are driven by the blank of the process (LR=MR)

Hundred kg of archaeological Pb: ICP-MS-Gamma-Ray comparison

Decay chain	Isotope	Activity
[µBq kg ⁻¹]		[µBq kg ⁻¹]
²³² Th (*24±8)	²²⁸ Ac	40±20
	²¹² Pb	<210
	²¹² Bi	<140
	²⁰⁸ Tl	<23
²³⁸ U (*100±30)	²¹⁴ Pb	100±40
	²¹⁴ Bi	<20
	²³⁵ U	<760
	⁴⁰ K	<270
	¹³⁷ Cs	<8.0
	²⁰⁷ Bi	<13
	²⁰² Tl	60±5

- 4 ingots of archaeological Pb were re-casted producing pieces to fit the HPGe detector to maximize the efficiency
- 97.3 kg of Lead were measured by Gamma ray for 68 days.
- Gamma-ray and ICP-MS results agree for Th and U chains.
- The secular equilibrium is OK.

Archaeological lead is suitable to produce low background PbWO₄ cryogenic detectors

^{*}ICP-MS

GRC: perspectives

Sharing knowledge and skills helps improve analytical capacity

- Accelerates R&D
- Helps the validation of the method
- > Represents an opportunity for intercalibration
- > Increases the reliability of the data

GRC: action plan

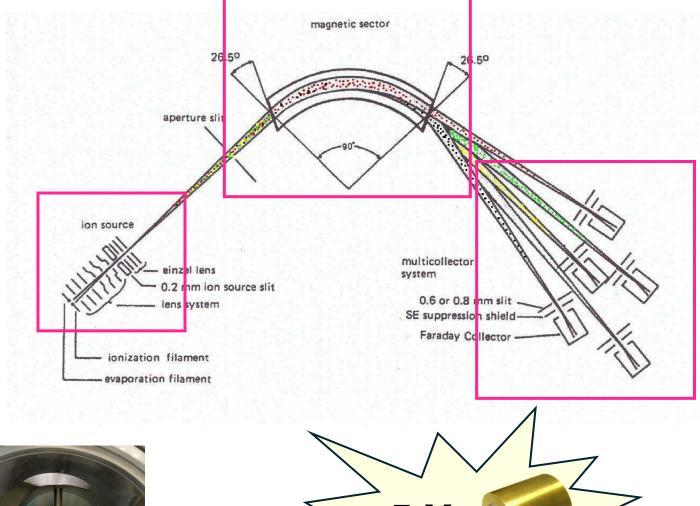
- > Selection some samples of material of interest for particle physics
- > Defining a common procedure for sample cleanup
- > Establishing a common analytical method to be applied in different labs
- > Measuring sample by mean ICP-MS and Y-ray spectrometry in different labs
- > Results comparison

Sample preparation

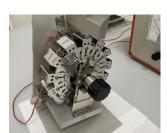

Instrumentation

"Clean chemistry"

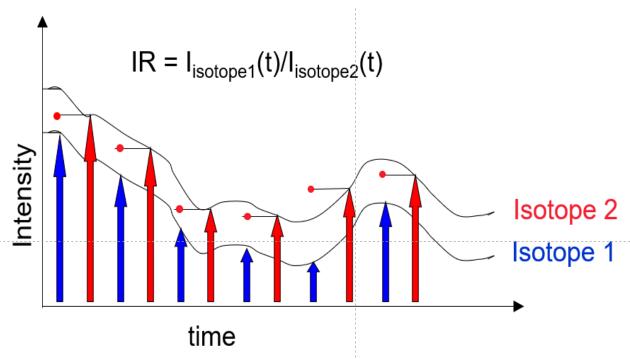
Thank you for your attention

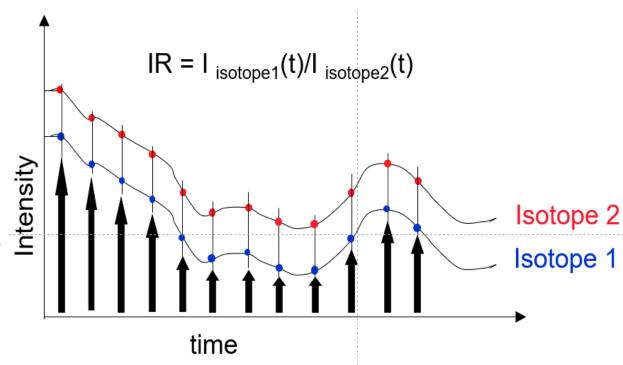


Analisi isotopiche ad alta precisione con TIMS a collettore multiplo


TIMS MAT 261 Thermo Finnigan

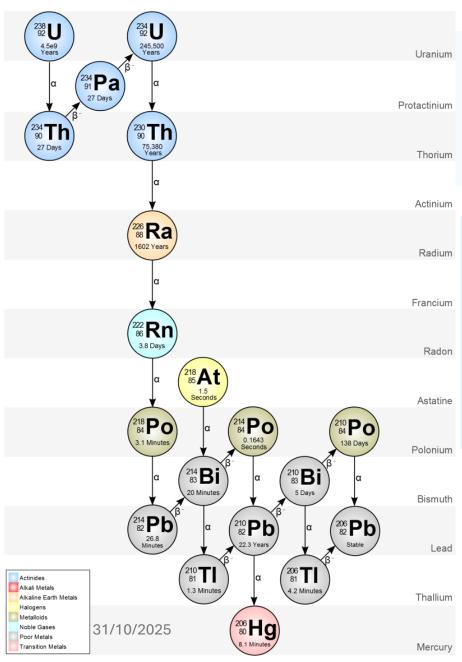
Discriminazione tra rapporti isotopici <0.01% Precisione interna ><u>0.005%</u>




Misure isotopiche: vantaggi del rivelatore a collettore multiplo

Collettore singolo: misura sequenziale

Collettore multiplo: misurasimultanea


Accuratezza e precisione sono influenzate dalla stabilità del segnale

Accuratezza e precisione non dipendono da fluttuazioni della sorgente

Look inside the decay chains

- ²³⁸U is the parent of its decay chain
- ²⁰⁶Pb is a stable nuclide, the finish line of the chain
- In between there are many radionuclides, all undergoing α&β decay processes

If the secular equilibrium is respected

the number of atoms that decays for each nuclide per unit time is the same.

But the half-life time $(T_{1/2})$ is characteristic for each nuclide

their concentrations are inversely proportional to T_{1/2}

Radiometric techniques and mass spectrometry are intrinsically complementary

Others natural decay chains

Thorium

Actinium

Radium

Francium

Radon

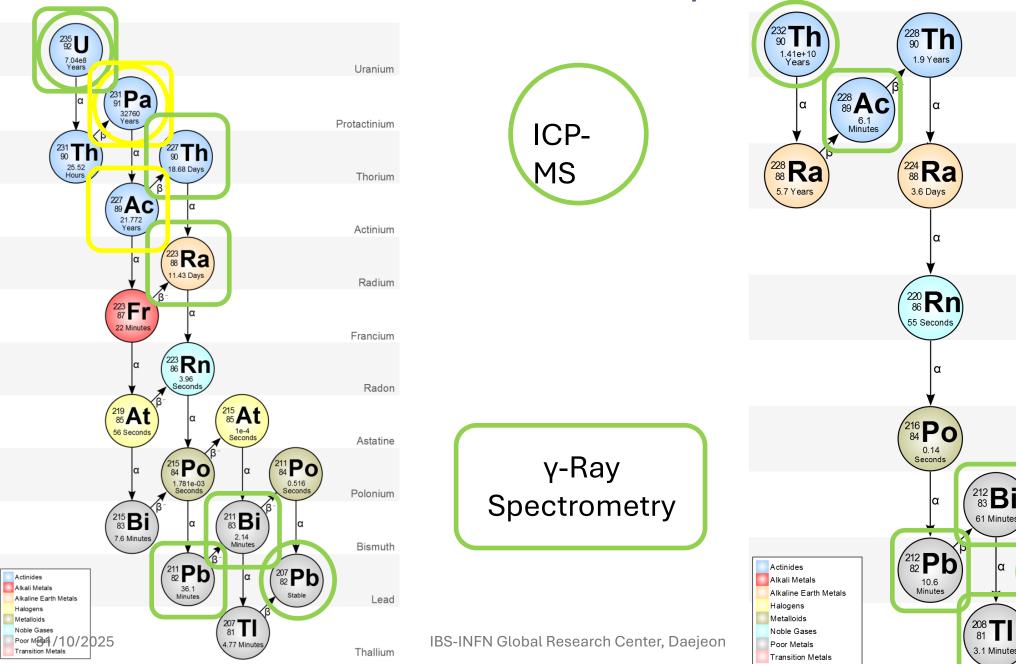
Astatine

Polonium

Bismuth

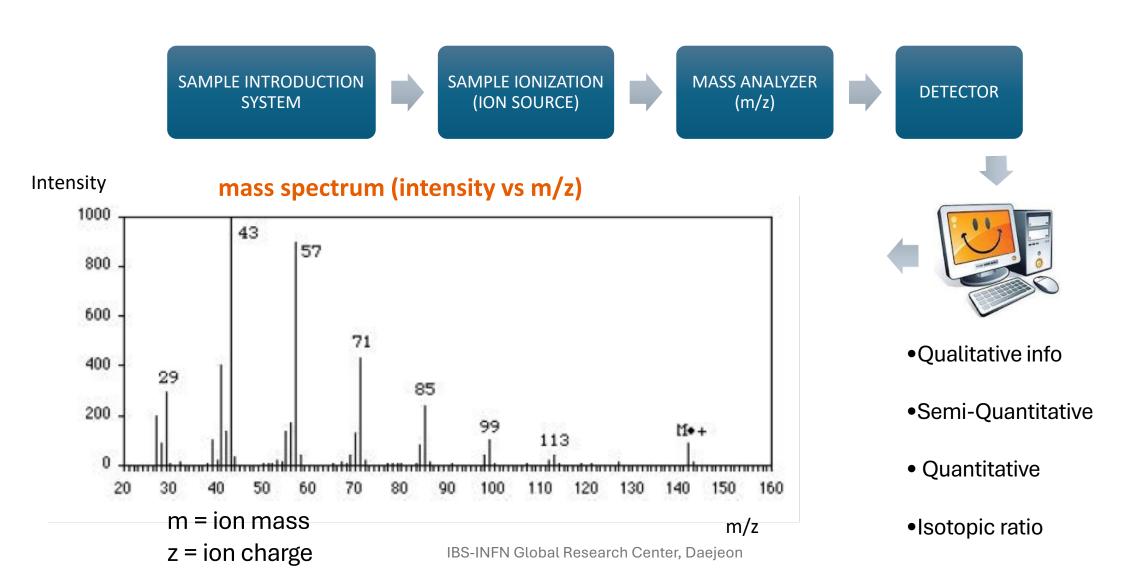
Lead

Thallium

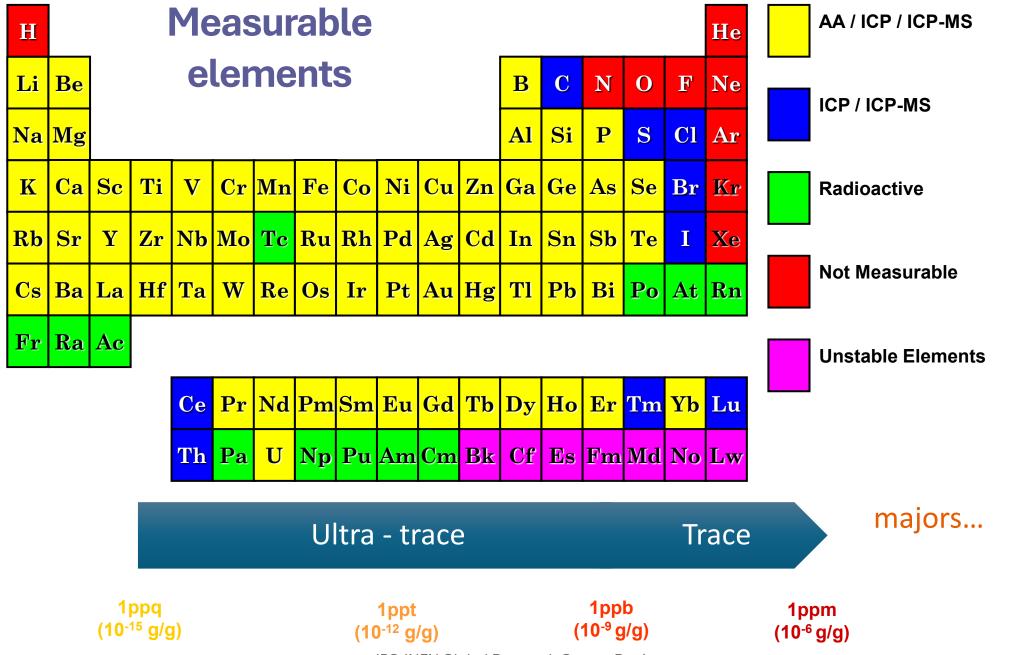

21

²¹² Po

3e-07


Seconds

²⁰⁸ Pb



What is the mass spectrometry?

- Identification and quantification of molecules and elements

Measurement of K in Nal crystal

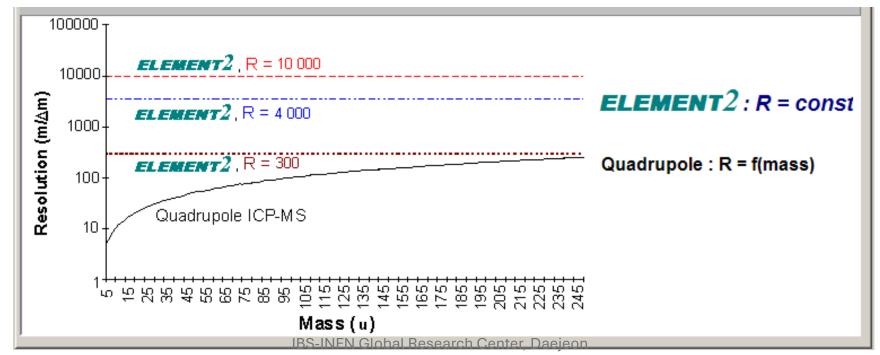
DM Direct detection experiments sensitivity = f(radioactivity background)

Some experiments looking for DM evidence are using or developing **Nal crystal-based detectors**

K is the most critical natural radio contaminant for Na due to their chemical affinity

The K final background budget is 10 ppb

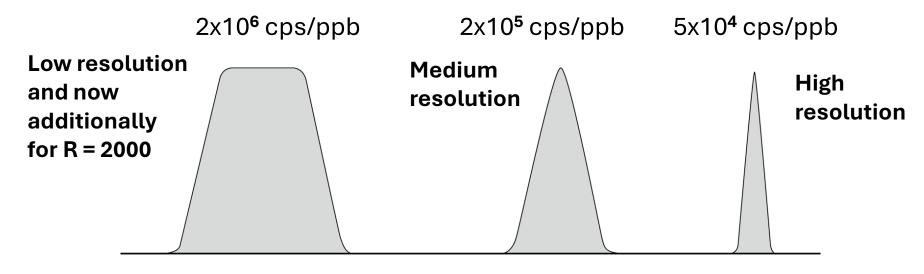
The development of a high sensitivity analytical method is required in order to have a quick and reliable tool for Nal crystal production process monitoring (**Detection Limit=ppb level**).


Mass resolution power

When two adjacent peaks m_a and m_b with comparable intensitiy and h<10%H

the resolution is defined as the ratio:

$$R=m/(m_a-m_b)$$



Low-Medium-High Resolution: peak shape

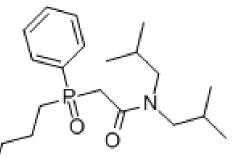
• Using the Low Resolution mode the sensitivity is the highest and the top of the peaks are flat. This is a successful approach for many isotopic systems also


 In higher resolution the peaks have triangular shape, the resolution rise up, but the sensitivity degrease

Development of an analytical procedure for the improvement of ICP MS detection limits for Th and U in copper

Extraction chromathography

Advantages:


- Matrix removal
- Analyte preconcentration

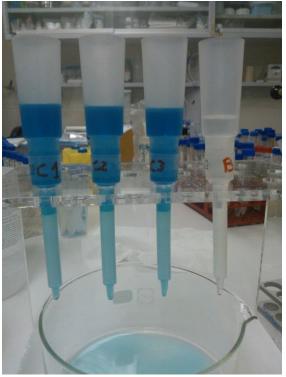
Disadvantages:

- Time consuming
- Reagents
- Risk of contamination
- Higher amount of sample

TRU resin (Triskem®)

figure 2

octylphenyl-N,N-di-isobutyl carbamoylphosphine oxide (CMPO)


TRU column specifics		
Stationary phase	CMPO/TBP (ρ= 0.37 g/mL)	
Inert support		
Grain dimension	100-150 μm	
CMPO content		
Vs		
Vs/Vm		
Vm (FCV)		

Experimental

- Work in clean room (class 1000-ISO6)
- -Preliminary cleaning of all vials and labware involved in the analysis (10% UP HNO3 solutions + rinsing with MilliQ 18.2 $M\Omega^*cm$ water)
- Dissolution in UP HNO₃ solution
- Several controlled etching steps: removal of likely contaminated surface and bulk analysis / depth profile
- Analytes separation and pre-concentration using extraction chromatographic columns loaded with selective resins

TRU results

Sample solution:

10% Cu in 4M HNO3

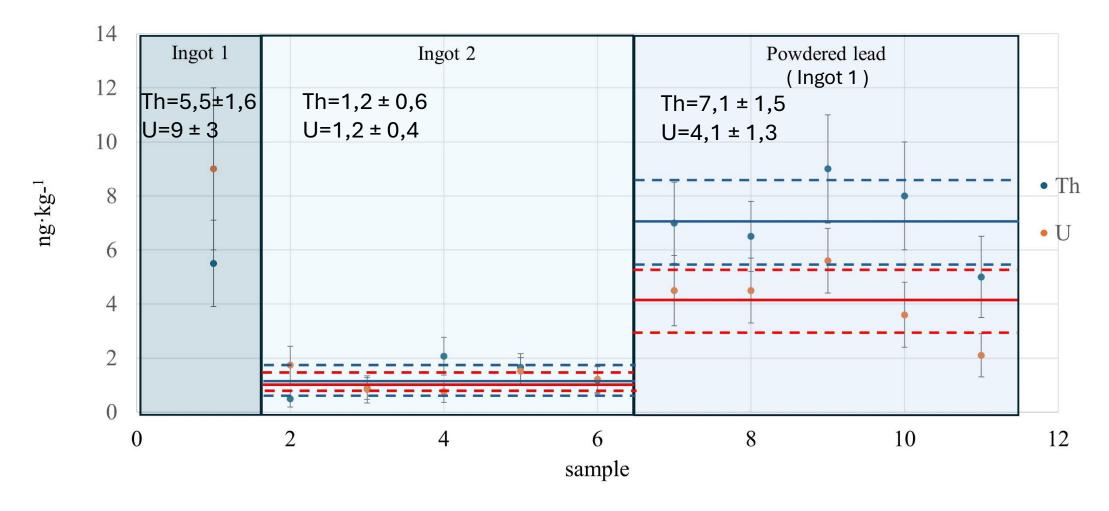
Th and U chromatographic extraction:

- 1.Resin pre-wash and conditioning (0.1M ammonium oxalate)
- 2. Rinse (4M HNO3, 5 mL)
- 3. Sample load (10 mL)
- 4. Rinse (4M HNO3, 5 mL)
- 5. Th and U elution (0.1M ammonium oxalate 10 mL)

Solution 5 analyzed undiluted

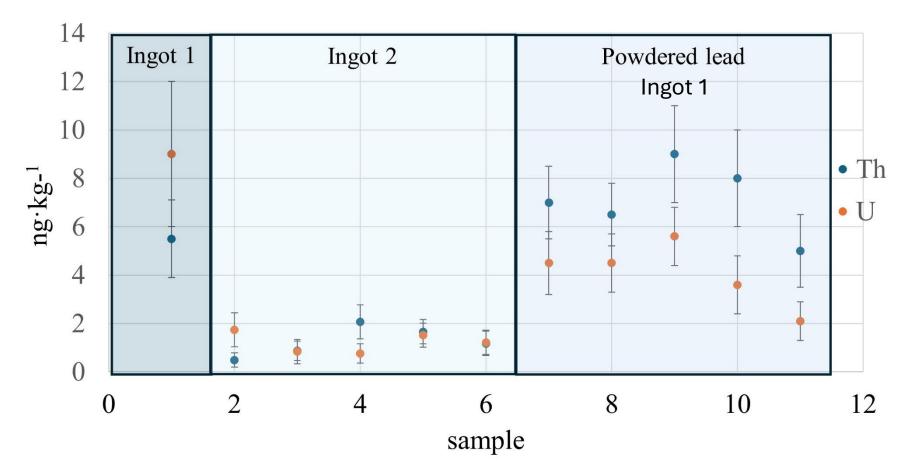
Total Dilution Factor: ≈10

(vs ≈1500 without pre-concentration)


DL* (in solid Cu)		Recovery %
Th	2.6 ppt	90.0 ± 0.6
U	0.8 ppt	97.9 ± 6.1

Cu separation efficiency:

Measured in Cu sample		
Th	4.6 ± 1.3	
U	1.0 ± 0.3	


	DL	Recovery %
Th	very good	excellent
U	excellent	excellent

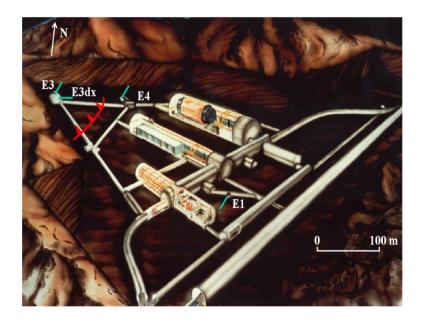
Th and U determined by ICP-MS in archaeological lead samples

Th and U concentration given as arithmetic mean (solid line) and expanded uncertainty $U_{\text{CRM}} = k \cdot u_{\text{CRM}}$ (k = 1) (dotted).

Th and U determined by ICP-MS in archaeological lead samples

- Homogeneity inside ingot 2
- Modest heterogeneity between ingots
- Powdered Lead obtained from Ingot 1 comparable

Concentration values shown with their combined standard uncertainties


Environmental Radioactivity Monitoring for Earth Sciences carried out at LNGS

In the framework of ERMES thousands 1-L groundwater samples have been weekly collected since 2008 at ten different sites located in the underground laboratory (Plastino et al. 2010; Plastino et al. 2011; Ciarletti et al. 2015)

One target of the project was the study of ²²⁶Ra time series

- Small amount of sample available
- High number of samples
- High sensitivity needed
- High precision requested

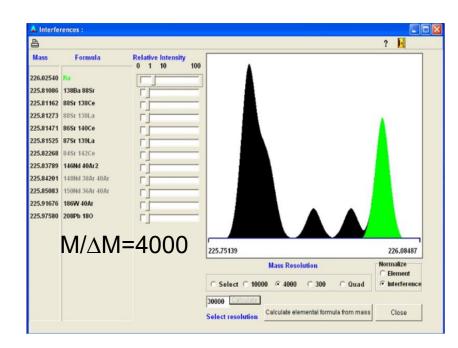
We proposed to optimize a method for ICP-MS ²²⁶Ra measurement

ICP-MS ²²⁶Ra measurement

 Low concentration of ²²⁶Ra in water expected radium concentrations are in the range 0.1-1 ppq (<36mBq/Kg)

- Sample preconcentration
- APEX-Q system
- Acquisition Method

• Spectral interference due to polyatomic species (Epov et al 2003)


	Mass (amu)	Resolution
⁸⁸ Sr ¹³⁸ Ba	225.8106	1050
⁸⁶ Sr ¹⁴⁰ Ce	225.8147	1070
⁸⁷ Sr ¹³⁹ La	225.8152	1075
⁴⁰ Ar ⁴⁰ Ar ¹⁴⁶ Nd	225.8379	1200
²²⁶ Ra	226.0254	

high concentration of some elements (Ca,Mg, Na) affects the instrumental response

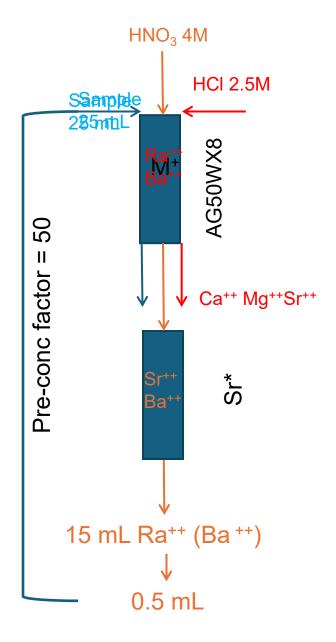
- chemical separation
- Internal calibration

²²⁶Ra: sample treatment optimization

(Lariviere et al. 2005, Copia et al. 2015)

- AG-50W-X8
- Sr*resin

Procedure steps:

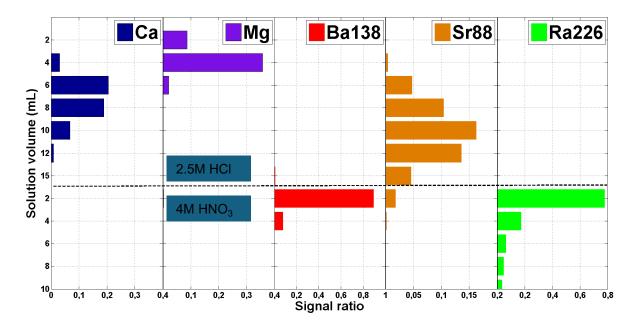

- 1.Pre-wash and conditioning
- 2. Sample load
- 3.Wash: HCl
- 4.Ra elution: HNO₃

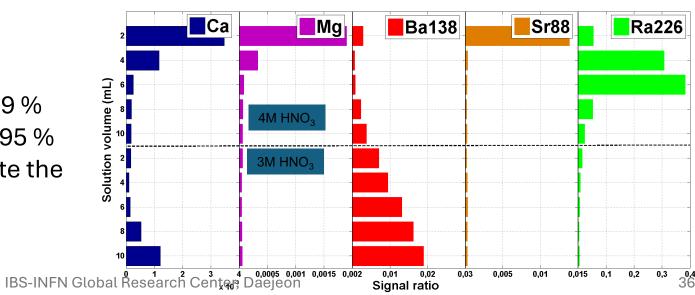
Sample load

Series connection

5.Rinse

Step 3	Recovery	Separation efficiency (%)				
	eff. (%)					
HCl M	²²⁶ Ra	⁴³ Ca	²⁵ Mg	⁸⁸ Sr	¹³⁸ Ba	
1.7	86.9	68	98.2	19.8	23.4	
2.5	100	99.7	99.9	96.4	12.1	
4	64.2	99.8	99.9	99.7	96.2	
6	9.1	99.8	99.9	99.6	76.4	

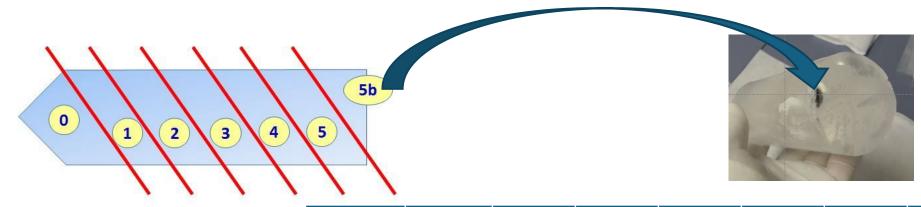

Elution profiles for Ca, Mg, Ba, Sr, and Ra


Cationic exchange resin

- high efficiency removal for Ca and Mg >99,7 %
- Good separation for Sr 96.6 %
- Poor for Ba

Sr Resin

- Improves Sr separation to >99 %
- Increases Ba separation to >95 %
- Rinse with 3M HNO₃ complete the Ra recovery



Method performance

- The developed method resulted to be relatively fast and economic then suitable for the measurement of large number samples
- An excellent sensitivity was achieved. $DL = 2*10^{-18}$ g mL⁻¹ (25 mL sample) thank to the improvements in the separation and pre-concentration techniques (PF=50)
- The Ra recovery was completely satisfactory R_E= (100±3) %
- The method has proved to be reliable, reproducible and robust

The proposed methodic allowed the reliable measurements of the ²²⁶Ra concentration in the different sites of LNGS and the Ra time series analysis

Study of the impurity distribution

Cry **ST Powder** Hot plasma

Cry N1 **UP Powder** Hot plasma

Cry N2 **UP Powder** Cool plasma

Sampl e	0 NOSE	1	2	3	4	5 TAIL	5B
K ppb	230	320	360	340	350	1415	
K ppb	<15	<15	<15	<15	<15	120	360
Th ppt	<1	<1	<1	<1	<2	<1	280
U ppt	<1	<1	<1	<1	<1	<2	130
K ppb	10.2	11.5	11.2	11.6	11.6	13.3	

The uncertainty of the reported concentration values is about 10-25 %

Radiometric techniques are sensitive to the radiation emitted by radionuclide decay

Sensitivity $f(T_{1/2}, Energy Y-ray line, branching ratio, sample mass, time of measurement)$

ULB-GRS Ultra Low-Background Gamma Ray Spectrometry

- + Sample treatment free
- + Nondestructive technique
- Sensitivity depend on the sample mass (Kg)
- Long measurement time is requested to achieve high sensitivity (weeks)
- Bulk measurement/homogeneous material

Mass spectrometry measures the concentration of radionuclides (number nuclides/mass)

ICP-MS Quadrupole Mass Analyzer equipped with collision cell **HR-ICP-MS** High resolution ICP-MS

- + Small sample (g)
- + Relatively quick measurement
- Sample treatment is mandatory and delicate
- Destructive technique

R&MS are often applied both to check secular equilibrium of decay chain