

General Relativity

Sebastián Bahamonde

sbahamonde@ibs.re.kr

Senior Research Fellow at Institute for Basic Science, Daejeon, South Korea.

The third IBS CTPU-CGA Winter Camp 2026, 26-29/January/2026

Some information about this course

- In three lectures, it is not possible to cover General Relativity in full.
- The goal of this course is to introduce some key aspects of GR. Whenever an asterisk (*) appears in the slides, it indicates additional material provided as **extra practice with fully solved exercises**.
- For further study, the following classic textbooks are highly recommended:
 - 1 R. M. Wald, *General Relativity*
 - 2 S. Weinberg, *Gravitation and Cosmology*
 - 3 R. d'Inverno, *Introducing Einstein's Relativity*
 - 4 C. G. Böhmer, *Introduction to General Relativity and Cosmology*

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

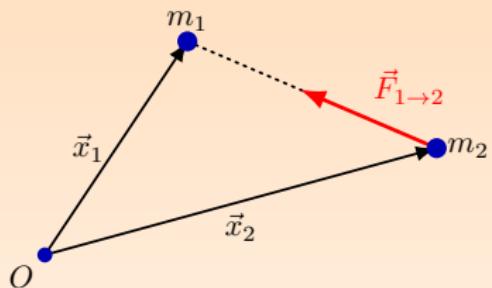
4 The Schwarzschild solution

5 Classical predictions of General Relativity

Newton's Law of Universal Gravitation

In Newtonian gravity, the force exerted by a point mass m_1 on another point mass m_2 is (1687)

$$\vec{F}_{1 \rightarrow 2} = -G \frac{m_1 m_2}{|\vec{r}|^2} \frac{\vec{r}}{|\vec{r}|},$$



where

$$\vec{r} = \vec{x}_2 - \vec{x}_1$$

Gravitational force.

points from m_1 to m_2 .

The gravitational constant (Cavendish) is

$$G = (6.67428 \pm 0.00067) \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}.$$

The Gravitational Field (Point Mass)

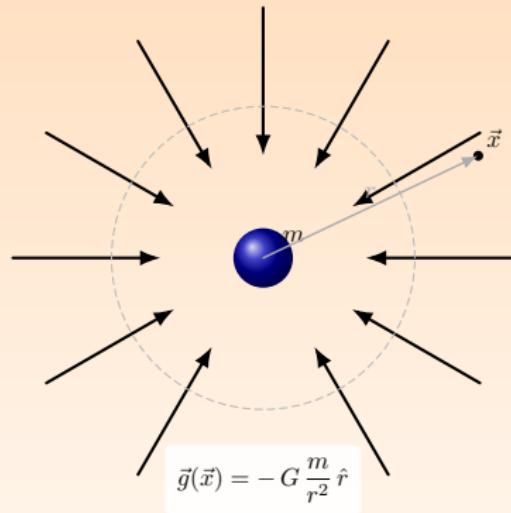
Definition. The gravitational field is force per unit test mass:

$$\vec{g}(\vec{x}) \equiv \frac{\vec{F}(\vec{x})}{m_{\text{test}}}.$$

For a point mass m located at \vec{x}_m , let $\vec{r} = \vec{x} - \vec{x}_m$. Newton's law gives

$$\vec{g}(\vec{x}) = -G m \frac{\vec{r}}{|\vec{r}|^3} = -G \frac{m}{r^2} \hat{r}.$$

Geometric picture: \vec{g} always points toward the source and falls off as $1/r^2$.



Field lines for a point mass.

Superposition and Potential

Superposition. For many sources, fields add linearly. For a continuous mass density $\rho(\vec{x}')$,

$$\vec{g}(\vec{x}) = -G \int_{\mathbb{R}^3} \rho(\vec{x}') \frac{\vec{x} - \vec{x}'}{|\vec{x} - \vec{x}'|^3} d^3x'.$$

Conservative field (Newtonian gravity). In regions without time-dependent effects, the field is irrotational:

$$\nabla \times \vec{g} = \vec{0}.$$

Therefore one can introduce a *gravitational potential* Φ such that

$$\vec{g} = -\nabla\Phi.$$

Gravitational Potential and Field Equations

If $\vec{g} = -\nabla\Phi$, then (up to an additive constant) the potential can be written as

$$\Phi(\vec{x}) = -G \int_{\mathbb{R}^3} \frac{\rho(\vec{x}')}{|\vec{x} - \vec{x}'|} d^3x' + \text{const.}$$

Poisson equation. The potential is sourced by the mass density:

$$\nabla^2\Phi = 4\pi G \rho.$$

Equivalent form (Gauss law for gravity). Using $\vec{g} = -\nabla\Phi$,

$$\nabla \cdot \vec{g} = -4\pi G \rho.$$

Instantaneous Interaction

In Newtonian gravity, changes in the mass distribution are transmitted instantaneously to all points in space. If the source of the field disappears ($\rho \rightarrow 0$), the gravitational field vanishes everywhere at the same time. This notion of instantaneous interaction conflicts with the relativistic principle that no physical influence can propagate faster than the speed of light.

Instantaneous Interaction (Action at a Distance)

Instantaneous Interaction

In Newtonian gravity, changes in the mass distribution are transmitted instantaneously to all points in space. If the source of the field disappears ($\rho \rightarrow 0$), the gravitational field vanishes everywhere at the same time. This notion of instantaneous interaction conflicts with the relativistic principle that no physical influence can propagate faster than the speed of light.

A question to think about

- If the Sun were suddenly removed, would Earth “notice” the change *immediately*?
- What does Special Relativity force us to conclude about how gravity should propagate?

Inertial vs. Gravitational Mass

Two notions of mass

- **Inertial mass** m_i : resistance to acceleration (appears in $\mathbf{F} = m_i \mathbf{a}$).

Inertial vs. Gravitational Mass

Two notions of mass

- **Inertial mass** m_i : resistance to acceleration (appears in $\mathbf{F} = m_i \mathbf{a}$).
- **Gravitational mass** m_g : “gravitational charge” (couples to the gravitational field).

Inertial vs. Gravitational Mass

Two notions of mass

- **Inertial mass** m_i : resistance to acceleration (appears in $\mathbf{F} = m_i \mathbf{a}$).
- **Gravitational mass** m_g : “gravitational charge” (couples to the gravitational field).

For a test body in a given gravitational field \mathbf{g} ,

$$\mathbf{F} = m_i \mathbf{a} = m_g \mathbf{g} \quad \Rightarrow \quad \mathbf{a} = \left(\frac{m_g}{m_i} \right) \mathbf{g}.$$

Experimentally, the equality $m_g = m_i$ holds to extremely high precision ($\sim 10^{-17}$ of order in magnitude), implying the universality of free fall.



Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their motion is independent of mass and internal composition.

Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their motion is independent of mass and internal composition.

Newtonian viewpoint

If $m_g = m_i$, then

$$\mathbf{a} = \mathbf{g},$$

so the trajectory depends only on the gravitational field, not on properties of the test body.

Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their motion is independent of mass and internal composition.

Newtonian viewpoint

If $m_g = m_i$, then

$$\mathbf{a} = \mathbf{g},$$

so the trajectory depends only on the gravitational field, not on properties of the test body.

Takeaway

WEP is the empirical clue that gravity is *geometric* (or at least universal).

This universality strongly suggests a geometric description.

Accelerated Frames and Gravity

This shows how an accelerated frame can reproduce the effect of a uniform gravitational field.

Accelerated Frames and Gravity

This shows how an accelerated frame can reproduce the effect of a uniform gravitational field.

Consider two reference frames:

- An inertial frame O .
- A frame O' accelerating with constant acceleration \vec{a} relative to O .

Their coordinates are related by

$$t' = t, \quad \vec{x}' = \vec{x} - \frac{1}{2} \vec{a} t^2.$$

Taking two time derivatives,

$$\frac{d^2 \vec{x}'}{dt'^2} = \frac{d^2 \vec{x}}{dt^2} - \vec{a}.$$

If the particle in O experiences a gravitational field \vec{g} ,

$$\frac{d^2 \vec{x}'}{dt'^2} = \vec{g} - \vec{a}.$$

Free-Falling Frames

From

$$\frac{d^2 \vec{x}'}{dt'^2} = \vec{g} - \vec{a},$$

we observe a key fact:

Free-falling frame

If the accelerated frame satisfies

$$\vec{a} = \vec{g},$$

then

$$\frac{d^2 \vec{x}'}{dt'^2} = 0.$$

- In a free-falling reference frame, particles move along straight lines with constant velocity.
- Gravitational effects can be locally eliminated (over sufficiently small regions of spacetime).

Thought experiment

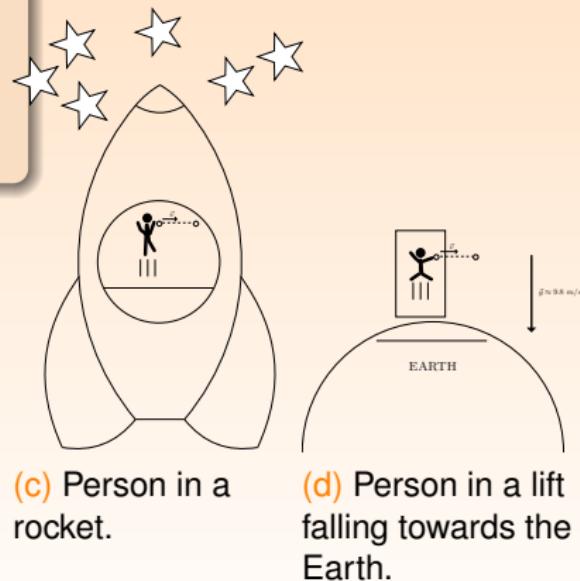
- A person inside an elevator falling freely toward Earth.
- A person inside a rocket in deep space, far from all masses.

Einstein Elevator: Physical Equivalence

Thought experiment

- A person inside an elevator falling freely toward Earth.
- A person inside a rocket in deep space, far from all masses.

- In both cases, objects float freely.
- A thrown ball follows a straight-line trajectory.
- No local experiment can distinguish the two situations.



Acceleration Mimics Gravity (The Other Direction)

Key idea

Gravity can be *simulated* by going to a uniformly accelerating frame.

“ Gravity and acceleration are operationally indistinguishable locally”.

Acceleration Mimics Gravity (The Other Direction)

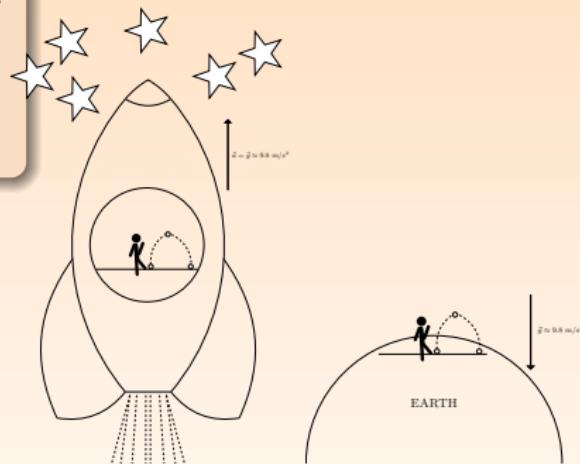
Key idea

Gravity can be *simulated* by going to a uniformly accelerating frame.

“ Gravity and acceleration are operationally indistinguishable locally”.

Consider a rocket far from all masses, so $\vec{g} = \vec{0}$. If the rocket accelerates with constant acceleration \vec{a} , the observed motion in the rocket frame satisfies

$$\frac{d^2 \vec{x}'}{dt'^2} = \vec{g} - \vec{a} = -\vec{a}.$$



(g) Person in an accelerating rocket.

(h) Person on the Earth.

- If $\vec{a} = \vec{g}_\oplus$, objects fall inside the rocket exactly as on Earth.

Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame cannot be distinguished from the behaviour of matter in a corresponding gravitational field.

Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame cannot be distinguished from the behaviour of matter in a corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a sufficiently small region, gravitational inhomogeneities can be neglected. Such a frame is therefore **locally inertial**.

Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame cannot be distinguished from the behaviour of matter in a corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a sufficiently small region, gravitational inhomogeneities can be neglected. Such a frame is therefore **locally inertial**.

- In local inertial frames, the laws of physics reduce to those of **Special Relativity** including all non-gravitational law of physics.

Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame cannot be distinguished from the behaviour of matter in a corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a sufficiently small region, gravitational inhomogeneities can be neglected. Such a frame is therefore **locally inertial**.

- In local inertial frames, the laws of physics reduce to those of **Special Relativity** including all non-gravitational law of physics.
- A test particle, neglecting other forces, is at rest or moves along a straight line with constant velocity.

A Physical Consequence of the Equivalence Principle

- In local inertial frames, Special Relativity holds.

A Physical Consequence of the Equivalence Principle

- In local inertial frames, Special Relativity holds.
- Therefore, light propagates along straight lines at constant speed.

A Physical Consequence of the Equivalence Principle

- In local inertial frames, Special Relativity holds.
- Therefore, light propagates along straight lines at constant speed.
- An observer accelerating relative to such a frame sees curved trajectories.

A Physical Consequence of the Equivalence Principle

- In local inertial frames, Special Relativity holds.
- Therefore, light propagates along straight lines at constant speed.
- An observer accelerating relative to such a frame sees curved trajectories.

Key consequence (qualitative)

Light must be deflected by a gravitational field.

This argument is purely local and qualitative. A quantitative description requires the spacetime geometry.

Why Newtonian Gravity Is Not Enough

Conceptual tension

In Newtonian gravity:

- gravity is described as a force acting on particles,

Why Newtonian Gravity Is Not Enough

Conceptual tension

In Newtonian gravity:

- gravity is described as a force acting on particles,
- but free-falling observers experience no gravitational force,

Why Newtonian Gravity Is Not Enough

Conceptual tension

In Newtonian gravity:

- gravity is described as a force acting on particles,
- but free-falling observers experience no gravitational force,
- and the notion of inertial motion depends on the chosen frame.

Why Newtonian Gravity Is Not Enough

Conceptual tension

In Newtonian gravity:

- gravity is described as a force acting on particles,
- but free-falling observers experience no gravitational force,
- and the notion of inertial motion depends on the chosen frame.

Key issue

Newtonian gravity cannot incorporate the equivalence principle in a fully frame-independent way.

From the Equivalence Principle to Geometry

- The equivalence principle implies that gravity can be locally removed by going to a freely falling frame.

From the Equivalence Principle to Geometry

- The equivalence principle implies that gravity can be locally removed by going to a freely falling frame.
- This is possible only *locally*, not globally.

From the Equivalence Principle to Geometry

- The equivalence principle implies that gravity can be locally removed by going to a freely falling frame.
- This is possible only *locally*, not globally.
- Different freely falling observers define different local inertial frames.

From the Equivalence Principle to Geometry

- The equivalence principle implies that gravity can be locally removed by going to a freely falling frame.
- This is possible only *locally*, not globally.
- Different freely falling observers define different local inertial frames.

Key implication

Gravity cannot be described by a single global force field. Instead, it must be encoded in the geometry of spacetime.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.
- These measurements must be independent of the chosen coordinates \Rightarrow **diffeomorphism invariance**

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.
- These measurements must be independent of the chosen coordinates \Rightarrow **diffeomorphism invariance**
- Therefore, geometry must be described in a *coordinate-invariant* way.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.
- These measurements must be independent of the chosen coordinates \Rightarrow **diffeomorphism invariance**
- Therefore, geometry must be described in a *coordinate-invariant* way.

Strategy

- Describe spacetime as a smooth manifold.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.
- These measurements must be independent of the chosen coordinates \Rightarrow **diffeomorphism invariance**
- Therefore, geometry must be described in a *coordinate-invariant* way.

Strategy

- Describe spacetime as a smooth manifold.
- Introduce geometric objects that transform covariantly.

Why Differential Geometry?

- Physical measurements involve clocks and rulers.
- Gravity affects how time intervals and spatial distances are measured.
- These measurements must be independent of the chosen coordinates \Rightarrow **diffeomorphism invariance**
- Therefore, geometry must be described in a *coordinate-invariant* way.

Strategy

- Describe spacetime as a smooth manifold.
- Introduce geometric objects that transform covariantly.
- Encode gravitational effects in the geometry itself.

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition

Intuitively, a manifold is a space that looks locally like \mathbb{R}^n , but may have a non-trivial global structure.

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition

Intuitively, a manifold is a space that looks locally like \mathbb{R}^n , but may have a non-trivial global structure.

A manifold M is a set of points such that:

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition

Intuitively, a manifold is a space that looks locally like \mathbb{R}^n , but may have a non-trivial global structure.

A manifold M is a set of points such that:

- 1 M can be mapped into \mathbb{R}^n , with $n \in \mathbb{N}$, where n is called the **dimension** of the manifold;

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition

Intuitively, a manifold is a space that looks locally like \mathbb{R}^n , but may have a non-trivial global structure.

A manifold M is a set of points such that:

- 1 M can be mapped into \mathbb{R}^n , with $n \in \mathbb{N}$, where n is called the **dimension** of the manifold;
- 2 the mapping is **one-to-one**;

Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition

Intuitively, a manifold is a space that looks locally like \mathbb{R}^n , but may have a non-trivial global structure.

A manifold M is a set of points such that:

- 1 M can be mapped into \mathbb{R}^n , with $n \in \mathbb{N}$, where n is called the **dimension** of the manifold;
- 2 the mapping is **one-to-one**;
- 3 if two such mappings overlap, they are related by **differentiable coordinate transformations**.

Example: The Circle S^1

- Consider the circle S^1 .

Example: The Circle S^1

- Consider the circle S^1 .
- A natural coordinate is an angle $\phi \in (-\pi, \pi]$.

Example: The Circle S^1

- Consider the circle S^1 .
- A natural coordinate is an angle $\phi \in (-\pi, \pi]$.
- The points $\phi = \pi$ and $\phi = -\pi$ represent the same point.

Example: The Circle S^1

- Consider the circle S^1 .
- A natural coordinate is an angle $\phi \in (-\pi, \pi]$.
- The points $\phi = \pi$ and $\phi = -\pi$ represent the same point.

Consequence

The coordinate ϕ is not one-to-one globally. At least two coordinate patches are needed to cover the circle.

Example: The Sphere S^2

- Spherical coordinates (θ, ϕ) describe the sphere locally.

Example: The Sphere S^2

- Spherical coordinates (θ, ϕ) describe the sphere locally.
- They break down at the poles and are discontinuous at $\phi = \pm\pi$.

Example: The Sphere S^2

- Spherical coordinates (θ, ϕ) describe the sphere locally.
- They break down at the poles and are discontinuous at $\phi = \pm\pi$.

Conclusion

No single coordinate system covers the entire sphere. Multiple overlapping charts are required.

Key transition

To describe physics on manifolds, we need a precise language to represent geometric objects and their components.
This language is provided by tensor calculus.

Indices and Components

- In differential geometry, the position of indices is essential.

Indices and Components

- In differential geometry, the position of indices is essential.
- Objects with upper indices differ from those with lower indices.

Indices and Components

- In differential geometry, the position of indices is essential.
- Objects with upper indices differ from those with lower indices.
- This distinction is not notational: it carries geometric meaning.

Indices and Components

- In differential geometry, the position of indices is essential.
- Objects with upper indices differ from those with lower indices.
- This distinction is not notational: it carries geometric meaning.
- This distinction will become essential once we introduce the metric and covariant derivatives.

Einstein Summation Convention

Convention

Whenever an index appears once upstairs and once downstairs, a summation over that index is implied.

Einstein Summation Convention

Convention

Whenever an index appears once upstairs and once downstairs, a summation over that index is implied.

Given objects

$$A^a = (A^1, \dots, A^n), \quad B_a = (B_1, \dots, B_n),$$

one writes

$$A^a B_a \equiv \sum_{a=1}^n A^a B_a = A^1 B_1 + A^2 B_2 + \dots + A^n B_n.$$

Einstein Summation Convention

Convention

Whenever an index appears once upstairs and once downstairs, a summation over that index is implied.

Given objects

$$A^a = (A^1, \dots, A^n), \quad B_a = (B_1, \dots, B_n),$$

one writes

$$A^a B_a \equiv \sum_{a=1}^n A^a B_a = A^1 B_1 + A^2 B_2 + \dots + A^n B_n.$$

- The summation symbol is omitted.

Einstein Summation Convention

Convention

Whenever an index appears once upstairs and once downstairs, a summation over that index is implied.

Given objects

$$A^a = (A^1, \dots, A^n), \quad B_a = (B_1, \dots, B_n),$$

one writes

$$A^a B_a \equiv \sum_{a=1}^n A^a B_a = A^1 B_1 + A^2 B_2 + \dots + A^n B_n.$$

- The summation symbol is omitted.
- Repeated indices are summed.

Einstein Summation Convention

Convention

Whenever an index appears once upstairs and once downstairs, a summation over that index is implied.

Given objects

$$A^a = (A^1, \dots, A^n), \quad B_a = (B_1, \dots, B_n),$$

one writes

$$A^a B_a \equiv \sum_{a=1}^n A^a B_a = A^1 B_1 + A^2 B_2 + \dots + A^n B_n.$$

- The summation symbol is omitted.
- Repeated indices are summed.
- Free indices must match on both sides of an equation.

Free and Dummy Indices

- A **dummy index** is summed over and can be renamed:

$$A^a B_a = A^b B_b = A^\mu B_\mu.$$

Free and Dummy Indices

- A **dummy index** is summed over and can be renamed:

$$A^a B_a = A^b B_b = A^\mu B_\mu.$$

- A **free index** labels components and must match on both sides of an equation.

Free and Dummy Indices

- A **dummy index** is summed over and can be renamed:

$$A^a B_a = A^b B_b = A^\mu B_\mu.$$

- A **free index** labels components and must match on both sides of an equation.

Rule

Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

Free and Dummy Indices

- A **dummy index** is summed over and can be renamed:

$$A^a B_a = A^b B_b = A^\mu B_\mu.$$

- A **free index** labels components and must match on both sides of an equation.

Rule

Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

$$w^a = T^a{}_b v^b$$

Scalar Fields (no indices)

Definition

A **scalar field** is a function that assigns a real number to each point of the manifold M :

$$f : M \longrightarrow \mathbb{R}.$$

Scalar Fields (no indices)

Definition

A **scalar field** is a function that assigns a real number to each point of the manifold M :

$$f : M \longrightarrow \mathbb{R}.$$

- Scalars do **not** transform under coordinate changes (invariant).
- Their value at a point is coordinate-independent.

Vectors (Contravariant Vectors) - one index up

Definition

A **contravariant vector** is an object with one upper index whose components transform as

$$V'^a = \frac{\partial X'^a}{\partial X^b} V^b$$

under a coordinate transformation $X^a \rightarrow X'^a(X)$.

Vectors (Contravariant Vectors) - one index up

Definition

A **contravariant vector** is an object with one upper index whose components transform as

$$V'^a = \frac{\partial X'^a}{\partial X^b} V^b$$

under a coordinate transformation $X^a \rightarrow X'^a(X)$.

- The transformation law defines the geometric nature of a vector.
- Vectors transform with the Jacobian of the coordinate map.

Definition

A **covariant vector** (or **1-form**) is an object with one lower index that transforms as

$$W'_b = \frac{\partial X^c}{\partial X'^b} W_c.$$

Definition

A **covariant vector** (or **1-form**) is an object with one lower index that transforms as

$$W'_b = \frac{\partial X^c}{\partial X'^b} W_c.$$

- Covariant vectors transform with the inverse Jacobian.
- They are dual to contravariant vectors.

Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and q lower indices. Its components transform as

$$T'^{a_1 \dots a_p}_{ b_1 \dots b_q} = \frac{\partial X'^{a_1}}{\partial X^{c_1}} \dots \frac{\partial X'^{a_p}}{\partial X^{c_p}} \frac{\partial X^{d_1}}{\partial X'^{b_1}} \dots \frac{\partial X^{d_q}}{\partial X'^{b_q}} T^{c_1 \dots c_p}_{ d_1 \dots d_q}.$$

Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and q lower indices. Its components transform as

$$T'^{a_1 \dots a_p}_{ b_1 \dots b_q} = \frac{\partial X'^{a_1}}{\partial X^{c_1}} \dots \frac{\partial X'^{a_p}}{\partial X^{c_p}} \frac{\partial X^{d_1}}{\partial X'^{b_1}} \dots \frac{\partial X^{d_q}}{\partial X'^{b_q}} T^{c_1 \dots c_p}_{ d_1 \dots d_q}.$$

- Scalars: $(0, 0)$ Contravariant Vectors: $(1, 0)$ Covariant Vectors: $(0, 1)$
- The rank of a tensor is $p + q$.

Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and q lower indices. Its components transform as

$$T'^{a_1 \dots a_p}_{ b_1 \dots b_q} = \frac{\partial X'^{a_1}}{\partial X^{c_1}} \dots \frac{\partial X'^{a_p}}{\partial X^{c_p}} \frac{\partial X^{d_1}}{\partial X'^{b_1}} \dots \frac{\partial X^{d_q}}{\partial X'^{b_q}} T^{c_1 \dots c_p}_{ d_1 \dots d_q}.$$

- Scalars: $(0, 0)$ Contravariant Vectors: $(1, 0)$ Covariant Vectors: $(0, 1)$
- The rank of a tensor is $p + q$.
- If a tensor is zero, then it will be zero in all coordinate systems as well.

Addition

Two tensors can be added only if they have the same type and index structure:

$$R^a{}_b{}^c + S^a{}_b{}^c = T^a{}_b{}^c, \quad A^a + B_a \text{ is not defined.}$$

Tensor Algebra: Basic Operations

Addition

Two tensors can be added only if they have the same type and index structure:

$$R^a{}_b{}^c + S^a{}_b{}^c = T^a{}_b{}^c, \quad A^a + B_a \text{ is not defined.}$$

Tensor Product

Given tensors of type (p, q) and (r, s) , their tensor product is a tensor of type $(p + r, q + s)$:

$$M^a{}_b = V^a W_b.$$

Contraction and Trace

Contraction

Given a tensor of type (p, q) , one may contract one upper and one lower index, producing a tensor of type $(p - 1, q - 1)$:

$$T^a{}_a \equiv \sum_a T^a{}_a.$$

Contraction and Trace

Contraction

Given a tensor of type (p, q) , one may contract one upper and one lower index, producing a tensor of type $(p - 1, q - 1)$:

$$T^a{}_a \equiv \sum_a T^a{}_a.$$

Trace

For a rank-2 tensor $M^a{}_b$, the trace is defined as

$$\text{tr } M = M^a{}_a.$$

Contraction and Trace

Contraction

Given a tensor of type (p, q) , one may contract one upper and one lower index, producing a tensor of type $(p - 1, q - 1)$:

$$T^a{}_a \equiv \sum_a T^a{}_a.$$

Trace

For a rank-2 tensor $M^a{}_b$, the trace is defined as

$$\text{tr } M = M^a{}_a.$$

Index check

In any tensor equation, the free indices on both sides must match exactly.

Total differential

Definition

Let f be a scalar function of local coordinates (X^1, \dots, X^n) :

$$f = f(X^1, \dots, X^n).$$

Its **total differential** is

$$df := f_{,a} dX^a = \sum_{a=1}^n \frac{\partial f}{\partial X^a} dX^a.$$

- $f_{,a} \equiv \partial f / \partial X^a$ (comma notation).
- Einstein convention: repeated upper/lower indices are summed.
- df is a covector (1-form): it acts linearly on displacements dX^a .

Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their distance?

Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their distance?

- In flat Euclidean space, distance is well defined.

Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their distance?

- In flat Euclidean space, distance is well defined.
- On a general manifold, distance must be defined *locally*.

Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their distance?

- In flat Euclidean space, distance is well defined.
- On a general manifold, distance must be defined *locally*.
- This leads naturally to the concept of a **metric tensor** $g_{\mu\nu}$.

Euclidean distance in \mathbb{R}^2

In two-dimensional Euclidean space with Cartesian coordinates (x, y) , the distance between two points is given by

$$s^2 = x^2 + y^2.$$

Euclidean distance in \mathbb{R}^2

In two-dimensional Euclidean space with Cartesian coordinates (x, y) , the distance between two points is given by

$$s^2 = x^2 + y^2.$$

For two nearby points separated by $(\Delta x, \Delta y)$,

$$\Delta s^2 = (\Delta x)^2 + (\Delta y)^2.$$

Euclidean distance in \mathbb{R}^2

In two-dimensional Euclidean space with Cartesian coordinates (x, y) , the distance between two points is given by

$$s^2 = x^2 + y^2.$$

For two nearby points separated by $(\Delta x, \Delta y)$,

$$\Delta s^2 = (\Delta x)^2 + (\Delta y)^2.$$

Taking the infinitesimal limit, we find the so-called **line-element**

$$ds^2 = dx^2 + dy^2.$$

Line-element

Distance is encoded in a quadratic form built from coordinate differentials.

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

Let us verify this step by step with indices from $i = 1, 2$:

$$\begin{aligned} ds^2 &= \delta_{ab} dX^a dX^b \\ &= \delta_{1b} dX^1 dX^b + \delta_{2b} dX^2 dX^b \end{aligned}$$

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

Let us verify this step by step with indices from $i = 1, 2$:

$$\begin{aligned} ds^2 &= \delta_{ab} dX^a dX^b \\ &= \delta_{1b} dX^1 dX^b + \delta_{2b} dX^2 dX^b \\ &= (\delta_{11} dX^1 dX^1 + \delta_{12} dX^1 dX^2) + (\delta_{21} dX^2 dX^1 + \delta_{22} dX^2 dX^2) \end{aligned}$$

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

Let us verify this step by step with indices from $i = 1, 2$:

$$\begin{aligned} ds^2 &= \delta_{ab} dX^a dX^b \\ &= \delta_{1b} dX^1 dX^b + \delta_{2b} dX^2 dX^b \\ &= (\delta_{11} dX^1 dX^1 + \delta_{12} dX^1 dX^2) + (\delta_{21} dX^2 dX^1 + \delta_{22} dX^2 dX^2) \\ &= \delta_{11} dx dx + \delta_{22} dy dy = \end{aligned}$$

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

Let us verify this step by step with indices from $i = 1, 2$:

$$\begin{aligned} ds^2 &= \delta_{ab} dX^a dX^b \\ &= \delta_{1b} dX^1 dX^b + \delta_{2b} dX^2 dX^b \\ &= (\delta_{11} dX^1 dX^1 + \delta_{12} dX^1 dX^2) + (\delta_{21} dX^2 dX^1 + \delta_{22} dX^2 dX^2) \\ &= \delta_{11} dx dx + \delta_{22} dy dy = dx^2 + dy^2. \end{aligned}$$

From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

$$ds^2 = dx^2 + dy^2$$

can be written in index notation as

$$ds^2 = \delta_{ab} dX^a dX^b, \quad a, b = 1, 2,$$

where $\delta_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1)$ and $dX^a = (dx, dy)$.

Let us verify this step by step with indices from $i = 1, 2$:

$$\begin{aligned} ds^2 &= \delta_{ab} dX^a dX^b \\ &= \delta_{1b} dX^1 dX^b + \delta_{2b} dX^2 dX^b \\ &= (\delta_{11} dX^1 dX^1 + \delta_{12} dX^1 dX^2) + (\delta_{21} dX^2 dX^1 + \delta_{22} dX^2 dX^2) \\ &= \delta_{11} dx dx + \delta_{22} dy dy = dx^2 + dy^2. \end{aligned}$$

This suggests the generalization:

- Replace δ_{ab} by a position-dependent object $g_{ab}(X)$.
- Require ds^2 to be invariant under coordinate transformations.

Definition of a metric

Metric tensor

Let X^a and $X^a + dX^a$ be two infinitesimally separated points. A **metric** is a symmetric rank-2 tensor $g_{ab}(X)$ such that

$$ds^2 = g_{ab}(X) dX^a dX^b.$$

ds^2 is called the line-element but sometimes people just call it the metric as well.

Definition of a metric

Metric tensor

Let X^a and $X^a + dX^a$ be two infinitesimally separated points. A **metric** is a symmetric rank-2 tensor $g_{ab}(X)$ such that

$$ds^2 = g_{ab}(X) dX^a dX^b.$$

ds^2 is called the line-element but sometimes people just call it the metric as well.

- $g_{ab}(X)$ is an arbitrary function of the coordinates.

Definition of a metric

Metric tensor

Let X^a and $X^a + dX^a$ be two infinitesimally separated points. A **metric** is a symmetric rank-2 tensor $g_{ab}(X)$ such that

$$ds^2 = g_{ab}(X) dX^a dX^b.$$

ds^2 is called the line-element but sometimes people just call it the metric as well.

- $g_{ab}(X)$ is an arbitrary function of the coordinates.
- It is assumed to be non-degenerate, so an inverse g^{ab} exists:

$$g_{ab}g^{bc} = \delta_a{}^c.$$

Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can represent the same line-element

Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can represent the same line-element Consider $M = \mathbb{E}^2$ (2 dimensions) with Cartesian coordinates (x, y) .

$$ds^2 = dx^2 + dy^2.$$

Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can represent the same line-element Consider $M = \mathbb{E}^2$ (2 dimensions) with Cartesian coordinates (x, y) .

$$ds^2 = dx^2 + dy^2.$$

The metric tensor is

$$g_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \text{diag}(1, 1).$$

- Constant metric
- Flat geometry

Change of coordinates: polar coordinates

Introduce polar coordinates (r, φ) via

$$x = r \cos \varphi, \quad y = r \sin \varphi.$$

Change of coordinates: polar coordinates

Introduce polar coordinates (r, φ) via

$$x = r \cos \varphi, \quad y = r \sin \varphi.$$

Differentials:

$$dx = \cos \varphi dr - r \sin \varphi d\varphi, \quad dy = \sin \varphi dr + r \cos \varphi d\varphi.$$

Line element in polar coordinates

Squaring and adding,

$$dx^2 + dy^2 = dr^2 + r^2 d\varphi^2.$$

Line element in polar coordinates

Squaring and adding,

$$dx^2 + dy^2 = dr^2 + r^2 d\varphi^2.$$

Thus,

$$ds^2 = dr^2 + r^2 d\varphi^2.$$

Line element in polar coordinates

Squaring and adding,

$$dx^2 + dy^2 = dr^2 + r^2 d\varphi^2.$$

Thus,

$$ds^2 = dr^2 + r^2 d\varphi^2.$$

The metric components are

$$g_{ab} = \begin{pmatrix} 1 & 0 \\ 0 & r^2 \end{pmatrix}.$$

Key lesson

- The geometry has not changed: the space is still flat.

Key lesson

- The geometry has not changed: the space is still flat.
- The metric components changed because the coordinates changed.

Key lesson

- The geometry has not changed: the space is still flat.
- The metric components changed because the coordinates changed.
- Physical distances are coordinate-invariant, but g_{ab} is not.

Key lesson

- The geometry has not changed: the space is still flat.
- The metric components changed because the coordinates changed.
- Physical distances are coordinate-invariant, but g_{ab} is not.

Why this matters

In gravity, we will interpret nontrivial metric components as encoding gravitational effects.

Properties of the metric

- g_{ab} is symmetric:

$$g_{ab} = g_{ba}.$$

Properties of the metric

- g_{ab} is symmetric:

$$g_{ab} = g_{ba}.$$

- In n dimensions, it has $n(n + 1)/2$ independent components. In $n = 4$ contains 10 ind. components.

Properties of the metric

- g_{ab} is symmetric:

$$g_{ab} = g_{ba}.$$

- In n dimensions, it has $n(n + 1)/2$ independent components. In $n = 4$ contains 10 ind. components.

Properties of the metric

- g_{ab} is symmetric:

$$g_{ab} = g_{ba}.$$

- In n dimensions, it has $n(n + 1)/2$ independent components. In $n = 4$ contains 10 ind. components.
- In a coordinate basis, the metric tensor in 4-dimensions can be represented as a symmetric 4×4 matrix:

$$g_{ab} = \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{01} & g_{11} & g_{12} & g_{13} \\ g_{02} & g_{12} & g_{22} & g_{23} \\ g_{03} & g_{13} & g_{23} & g_{33} \end{pmatrix}.$$

Properties of the metric

- g_{ab} is symmetric:

$$g_{ab} = g_{ba}.$$

- In n dimensions, it has $n(n + 1)/2$ independent components. In $n = 4$ contains 10 ind. components.
- In a coordinate basis, the metric tensor in 4-dimensions can be represented as a symmetric 4×4 matrix:

$$g_{ab} = \begin{pmatrix} g_{00} & g_{01} & g_{02} & g_{03} \\ g_{01} & g_{11} & g_{12} & g_{13} \\ g_{02} & g_{12} & g_{22} & g_{23} \\ g_{03} & g_{13} & g_{23} & g_{33} \end{pmatrix}.$$

Physical relevance

In metric theories of gravity, all geometric and dynamical information ultimately derives from g_{ab} .

Signature of the Metric

Statement

At any point $p \in M$, the metric tensor g_{ab} can be diagonalised. In a suitable basis, its diagonal entries can be chosen to be ± 1 .

Signature of the Metric

Statement

At any point $p \in M$, the metric tensor g_{ab} can be diagonalised. In a suitable basis, its diagonal entries can be chosen to be ± 1 .

- The number of positive and negative eigenvalues is invariant.

Signature of the Metric

Statement

At any point $p \in M$, the metric tensor g_{ab} can be diagonalised. In a suitable basis, its diagonal entries can be chosen to be ± 1 .

- The number of positive and negative eigenvalues is invariant.
- This invariant pair defines the **signature** of the metric.

Signature of the Metric

Statement

At any point $p \in M$, the metric tensor g_{ab} can be diagonalised. In a suitable basis, its diagonal entries can be chosen to be ± 1 .

- The number of positive and negative eigenvalues is invariant.
- This invariant pair defines the **signature** of the metric.

Definition

The signature of g_{ab} is the number of (+) and (-) signs in its diagonalised form.

Lorentzian Metrics and Minkowski Spacetime

Example: Minkowski spacetime

In flat spacetime, the line element is

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.$$

The corresponding metric has diagonal form

$$g_{ab} = \text{diag}(-1, 1, 1, 1),$$

with one sign different from the others.

Lorentzian Metrics and Minkowski Spacetime

Example: Minkowski spacetime

In flat spacetime, the line element is

$$ds^2 = -dt^2 + dx^2 + dy^2 + dz^2.$$

The corresponding metric has diagonal form

$$g_{ab} = \text{diag}(-1, 1, 1, 1),$$

with one sign different from the others.

Lorentzian metric

A metric with signature $(-, +, \dots, +)$ or $(+, -, \dots, -)$ is called **Lorentzian**. A manifold equipped with such a metric is called a **Lorentzian manifold**.

Metric: Inner Products, Norms and Angles

Given two vectors A^i and B^i at the same point of the manifold, the metric defines their inner product.

Inner product and norm

$$A \cdot B := g_{ij} A^i B^j, \quad |A|^2 := g_{ij} A^i A^j.$$

Metric: Inner Products, Norms and Angles

Given two vectors A^i and B^i at the same point of the manifold, the metric defines their inner product.

Inner product and norm

$$A \cdot B := g_{ij} A^i B^j, \quad |A|^2 := g_{ij} A^i A^j.$$

Angle between vectors

$$\cos \alpha_{A,B} = \frac{A \cdot B}{|A| |B|}.$$

Metric: Inner Products, Norms and Angles

Given two vectors A^i and B^i at the same point of the manifold, the metric defines their inner product.

Inner product and norm

$$A \cdot B := g_{ij} A^i B^j, \quad |A|^2 := g_{ij} A^i A^j.$$

Angle between vectors

$$\cos \alpha_{A,B} = \frac{A \cdot B}{|A| |B|}.$$

- These notions generalize familiar Euclidean concepts.
- The metric fully encodes the local geometry.

Inverse Metric and Index Manipulation

For a non-degenerate metric,

$$\det(g_{ij}) \neq 0,$$

there exists an inverse metric g^{ij} defined by

$$g^{ij} g_{jk} = \delta^i{}_k.$$

Inverse Metric and Index Manipulation

For a non-degenerate metric,

$$\det(g_{ij}) \neq 0,$$

there exists an inverse metric g^{ij} defined by

$$g^{ij} g_{jk} = \delta^i{}_k.$$

Raising and lowering indices

Given a contravariant vector A^i , define

$$A_i := g_{ij} A^j, \quad A^i := g^{ij} A_j.$$

Inverse Metric and Index Manipulation

For a non-degenerate metric,

$$\det(g_{ij}) \neq 0,$$

there exists an inverse metric g^{ij} defined by

$$g^{ij} g_{jk} = \delta^i{}_k.$$

Raising and lowering indices

Given a contravariant vector A^i , define

$$A_i := g_{ij} A^j, \quad A^i := g^{ij} A_j.$$

Key point

The metric establishes a one-to-one correspondence between vectors and covectors. Only the *index position* matters.

Why A^i and A_i are different objects

- A quantity with an upper index, A^i , is a *contravariant vector*, an element of the tangent space V .

Why A^i and A_i are different objects

- A quantity with an upper index, A^i , is a *contravariant vector*, an element of the tangent space V .
- A quantity with a lower index, A_i , is a *covector* (one-form), an element of the dual space $V^* \otimes$.

Why A^i and A_i are different objects

- A quantity with an upper index, A^i , is a *contravariant vector*, an element of the tangent space V .
- A quantity with a lower index, A_i , is a *covector* (one-form), an element of the dual space $V^* \otimes$.
- Even though they have the same number of components, vectors and covectors are *not the same mathematical object*.

Why A^i and A_i are different objects

- A quantity with an upper index, A^i , is a *contravariant vector*, an element of the tangent space V .
- A quantity with a lower index, A_i , is a *covector* (one-form), an element of the dual space $V^* \otimes$.
- Even though they have the same number of components, vectors and covectors are *not the same mathematical object*.

Why do we need a metric?

There is no canonical map between vectors and covectors. The metric g_{ij} provides an isomorphism:

$$A_i = g_{ij} A^j, \quad A^i = g^{ij} A_j.$$

Why A^i and A_i are different objects

- A quantity with an upper index, A^i , is a *contravariant vector*, an element of the tangent space V .
- A quantity with a lower index, A_i , is a *covector* (one-form), an element of the dual space $V^* \otimes$.
- Even though they have the same number of components, vectors and covectors are *not the same mathematical object*.

Why do we need a metric?

There is no canonical map between vectors and covectors. The metric g_{ij} provides an isomorphism:

$$A_i = g_{ij} A^j, \quad A^i = g^{ij} A_j.$$

Key idea

The position of an index carries geometric meaning. Raising and lowering indices is only possible once a metric is specified.

Rank-2 tensors and index positions

- A rank-2 tensor may have different index structures:

$$T^{ij}, \quad T_{ij}, \quad T^i{}_j.$$

Rank-2 tensors and index positions

- A rank-2 tensor may have different index structures:

$$T^{ij}, \quad T_{ij}, \quad T^i{}_j.$$

- These objects are *not equivalent*: they belong to different tensor product spaces (e.g. $V \otimes V$, $V^* \otimes V^*$, $V \otimes V^*$).

Rank-2 tensors and index positions

- A rank-2 tensor may have different index structures:

$$T^{ij}, \quad T_{ij}, \quad T^i{}_j.$$

- These objects are *not equivalent*: they belong to different tensor product spaces (e.g. $V \otimes V$, $V^* \otimes V^*$, $V \otimes V^*$).
- The position of each index determines how the tensor transforms under coordinate changes.

Rank-2 tensors and index positions

- A rank-2 tensor may have different index structures:

$$T^{ij}, \quad T_{ij}, \quad T^i{}_j.$$

- These objects are *not equivalent*: they belong to different tensor product spaces (e.g. $V \otimes V$, $V^* \otimes V^*$, $V \otimes V^*$).
- The position of each index determines how the tensor transforms under coordinate changes.

Lowering indices with the metric

Given a contravariant rank-2 tensor T^{kl} , define

$$T_{ij} := g_{ik} g_{jl} T^{kl}.$$

The metric maps $V \otimes V$ into $V^* \otimes V^*$.

Rank-2 tensors and index positions

Raising indices with the inverse metric

Conversely, given a covariant rank-2 tensor T_{kl} , define

$$T^{ij} := g^{ik} g^{jl} T_{kl}.$$

This requires the inverse metric g^{ij} .

Rank-2 tensors and index positions

Raising indices with the inverse metric

Conversely, given a covariant rank-2 tensor T_{kl} , define

$$T^{ij} := g^{ik} g^{jl} T_{kl}.$$

This requires the inverse metric g^{ij} .

Note: Writing T_{ij} as a matrix is just a convenient way of listing components.

The tensor itself is defined by how its indices transform

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Lower both indices by

$$T_{ij} := g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\}.$$

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Lower both indices by

$$T_{ij} := g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\}.$$

T_{rr} component:

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Lower both indices by

$$T_{ij} := g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\}.$$

T_{rr} component:

$$T_{rr} = g_{rk} g_{rl} T^{kl}$$

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Lower both indices by

$$T_{ij} := g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\}.$$

T_{rr} component:

$$\begin{aligned} T_{rr} &= g_{rk} g_{rl} T^{kl} \\ &= g_{rr} g_{rr} T^{rr} + g_{rr} g_{r\varphi} T^{r\varphi} + g_{r\varphi} g_{rr} T^{\varphi r} + g_{r\varphi} g_{r\varphi} T^{\varphi\varphi} \end{aligned}$$

Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (r, φ) ,

$$ds^2 = dr^2 + r^2 d\varphi^2, \quad g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Consider a contravariant rank-2 tensor

$$T^{ij} = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix} \iff \begin{cases} T^{rr} = 2, \\ T^{r\varphi} = 3, \\ T^{\varphi r} = 4, \\ T^{\varphi\varphi} = 5. \end{cases}$$

Lower both indices by

$$T_{ij} := g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\}.$$

T_{rr} component:

$$\begin{aligned} T_{rr} &= g_{rk} g_{rl} T^{kl} \\ &= g_{rr} g_{rr} T^{rr} + g_{rr} g_{r\varphi} T^{r\varphi} + g_{r\varphi} g_{rr} T^{\varphi r} + g_{r\varphi} g_{r\varphi} T^{\varphi\varphi} \\ &= g_{rr} g_{rr} T^{rr} = 2. \end{aligned}$$

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl}$$

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi}$$

Component $T_{\varphi r}$:

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

Component $T_{\varphi\varphi}$:

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl}$$

Component $T_{\varphi\varphi}$:

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl} = g_{\varphi\varphi} g_{rr} T^{\varphi r}$$

Component $T_{\varphi\varphi}$:

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl} = g_{\varphi\varphi} g_{rr} T^{\varphi r} = 4r^2.$$

Component $T_{\varphi\varphi}$:

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl} = g_{\varphi\varphi} g_{rr} T^{\varphi r} = 4r^2.$$

Component $T_{\varphi\varphi}$:

$$T_{\varphi\varphi} = g_{\varphi k} g_{\varphi l} T^{kl}$$

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl} = g_{\varphi\varphi} g_{rr} T^{\varphi r} = 4r^2.$$

Component $T_{\varphi\varphi}$:

$$T_{\varphi\varphi} = g_{\varphi k} g_{\varphi l} T^{kl} = g_{\varphi\varphi} g_{\varphi\varphi} T^{\varphi\varphi}$$

Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

$$T_{ij} = g_{ik} g_{jl} T^{kl}, \quad k, l \in \{r, \varphi\},$$

and the metric components

$$g_{rr} = 1, \quad g_{\varphi\varphi} = r^2, \quad g_{r\varphi} = g_{\varphi r} = 0.$$

Component $T_{r\varphi}$:

$$T_{r\varphi} = g_{rk} g_{\varphi l} T^{kl} = g_{rr} g_{\varphi\varphi} T^{r\varphi} = 3r^2.$$

Component $T_{\varphi r}$:

$$T_{\varphi r} = g_{\varphi k} g_{rl} T^{kl} = g_{\varphi\varphi} g_{rr} T^{\varphi r} = 4r^2.$$

Component $T_{\varphi\varphi}$:

$$T_{\varphi\varphi} = g_{\varphi k} g_{\varphi l} T^{kl} = g_{\varphi\varphi} g_{\varphi\varphi} T^{\varphi\varphi} = 5r^4.$$

Metric: Length of a Curve

Given a metric tensor g_{ij} on a manifold M , the length of a curve $C : x^i(\lambda)$, with $\lambda \in [\lambda_i, \lambda_f]$, is defined as
(Recall that $ds^2 = g_{ij}dx^i dx^j$)

Definition

$$L = \int_{\lambda_i}^{\lambda_f} ds = \int_{\lambda_i}^{\lambda_f} \sqrt{g_{ij}(x(\lambda)) \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}} d\lambda.$$

Metric: Length of a Curve

Given a metric tensor g_{ij} on a manifold M , the length of a curve $C : x^i(\lambda)$, with $\lambda \in [\lambda_i, \lambda_f]$, is defined as
(Recall that $ds^2 = g_{ij}dx^i dx^j$)

Definition

$$L = \int_{\lambda_i}^{\lambda_f} ds = \int_{\lambda_i}^{\lambda_f} \sqrt{g_{ij}(x(\lambda)) \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}} d\lambda.$$

- This definition is coordinate invariant.

Metric: Length of a Curve

Given a metric tensor g_{ij} on a manifold M , the length of a curve $C : x^i(\lambda)$, with $\lambda \in [\lambda_i, \lambda_f]$, is defined as
(Recall that $ds^2 = g_{ij}dx^i dx^j$)

Definition

$$L = \int_{\lambda_i}^{\lambda_f} ds = \int_{\lambda_i}^{\lambda_f} \sqrt{g_{ij}(x(\lambda)) \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}} d\lambda.$$

- This definition is coordinate invariant.
- It reduces to the usual arc length in Euclidean space.

Metric: Length of a Curve

Given a metric tensor g_{ij} on a manifold M , the length of a curve $C : x^i(\lambda)$, with $\lambda \in [\lambda_i, \lambda_f]$, is defined as
(Recall that $ds^2 = g_{ij}dx^i dx^j$)

Definition

$$L = \int_{\lambda_i}^{\lambda_f} ds = \int_{\lambda_i}^{\lambda_f} \sqrt{g_{ij}(x(\lambda)) \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}} d\lambda.$$

- This definition is coordinate invariant.
- It reduces to the usual arc length in Euclidean space.
- The metric determines how distances are measured locally.

Geodesics: Extremal Length

Consider a manifold (M, g) endowed with a metric tensor g_{ij} . Let $P, Q \in M$.

Definition

A **geodesic** is a curve $\gamma : \lambda \mapsto x^i(\lambda)$ joining P and Q whose length

$$L[\gamma] = \int_{\lambda_i}^{\lambda_f} \sqrt{g_{ij}(x(\lambda)) \frac{dx^i}{d\lambda} \frac{dx^j}{d\lambda}} d\lambda$$

is extremal (typically minimal).

Geodesic Equation

Euler–Lagrange result

Applying the Euler–Lagrange equations to the length functional yields*

$$\frac{d^2 x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda} \frac{dx^k}{d\lambda} = f(\lambda) \frac{dx^i}{d\lambda}.$$

Geodesic Equation

Euler–Lagrange result

Applying the Euler–Lagrange equations to the length functional yields*

$$\frac{d^2 x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda} \frac{dx^k}{d\lambda} = f(\lambda) \frac{dx^i}{d\lambda}.$$

- The function $f(\lambda)$ reflects reparametrisation freedom.

Geodesic Equation

Euler–Lagrange result

Applying the Euler–Lagrange equations to the length functional yields*

$$\frac{d^2 x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda} \frac{dx^k}{d\lambda} = f(\lambda) \frac{dx^i}{d\lambda}.$$

- The function $f(\lambda)$ reflects reparametrisation freedom.
- This equation determines free motion once the metric is specified.

Geodesic Equation

Euler–Lagrange result

Applying the Euler–Lagrange equations to the length functional yields*

$$\frac{d^2 x^i}{d\lambda^2} + \Gamma^i_{jk} \frac{dx^j}{d\lambda} \frac{dx^k}{d\lambda} = f(\lambda) \frac{dx^i}{d\lambda}.$$

- The function $f(\lambda)$ reflects reparametrisation freedom.
- This equation determines free motion once the metric is specified.
- Particles in GR will follow this equation! (the shortest path)

Christoffel Symbols and Canonical Form

Christoffel symbols

The coefficients Γ^i_{jk} are defined by

$$\Gamma^i_{jk} = \frac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{jl} - \partial_l g_{jk}).$$

Christoffel Symbols and Canonical Form

Christoffel symbols

The coefficients Γ^i_{jk} are defined by

$$\Gamma^i_{jk} = \frac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{jl} - \partial_l g_{jk}).$$

Affine parametrisation

Choosing an affine parameter (e.g. proper length ℓ), the geodesic equation takes the canonical form

$$\frac{d^2 x^i}{d\ell^2} + \Gamma^i_{jk} \frac{dx^j}{d\ell} \frac{dx^k}{d\ell} = 0.$$

Christoffel Symbols and Canonical Form

Christoffel symbols

The coefficients Γ^i_{jk} are defined by

$$\Gamma^i_{jk} = \frac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{jl} - \partial_l g_{jk}).$$

Affine parametrisation

Choosing an affine parameter (e.g. proper length ℓ), the geodesic equation takes the canonical form

$$\frac{d^2 x^i}{d\ell^2} + \Gamma^i_{jk} \frac{dx^j}{d\ell} \frac{dx^k}{d\ell} = 0.$$

- In flat Euclidean space, $\Gamma^i_{jk} = 0$ and geodesics are straight lines.

Christoffel Symbols and Canonical Form

Christoffel symbols

The coefficients Γ^i_{jk} are defined by

$$\Gamma^i_{jk} = \frac{1}{2} g^{il} (\partial_j g_{kl} + \partial_k g_{jl} - \partial_l g_{jk}).$$

Affine parametrisation

Choosing an affine parameter (e.g. proper length ℓ), the geodesic equation takes the canonical form

$$\frac{d^2 x^i}{d\ell^2} + \Gamma^i_{jk} \frac{dx^j}{d\ell} \frac{dx^k}{d\ell} = 0.$$

- In flat Euclidean space, $\Gamma^i_{jk} = 0$ and geodesics are straight lines.
- In curved spaces, Γ^i_{jk} encodes the geometry.

A Glance Forward: From Geometry to Gravity

Let us continue with the *geodesic equation*, which governs free motion in a curved spacetime:

$$\frac{d^2 X^a}{d\lambda^2} = - \Gamma^a{}_{bc} \frac{dX^b}{d\lambda} \frac{dX^c}{d\lambda}.$$

A Glance Forward: From Geometry to Gravity

Let us continue with the *geodesic equation*, which governs free motion in a curved spacetime:

$$\frac{d^2 X^a}{d\lambda^2} = - \Gamma^a_{bc} \frac{dX^b}{d\lambda} \frac{dX^c}{d\lambda}.$$

In Newtonian gravity, the motion of a particle in a gravitational potential $\Phi(\mathbf{r})$ is described by

$$\frac{d^2 x^i}{dt^2} = - \frac{\partial \Phi}{\partial x^i}.$$

A Glance Forward: From Geometry to Gravity

Let us continue with the *geodesic equation*, which governs free motion in a curved spacetime:

$$\frac{d^2 X^a}{d\lambda^2} = - \Gamma^a_{bc} \frac{dX^b}{d\lambda} \frac{dX^c}{d\lambda}.$$

In Newtonian gravity, the motion of a particle in a gravitational potential $\Phi(\mathbf{r})$ is described by

$$\frac{d^2 x^i}{dt^2} = - \frac{\partial \Phi}{\partial x^i}.$$

Key observation

Since the Christoffel symbols Γ^a_{bc} contain *first derivatives of the metric*, it is natural to expect that the gravitational potential Φ is encoded in the spacetime metric itself.

A Glance Forward: From Geometry to Gravity

Let us continue with the *geodesic equation*, which governs free motion in a curved spacetime:

$$\frac{d^2 X^a}{d\lambda^2} = - \Gamma^a_{bc} \frac{dX^b}{d\lambda} \frac{dX^c}{d\lambda}.$$

In Newtonian gravity, the motion of a particle in a gravitational potential $\Phi(\mathbf{r})$ is described by

$$\frac{d^2 x^i}{dt^2} = - \frac{\partial \Phi}{\partial x^i}.$$

Key observation

Since the Christoffel symbols Γ^a_{bc} contain *first derivatives of the metric*, it is natural to expect that the gravitational potential Φ is encoded in the spacetime metric itself.

- Gravity is no longer a force, but a manifestation of spacetime geometry.

A Glance Forward: From Geometry to Gravity

Let us continue with the *geodesic equation*, which governs free motion in a curved spacetime:

$$\frac{d^2 X^a}{d\lambda^2} = - \Gamma^a_{bc} \frac{dX^b}{d\lambda} \frac{dX^c}{d\lambda}.$$

In Newtonian gravity, the motion of a particle in a gravitational potential $\Phi(\mathbf{r})$ is described by

$$\frac{d^2 x^i}{dt^2} = - \frac{\partial \Phi}{\partial x^i}.$$

Key observation

Since the Christoffel symbols Γ^a_{bc} contain *first derivatives of the metric*, it is natural to expect that the gravitational potential Φ is encoded in the spacetime metric itself.

- Gravity is no longer a force, but a manifestation of spacetime geometry.
- Newtonian gravity should emerge as an appropriate limit of geodesic

Why Partial Derivatives Are Not Enough

- Scalars: $\partial_i f$ transforms covariantly.
- Tensors: $\partial_i T^a{}_b$ **does not** transform as a tensor*.

Key issue

Partial derivatives compare tensor components at *different points*.
There is no canonical way to subtract tensors at distinct points on a manifold.

Why Partial Derivatives Are Not Enough

- Scalars: $\partial_i f$ transforms covariantly.
- Tensors: $\partial_i T^a{}_b$ **does not** transform as a tensor*.

Key issue

Partial derivatives compare tensor components at *different points*.
There is no canonical way to subtract tensors at distinct points on a manifold.

Consequence

Without extra structure, there is no coordinate-independent notion of “constant tensor field”.

Definition

A **connection** Γ^i_{jk} is a set of n^3 functions such that under coordinate transformations

$$\bar{\Gamma}^i_{jk} = \frac{\partial \bar{x}^i}{\partial x^l} \frac{\partial x^p}{\partial \bar{x}^j} \frac{\partial x^q}{\partial \bar{x}^k} \Gamma^l_{pq} + \frac{\partial \bar{x}^i}{\partial x^l} \frac{\partial^2 x^l}{\partial \bar{x}^j \partial \bar{x}^k}.$$

- Γ^i_{jk} is **not** a tensor.

Definition

A **connection** Γ^i_{jk} is a set of n^3 functions such that under coordinate transformations

$$\bar{\Gamma}^i_{jk} = \frac{\partial \bar{x}^i}{\partial x^l} \frac{\partial x^p}{\partial \bar{x}^j} \frac{\partial x^q}{\partial \bar{x}^k} \Gamma^l_{pq} + \frac{\partial \bar{x}^i}{\partial x^l} \frac{\partial^2 x^l}{\partial \bar{x}^j \partial \bar{x}^k}.$$

- Γ^i_{jk} is **not** a tensor.
- The inhomogeneous term compensates the failure of ∂_i^* .

Covariant Derivative

Definition (covariant vector)

For a covariant vector field A_j ,

$$\nabla_i A_j := \partial_i A_j - \Gamma^k{}_{ij} A_k.$$

Covariant Derivative

Definition (covariant vector)

For a covariant vector field A_j ,

$$\nabla_i A_j := \partial_i A_j - \Gamma^k{}_{ij} A_k.$$

- $\nabla_i A_j$ transforms as a $(0, 2)$ tensor.

Covariant Derivative

Definition (covariant vector)

For a covariant vector field A_j ,

$$\nabla_i A_j := \partial_i A_j - \Gamma^k{}_{ij} A_k.$$

- $\nabla_i A_j$ transforms as a $(0, 2)$ tensor.
- The connection precisely cancels the non-tensorial terms.

Covariant Derivative

Definition (covariant vector)

For a covariant vector field A_j ,

$$\nabla_i A_j := \partial_i A_j - \Gamma^k{}_{ij} A_k.$$

- $\nabla_i A_j$ transforms as a $(0, 2)$ tensor.
- The connection precisely cancels the non-tensorial terms.

Contravariant vector

$$\nabla_i B^k = \partial_i B^k + \Gamma^k{}_{ij} B^j.$$

Covariant Derivative of a General Tensor

General rule

For a tensor $T^{a_1 \dots a_p}{}_{b_1 \dots b_q}$,

$$\nabla_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} = \partial_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} + \Gamma^{a_1}{}_{ck} T^{k \dots a_p}{}_{b_1 \dots b_q} + \dots + \Gamma^{a_p}{}_{ck} T^{a_1 \dots k}{}_{b_1 \dots b_q} - \Gamma^k{}_{cb_1} T^{a_1 \dots a_p}{}_{k \dots b_q} - \dots - \Gamma^k{}_{cb_q} T^{a_1 \dots a_p}{}_{b_1 \dots k}.$$

Covariant Derivative of a General Tensor

General rule

For a tensor $T^{a_1 \dots a_p}{}_{b_1 \dots b_q}$,

$$\begin{aligned}\nabla_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} &= \partial_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} + \Gamma^{a_1}{}_{ck} T^{k \dots a_p}{}_{b_1 \dots b_q} + \dots + \Gamma^{a_p}{}_{ck} T^{a_1 \dots k}{}_{b_1 \dots b_q} \\ &\quad - \Gamma^k{}_{cb_1} T^{a_1 \dots a_p}{}_{k \dots b_q} - \dots - \Gamma^k{}_{cb_q} T^{a_1 \dots a_p}{}_{b_1 \dots k}.\end{aligned}$$

For example:

$$\nabla_c T^{ab} = \partial_c T^{ab} + \Gamma^a{}_{ck} T^{kb} + \Gamma^b{}_{ck} T^{ak},$$

$$\nabla_c T_{ab} = \partial_c T_{ab} - \Gamma^k{}_{ca} T_{kb} - \Gamma^k{}_{cb} T_{ak}.$$

Key lesson

Covariant Derivative of a General Tensor

General rule

For a tensor $T^{a_1 \dots a_p}{}_{b_1 \dots b_q}$,

$$\begin{aligned}\nabla_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} = & \partial_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} + \Gamma^{a_1}{}_{ck} T^{k \dots a_p}{}_{b_1 \dots b_q} + \dots + \Gamma^{a_p}{}_{ck} T^{a_1 \dots k}{}_{b_1 \dots b_q} \\ & - \Gamma^k{}_{cb_1} T^{a_1 \dots a_p}{}_{k \dots b_q} - \dots - \Gamma^k{}_{cb_q} T^{a_1 \dots a_p}{}_{b_1 \dots k}.\end{aligned}$$

For example:

$$\nabla_c T^{ab} = \partial_c T^{ab} + \Gamma^a{}_{ck} T^{kb} + \Gamma^b{}_{ck} T^{ak},$$

$$\nabla_c T_{ab} = \partial_c T_{ab} - \Gamma^k{}_{ca} T_{kb} - \Gamma^k{}_{cb} T_{ak}.$$

Key lesson

- Covariant derivatives depend on the choice of connection.

Covariant Derivative of a General Tensor

General rule

For a tensor $T^{a_1 \dots a_p}{}_{b_1 \dots b_q}$,

$$\begin{aligned}\nabla_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} &= \partial_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} + \Gamma^{a_1}{}_{ck} T^{k \dots a_p}{}_{b_1 \dots b_q} + \dots + \Gamma^{a_p}{}_{ck} T^{a_1 \dots k}{}_{b_1 \dots b_q} \\ &\quad - \Gamma^k{}_{cb_1} T^{a_1 \dots a_p}{}_{k \dots b_q} - \dots - \Gamma^k{}_{cb_q} T^{a_1 \dots a_p}{}_{b_1 \dots k}.\end{aligned}$$

For example:

$$\nabla_c T^{ab} = \partial_c T^{ab} + \Gamma^a{}_{ck} T^{kb} + \Gamma^b{}_{ck} T^{ak},$$

$$\nabla_c T_{ab} = \partial_c T_{ab} - \Gamma^k{}_{ca} T_{kb} - \Gamma^k{}_{cb} T_{ak}.$$

Key lesson

- Covariant derivatives depend on the choice of connection.
- Different connections \Rightarrow different notions of parallelism.

Covariant Derivative of a General Tensor

General rule

For a tensor $T^{a_1 \dots a_p}{}_{b_1 \dots b_q}$,

$$\begin{aligned}\nabla_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} = & \partial_c T^{a_1 \dots a_p}{}_{b_1 \dots b_q} + \Gamma^{a_1}{}_{ck} T^{k \dots a_p}{}_{b_1 \dots b_q} + \dots + \Gamma^{a_p}{}_{ck} T^{a_1 \dots k}{}_{b_1 \dots b_q} \\ & - \Gamma^k{}_{cb_1} T^{a_1 \dots a_p}{}_{k \dots b_q} - \dots - \Gamma^k{}_{cb_q} T^{a_1 \dots a_p}{}_{b_1 \dots k}.\end{aligned}$$

For example:

$$\nabla_c T^{ab} = \partial_c T^{ab} + \Gamma^a{}_{ck} T^{kb} + \Gamma^b{}_{ck} T^{ak},$$

$$\nabla_c T_{ab} = \partial_c T_{ab} - \Gamma^k{}_{ca} T_{kb} - \Gamma^k{}_{cb} T_{ak}.$$

Key lesson

- Covariant derivatives depend on the choice of connection.
- Different connections \Rightarrow different notions of parallelism.
- The difference of two connections *is* a tensor.

Curvature tensor

- On a manifold, vectors at different points live in different tangent spaces.

Curvature tensor

- On a manifold, vectors at different points live in different tangent spaces.
- Comparing vectors at different points is *not canonical*.

Curvature tensor

- On a manifold, vectors at different points live in different tangent spaces.
- Comparing vectors at different points is *not canonical*.
- A connection ∇ provides a rule to compare nearby vectors.

Curvature tensor

- On a manifold, vectors at different points live in different tangent spaces.
- Comparing vectors at different points is *not canonical*.
- A connection ∇ provides a rule to compare nearby vectors.

Key idea

Curvature arises when comparing the result of transporting vectors along *different infinitesimal paths*.

Curvature from covariant derivatives

Scalars

For a scalar field f ,

$$(\nabla_a \nabla_b - \nabla_b \nabla_a)f = 0.$$

Curvature from covariant derivatives

Scalars

For a scalar field f ,

$$(\nabla_a \nabla_b - \nabla_b \nabla_a)f = 0.$$

Vectors

For a vector field V^c ,

$$(\nabla_a \nabla_b - \nabla_b \nabla_a)V^c = R^c_{dab} V^d.$$

Riemann curvature tensor

The above tensor is defined as:

$$R^c_{dab} = \partial_a \Gamma^c_{bd} - \partial_b \Gamma^c_{ad} + \Gamma^c_{ae} \Gamma^e_{bd} - \Gamma^c_{be} \Gamma^e_{ad}$$

Geometric meaning of curvature

Parallel transport

A vector V^a is parallel transported along a curve with tangent T^a if

$$T^b \nabla_b V^a = 0.$$

Geometric meaning of curvature

Parallel transport

A vector V^a is parallel transported along a curve with tangent T^a if

$$T^b \nabla_b V^a = 0.$$

Curvature

Transporting a vector around an infinitesimal closed loop does not return the same vector:

$$\Delta V^a \propto R^a{}_{bcd}.$$

Geometric content of a connection

Up to this point we have implicitly assumed the Levi–Civita connection. More generally, an affine connection may have three independent features:

Curvature

Failure of vectors to return unchanged after transport around a loop.

$$R^a{}_{bcd} \neq 0$$

Geometric content of a connection

Up to this point we have implicitly assumed the Levi–Civita connection. More generally, an affine connection may have three independent features:

Curvature

Failure of vectors to return unchanged after transport around a loop.

$$R^a{}_{bcd} \neq 0$$

Torsion

Failure of infinitesimal parallelograms to close.

$$T^a{}_{bc} = \Gamma^a{}_{bc} - \Gamma^a{}_{cb}$$

Geometric content of a connection

Up to this point we have implicitly assumed the Levi–Civita connection. More generally, an affine connection may have three independent features:

Curvature

Failure of vectors to return unchanged after transport around a loop.

$$R^a{}_{bcd} \neq 0$$

Torsion

Failure of infinitesimal parallelograms to close.

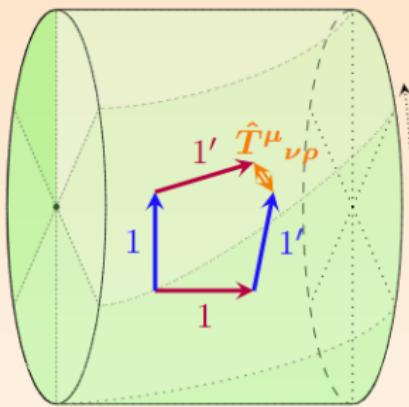
$$T^a{}_{bc} = \Gamma^a{}_{bc} - \Gamma^a{}_{cb}$$

Non-metricity

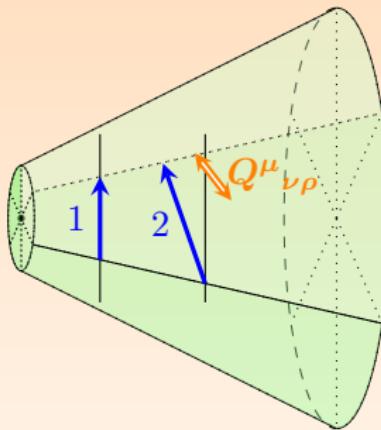
Failure of lengths and angles to be preserved under transport.

$$\nabla_a g_{bc} \neq 0$$

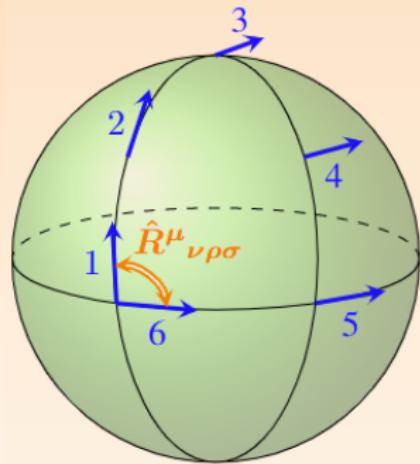
Geometric meaning: torsion, non-metricity, curvature



Torsion: failure of infinitesimal parallelograms to close



Non-metricity: lengths and angles not preserved



Curvature: vector changes after parallel transport around a loop

Levi–Civita connection

In General Relativity, we work with a unique connection satisfying:

$$\begin{cases} T^a{}_{bc} = 0 & \text{(torsion-free)} \\ \nabla_a g_{bc} = 0* & \text{(metric-compatible)} \end{cases}$$

Conclusion

All gravitational effects are encoded purely in the metric and then, only curvature is non-vanishing.

Structure of the Riemann Curvature Tensor

Independent components

In n dimensions, the Riemann tensor has

$$\frac{1}{12}n^2(n^2 - 1)$$

independent components due to strong symmetry constraints. So in $n = 4$ it contains 20 independent components.

Structure of the Riemann Curvature Tensor

Independent components

In n dimensions, the Riemann tensor has

$$\frac{1}{12}n^2(n^2 - 1)$$

independent components due to strong symmetry constraints. So in $n = 4$ it contains 20 independent components.

Important symmetries

- Antisymmetric in index pairs:

$$R_{abcd} = -R_{bacd}, \quad R_{abcd} = -R_{abdc}$$

- Algebraic (cyclic) and differential Bianchi identities:

$$R_{abcd} + R_{cabd} + R_{bcad} = 0,$$

$$\nabla_e R_{abcd} + \nabla_d R_{abec} + \nabla_c R_{abde} = 0.$$

Contractions of the Riemann Tensor

The Riemann tensor $R^a{}_{bcd}$ encodes the full local curvature associated with a connection.

First contraction: Ricci tensor

Contracting one contravariant and one covariant index,

$$R_{ab} := R^c{}_{acb},$$

defines the **Ricci tensor** and it is symmetric: $R_{ab} = R_{ba}$.

Contractions of the Riemann Tensor

The Riemann tensor $R^a{}_{bcd}$ encodes the full local curvature associated with a connection.

First contraction: Ricci tensor

Contracting one contravariant and one covariant index,

$$R_{ab} := R^c{}_{acb},$$

defines the **Ricci tensor** and it is symmetric: $R_{ab} = R_{ba}$.

Second contraction: scalar curvature

Taking the trace of the Ricci tensor,

$$R := g^{ab} R_{ab},$$

defines the **scalar curvature** that is a scalar invariant under coordinate transformations.

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity

Towards a geometric theory of gravity

Guiding principles

We seek a theory of gravity that:

- is formulated in a geometric and covariant way,

Towards a geometric theory of gravity

Guiding principles

We seek a theory of gravity that:

- is formulated in a geometric and covariant way,
- is invariant under general coordinate transformations (diffeomorphism invariant)

Towards a geometric theory of gravity

Guiding principles

We seek a theory of gravity that:

- is formulated in a geometric and covariant way,
- is invariant under general coordinate transformations (diffeomorphism invariant)
- incorporates the equivalence principle,

Towards a geometric theory of gravity

Guiding principles

We seek a theory of gravity that:

- is formulated in a geometric and covariant way,
- is invariant under general coordinate transformations (diffeomorphism invariant)
- incorporates the equivalence principle,
- reduces to Newtonian gravity in the weak-field limit.

Towards a geometric theory of gravity

Guiding principles

We seek a theory of gravity that:

- is formulated in a geometric and covariant way,
- is invariant under general coordinate transformations (diffeomorphism invariant)
- incorporates the equivalence principle,
- reduces to Newtonian gravity in the weak-field limit.

Strategy

These requirements suggest that gravity should be encoded in spacetime geometry, through tensors constructed from the metric and its derivatives.

Energy–momentum tensor

Motivation

In General Relativity, the gravitational field must be sourced by a *local, covariant object* encoding energy and momentum.

Energy–momentum tensor

Motivation

In General Relativity, the gravitational field must be sourced by a *local, covariant object* encoding energy and momentum.

Definition

The **energy–momentum tensor** T_{ab} is a symmetric rank–(0, 2) tensor that represents local densities and fluxes of energy and momentum.

Energy–momentum tensor

Motivation

In General Relativity, the gravitational field must be sourced by a *local, covariant object* encoding energy and momentum.

Definition

The **energy–momentum tensor** T_{ab} is a symmetric rank–(0, 2) tensor that represents local densities and fluxes of energy and momentum.

$$T^{\mu\nu} = \begin{pmatrix} T^{00} & T^{01} & T^{02} & T^{03} \\ T^{10} & T^{11} & T^{12} & T^{13} \\ T^{20} & T^{21} & T^{22} & T^{23} \\ T^{30} & T^{31} & T^{32} & T^{33} \end{pmatrix} = \begin{pmatrix} T^{00} & T^{0j} \\ T^{i0} & T^{ij} \end{pmatrix}.$$

Energy–momentum tensor

Motivation

In General Relativity, the gravitational field must be sourced by a *local, covariant object* encoding energy and momentum.

Definition

The **energy–momentum tensor** T_{ab} is a symmetric rank–(0, 2) tensor that represents local densities and fluxes of energy and momentum.

$$T^{\mu\nu} = \begin{pmatrix} T^{00} & T^{01} & T^{02} & T^{03} \\ T^{10} & T^{11} & T^{12} & T^{13} \\ T^{20} & T^{21} & T^{22} & T^{23} \\ T^{30} & T^{31} & T^{32} & T^{33} \end{pmatrix} = \begin{pmatrix} T^{00} & T^{0j} \\ T^{i0} & T^{ij} \end{pmatrix}.$$

- T_{00} : energy density
- T_{0i} : momentum density (energy flux)
- T_{ij} : stresses (pressure and shear)

Energy–momentum tensor: Maxwell field

Electromagnetic field

Let F_{ab} be the electromagnetic field strength tensor.

Energy–momentum tensor: Maxwell field

Electromagnetic field

Let F_{ab} be the electromagnetic field strength tensor.

Energy–momentum tensor

The energy–momentum tensor of the Maxwell field is

$$T_{ab} = F_{ac}F_b{}^c - \frac{1}{4}g_{ab}F_{cd}F^{cd}.$$

Energy–momentum tensor: Maxwell field

Electromagnetic field

Let F_{ab} be the electromagnetic field strength tensor.

Energy–momentum tensor

The energy–momentum tensor of the Maxwell field is

$$T_{ab} = F_{ac}F_b{}^c - \frac{1}{4}g_{ab}F_{cd}F^{cd}.$$

- Traceless: $T^a{}_a = 0$
- Encodes energy density, Poynting flux and stresses
- Fully covariant and symmetric

Perfect fluid

A perfect fluid is characterised by:

- Energy density ρ
- Isotropic pressure p
- Four–velocity u^a

Energy–momentum tensor: Perfect fluid

Perfect fluid

A perfect fluid is characterised by:

- Energy density ρ
- Isotropic pressure p
- Four–velocity u^a

Energy–momentum tensor

$$T_{ab} = (\rho + p)u_a u_b + p g_{ab}.$$

Energy–momentum tensor: Perfect fluid

Perfect fluid

A perfect fluid is characterised by:

- Energy density ρ
- Isotropic pressure p
- Four–velocity u^a

Energy–momentum tensor

$$T_{ab} = (\rho + p)u_a u_b + p g_{ab}.$$

- In the rest frame: $u^a = (1, 0, 0, 0)$
- Non–relativistic matter: $p \ll \rho$

Assumptions

- Weak gravitational field
- Velocities $v \ll c$
- Pressure negligible: $p \ll \rho$

Non-relativistic limit

Assumptions

- Weak gravitational field
- Velocities $v \ll c$
- Pressure negligible: $p \ll \rho$

Energy-momentum tensor

In this limit,

$$T_{00} \simeq \rho, \quad T_{0i} \simeq 0, \quad T_{ij} \simeq 0.$$

Non-relativistic limit

Assumptions

- Weak gravitational field
- Velocities $v \ll c$
- Pressure negligible: $p \ll \rho$

Energy-momentum tensor

In this limit,

$$T_{00} \simeq \rho, \quad T_{0i} \simeq 0, \quad T_{ij} \simeq 0.$$

Only the energy density contributes at leading order.

Assumptions

- Weak gravitational field
- Velocities $v \ll c$
- Pressure negligible: $p \ll \rho$

Energy-momentum tensor

In this limit,

$$T_{00} \simeq \rho, \quad T_{0i} \simeq 0, \quad T_{ij} \simeq 0.$$

Only the energy density contributes at leading order.

This limit will be used to fix the coupling constant and identify the correct gravitational source.

Newtonian limit of gravity

Weak field expansion

We write the metric as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1.$$

Newtonian limit of gravity

Weak field expansion

We write the metric as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1.$$

Geodesic equation

In the Newtonian limit (weak gravitational field and small velocities),

$$\frac{d^2 \vec{x}}{dt^2} \simeq -\frac{1}{2} \vec{\nabla} h_{00}.$$

Newtonian limit of gravity

Weak field expansion

We write the metric as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1.$$

Geodesic equation

In the Newtonian limit (weak gravitational field and small velocities),

$$\frac{d^2 \vec{x}}{dt^2} \simeq -\frac{1}{2} \vec{\nabla} h_{00}.$$

Identifying $\vec{g} = -\vec{\nabla} \Phi$ gives

$$h_{00} \simeq -2\Phi.$$

Poisson equation and gravity

Newtonian gravity

The Poisson equation reads

$$\nabla^2 \Phi = 4\pi G \rho.$$

Poisson equation and gravity

Newtonian gravity

The Poisson equation reads

$$\nabla^2 \Phi = 4\pi G \rho.$$

Metric perturbation

Using $h_{00} \simeq -2\Phi$, we obtain

$$\nabla^2 g_{00} = 8\pi G T_{00}.$$

Poisson equation and gravity

Newtonian gravity

The Poisson equation reads

$$\nabla^2 \Phi = 4\pi G \rho.$$

Metric perturbation

Using $h_{00} \simeq -2\Phi$, we obtain

$$\nabla^2 g_{00} = 8\pi G T_{00}.$$

This identifies the energy density as the gravitational source.

From energy density to a covariant source

The Newtonian limit singles out the 00-component:

$$\nabla^2 g_{00} \longleftrightarrow T_{00}.$$

From energy density to a covariant source

The Newtonian limit singles out the 00-component:

$$\nabla^2 g_{00} \longleftrightarrow T_{00}.$$

In a relativistic theory, the source must be a *rank-2 tensor* valid in all coordinate systems.

From energy density to a covariant source

The Newtonian limit singles out the 00-component:

$$\nabla^2 g_{00} \longleftrightarrow T_{00}.$$

In a relativistic theory, the source must be a *rank-2 tensor* valid in all coordinate systems.

Energy–momentum tensor

The natural covariant generalisation of the energy density is

$$T_{\mu\nu}.$$

General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form

$$G_{\mu\nu} = \kappa^2 T_{\mu\nu},$$

where $G_{\mu\nu}$ is a geometric tensor constructed from the metric.

General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form

$$G_{\mu\nu} = \kappa^2 T_{\mu\nu},$$

where $G_{\mu\nu}$ is a geometric tensor constructed from the metric.

- The constant κ^2 is fixed by the Newtonian limit to be $8\pi G$. Recall that in other units, $c \neq 1$ and then $\kappa^2 = \frac{8\pi G}{c^4}$

General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form

$$G_{\mu\nu} = \kappa^2 T_{\mu\nu},$$

where $G_{\mu\nu}$ is a geometric tensor constructed from the metric.

- The constant κ^2 is fixed by the Newtonian limit to be $8\pi G$. Recall that in other units, $c \neq 1$ and then $\kappa^2 = \frac{8\pi G}{c^4}$
- At this stage, the precise form of $G_{\mu\nu}$ is still unknown.

Constraints on the geometric tensor

The tensor $G_{\mu\nu}$ must satisfy:

- Be constructed from $g_{\mu\nu}$ and its derivatives (up to second order).

Constraints on the geometric tensor

The tensor $G_{\mu\nu}$ must satisfy:

- Be constructed from $g_{\mu\nu}$ and its derivatives (up to second order).
- Be symmetric:

$$G_{\mu\nu} = G_{\nu\mu}.$$

Constraints on the geometric tensor

The tensor $G_{\mu\nu}$ must satisfy:

- Be constructed from $g_{\mu\nu}$ and its derivatives (up to second order).
- Be symmetric:
$$G_{\mu\nu} = G_{\nu\mu}.$$
- Since $\nabla_\mu T^{\mu\nu} = 0$, it must be covariantly conserved:
$$\nabla_\mu G^{\mu\nu} = 0,$$

Constraints on the geometric tensor

The tensor $G_{\mu\nu}$ must satisfy:

- Be constructed from $g_{\mu\nu}$ and its derivatives (up to second order).
- Be symmetric:
$$G_{\mu\nu} = G_{\nu\mu}.$$
- Since $\nabla_\mu T^{\mu\nu} = 0$, it must be covariantly conserved:

$$\nabla_\mu G^{\mu\nu} = 0,$$

- Must recover Newtonian limit for weak grav fields.

Constraints on the geometric tensor

The tensor $G_{\mu\nu}$ must satisfy:

- Be constructed from $g_{\mu\nu}$ and its derivatives (up to second order).
- Be symmetric:

$$G_{\mu\nu} = G_{\nu\mu}.$$

- Since $\nabla_\mu T^{\mu\nu} = 0$, it must be covariantly conserved:

$$\nabla_\mu G^{\mu\nu} = 0,$$

- Must recover Newtonian limit for weak grav fields.
- The most general rank-2 tensor (without a constant) satisfying those conditions is:

$$G_{\mu\nu} = C_1 R_{\mu\nu} + C_2 g_{\mu\nu} R,$$

where C_1 and C_2 are constants that are related $C_1 = -2C_2$ to ensure covariant conservation.

Einstein tensor

Up to an overall constant, the unique tensor satisfying all requirements is

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$

Einstein tensor

Up to an overall constant, the unique tensor satisfying all requirements is

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R$$

This tensor is called the **Einstein tensor**.

Einstein field equations

The Einstein field equations without setting $c = 1$ read

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

Einstein field equations

The Einstein field equations without setting $c = 1$ read

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

- The left-hand side is built solely from the metric and its first and second derivatives.

Einstein field equations

The Einstein field equations without setting $c = 1$ read

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

- The left-hand side is built solely from the metric and its first and second derivatives.
- It is symmetric and covariantly conserved:

$$\nabla_\mu \left(R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} \right) = 0,$$

consistently matching $\nabla_\mu T^{\mu\nu} = 0$.

Einstein field equations

The Einstein field equations without setting $c = 1$ read

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

- The left-hand side is built solely from the metric and its first and second derivatives.
- It is symmetric and covariantly conserved:

$$\nabla_\mu \left(R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu} \right) = 0,$$

consistently matching $\nabla_\mu T^{\mu\nu} = 0$.

- In the weak-field (Newtonian) limit, it reproduces Poisson's equation.

Einstein field equations

The Einstein field equations without setting $c = 1$ read

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}.$$

- The left-hand side is built solely from the metric and its first and second derivatives.
- It is symmetric and covariantly conserved:

$$\nabla_\mu (R^{\mu\nu} - \frac{1}{2}Rg^{\mu\nu}) = 0,$$

consistently matching $\nabla_\mu T^{\mu\nu} = 0$.

- In the weak-field (Newtonian) limit, it reproduces Poisson's equation.
- In four spacetime dimensions, $g_{\mu\nu}$ has 10 independent components. Therefore, the Einstein equations form a system of

10 coupled, non-linear, second-order partial differential equations.

Trace and vacuum Einstein equations

Taking the trace

In 4-dimensions, by contracting the Einstein equations with $g^{\mu\nu}$, we find

$$g^{\mu\nu} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) = \frac{8\pi G}{c^4} g^{\mu\nu} T_{\mu\nu},$$

we obtain

$$R - \frac{1}{2}(4)R = -R = \frac{8\pi G}{c^4} T,$$

where $T = g^{\mu\nu} T_{\mu\nu}$ is the trace of the energy-momentum tensor.

Trace and vacuum Einstein equations

Taking the trace

In 4-dimensions, by contracting the Einstein equations with $g^{\mu\nu}$, we find

$$g^{\mu\nu} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) = \frac{8\pi G}{c^4} g^{\mu\nu} T_{\mu\nu},$$

we obtain

$$R - \frac{1}{2}(4)R = -R = \frac{8\pi G}{c^4} T,$$

where $T = g^{\mu\nu} T_{\mu\nu}$ is the trace of the energy-momentum tensor.

Equivalent form

Substituting back, the Einstein equations in 4D can be written as

$$R_{\mu\nu} = \frac{8\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2} T g_{\mu\nu} \right).$$

Vacuum Einstein equations

Vacuum

In the absence of matter,

$$T_{\mu\nu} = 0,$$

the Einstein equations reduce to

$$R_{\mu\nu} = 0.$$

Vacuum Einstein equations

Vacuum

In the absence of matter,

$$T_{\mu\nu} = 0,$$

the Einstein equations reduce to

$$R_{\mu\nu} = 0.$$

This condition implies $R = 0$ (Ricci scalar)

Vacuum Einstein equations

Vacuum

In the absence of matter,

$$T_{\mu\nu} = 0,$$

the Einstein equations reduce to

$$R_{\mu\nu} = 0.$$

This condition implies $R = 0$ (Ricci scalar)

- Spacetimes satisfying $R_{\mu\nu} = 0$ are called **Ricci-flat**.

Vacuum Einstein equations

Vacuum

In the absence of matter,

$$T_{\mu\nu} = 0,$$

the Einstein equations reduce to

$$R_{\mu\nu} = 0.$$

This condition implies $R = 0$ (Ricci scalar)

- Spacetimes satisfying $R_{\mu\nu} = 0$ are called **Ricci-flat**.
- Ricci-flat does *not* imply flat spacetime:

$$R_{\mu\nu} = 0 \quad \not\Rightarrow \quad R^\rho_{\sigma\mu\nu} = 0.$$

Vacuum Einstein equations

Vacuum

In the absence of matter,

$$T_{\mu\nu} = 0,$$

the Einstein equations reduce to

$$R_{\mu\nu} = 0.$$

This condition implies $R = 0$ (Ricci scalar)

- Spacetimes satisfying $R_{\mu\nu} = 0$ are called **Ricci-flat**.
- Ricci-flat does *not* imply flat spacetime:

$$R_{\mu\nu} = 0 \quad \not\Rightarrow \quad R^\rho{}_{\sigma\mu\nu} = 0.$$

- Vacuum solutions can still possess non-trivial curvature.

Geometrical interpretation of gravity

Wheeler's interpretation

*“Spacetime tells matter how to move;
matter tells spacetime how to curve.”*

Geometrical interpretation of gravity

Wheeler's interpretation

*“Spacetime tells matter how to move;
matter tells spacetime how to curve.”*

In General Relativity, gravity is *not* a force.

Geometrical interpretation of gravity

Wheeler's interpretation

*“Spacetime tells matter how to move;
matter tells spacetime how to curve.”*

- In General Relativity, gravity is *not* a force.
- Free-falling particles follow geodesics of a curved spacetime.

Geometrical interpretation of gravity

Wheeler's interpretation

*“Spacetime tells matter how to move;
matter tells spacetime how to curve.”*

- In General Relativity, gravity is *not* a force.
- Free-falling particles follow geodesics of a curved spacetime.
- The curvature is generated by energy and momentum, encoded in $T_{\mu\nu}$.

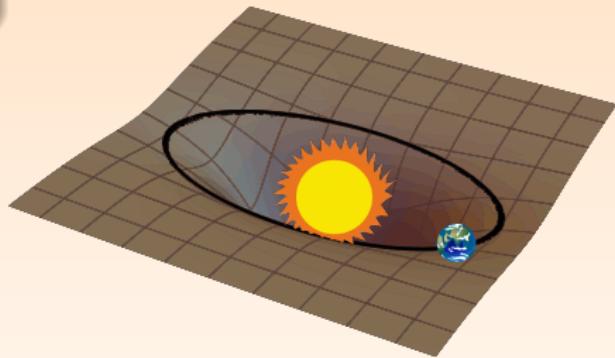
Geometrical interpretation of gravity

Wheeler's interpretation

*“Spacetime tells matter how to move;
matter tells spacetime how to curve.”*

- In General Relativity, gravity is *not* a force.
- Free-falling particles follow geodesics of a curved spacetime.
- The curvature is generated by energy and momentum, encoded in $T_{\mu\nu}$.

This contrasts with Newtonian gravity, where gravity acts as a force in a fixed, flat background.



Motivation

So far, the Einstein field equations were introduced from:

- geometric identities,
- physical requirements (symmetry, conservation),
- and the Newtonian limit.

Einstein equations from an action principle

Motivation

So far, the Einstein field equations were introduced from:

- geometric identities,
- physical requirements (symmetry, conservation),
- and the Newtonian limit.

Alternative viewpoint

There exists an equivalent formulation:

- the Einstein equations can be obtained from a variational principle,
- by extremising an action with respect to the metric.

This approach places General Relativity within the standard framework of classical field theory.

Gravitational action

The dynamics of the gravitational field can be obtained from the action

$$S_{\text{GR}} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} R + S_m,$$

where $g = \det(g_{\mu\nu})$ and S_m is the matter action.

- The fundamental variable is the metric $g_{\mu\nu}$.
- Field equations follow from the stationarity condition

$$\delta S_{\text{GR}} = 0$$

under arbitrary variations $\delta g^{\mu\nu}$.

Variation of the gravitational action

Variation of the integrand

The variation of the gravitational term gives

$$\delta(\sqrt{-g}R) = R\delta\sqrt{-g} + \sqrt{-g}\delta R.$$

Metric determinant

Using

$$\delta\sqrt{-g} = -\frac{1}{2\sqrt{-g}}\delta g = \frac{1}{2}\sqrt{-g}(g^{\mu\nu}\delta g_{\mu\nu}) = -\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu},$$

where we used $g_{\mu\nu}\delta g^{\mu\nu} = -g^{\mu\nu}\delta g_{\mu\nu}$ that can be found by using $\delta g^{\mu\nu} = -g^{\mu\alpha}(\delta g_{\alpha\beta})g^{\beta\nu}$.

Variation of the gravitational action

Variation of the integrand

The variation of the gravitational term gives

$$\delta(\sqrt{-g}R) = R\delta\sqrt{-g} + \sqrt{-g}\delta R.$$

Metric determinant

Using

$$\delta\sqrt{-g} = -\frac{1}{2\sqrt{-g}}\delta g = \frac{1}{2}\sqrt{-g}(g^{\mu\nu}\delta g_{\mu\nu}) = -\frac{1}{2}\sqrt{-g}g_{\mu\nu}\delta g^{\mu\nu},$$

where we used $g_{\mu\nu}\delta g^{\mu\nu} = -g^{\mu\nu}\delta g_{\mu\nu}$ that can be found by using $\delta g^{\mu\nu} = -g^{\mu\alpha}(\delta g_{\alpha\beta})g^{\beta\nu}$.

Thus, the first term becomes

$$-\frac{1}{2}\sqrt{-g}Rg_{\mu\nu}\delta g^{\mu\nu}.$$

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} \nabla_\rho (g^{\sigma\nu} \delta \Gamma^\rho_{\nu\sigma} - g^{\sigma\rho} \delta \Gamma^\mu_{\mu\sigma}).$$

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} \nabla_\rho (g^{\sigma\nu} \delta \Gamma^\rho_{\nu\sigma} - g^{\sigma\rho} \delta \Gamma^\mu_{\mu\sigma}).$$

- Important identity: $\sqrt{-g} \nabla_\mu A^\mu = \nabla_\mu (\sqrt{-g} A^\mu) = \partial_\mu (\sqrt{-g} A^\mu)$

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} \nabla_\rho (g^{\sigma\nu} \delta \Gamma^\rho_{\nu\sigma} - g^{\sigma\rho} \delta \Gamma^\mu_{\mu\sigma}).$$

- Important identity: $\sqrt{-g} \nabla_\mu A^\mu = \nabla_\mu (\sqrt{-g} A^\mu) = \partial_\mu (\sqrt{-g} A^\mu)$
- Therefore, the second term does not contribute to the field equations (it is a boundary term!)

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} \nabla_\rho (g^{\sigma\nu} \delta \Gamma^\rho_{\nu\sigma} - g^{\sigma\rho} \delta \Gamma^\mu_{\mu\sigma}).$$

- Important identity: $\sqrt{-g} \nabla_\mu A^\mu = \nabla_\mu (\sqrt{-g} A^\mu) = \partial_\mu (\sqrt{-g} A^\mu)$
- Therefore, the second term does not contribute to the field equations (it is a boundary term!)
- Hence, the variation of this term is

Variation of the scalar curvature

- Since $R = g^{\mu\nu} R_{\mu\nu}$,

$$\sqrt{-g} \delta R = \sqrt{-g} \delta (R_{\mu\nu} \delta g^{\mu\nu}) = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} g^{\mu\nu} \delta R_{\mu\nu}.$$

- Now, by replacing the Ricci tensor in terms of Levi-Civita:

$$R_{\mu\nu} = R^\lambda_{\mu\lambda\nu} = \partial_\lambda \Gamma^\lambda_{\mu\nu} - \partial_\nu \Gamma^\lambda_{\mu\lambda} + \Gamma^\lambda_{\sigma\lambda} \Gamma^\sigma_{\mu\nu} - \Gamma^\lambda_{\sigma\nu} \Gamma^\sigma_{\mu\lambda}$$

we find

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu} + \sqrt{-g} \nabla_\rho (g^{\sigma\nu} \delta \Gamma^\rho_{\nu\sigma} - g^{\sigma\rho} \delta \Gamma^\mu_{\mu\sigma}).$$

- Important identity: $\sqrt{-g} \nabla_\mu A^\mu = \nabla_\mu (\sqrt{-g} A^\mu) = \partial_\mu (\sqrt{-g} A^\mu)$
- Therefore, the second term does not contribute to the field equations (it is a boundary term!)
- Hence, the variation of this term is

Variation second term

$$\sqrt{-g} \delta R = \sqrt{-g} R_{\mu\nu} \delta g^{\mu\nu}$$

+boundary terms

Result of the gravitational variation

Gravitational contribution

After neglecting the boundary term, the variation yields

$$\delta S_{\text{GR}} = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \right) \delta g^{\mu\nu}.$$

The Einstein tensor emerges naturally from the variational principle.

Matter sector and field equations

Energy–momentum tensor

The energy–momentum tensor is defined by

$$T_{\mu\nu} = -\frac{2}{\sqrt{-g}} \frac{\delta S_m}{\delta g^{\mu\nu}}.$$

Einsteiñ field equations

Requiring $\delta S_{\text{GR}} = 0$ for arbitrary $\delta g^{\mu\nu}$ leads to

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = \kappa^2 T_{\mu\nu}.$$

Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives allows the addition of a constant term,

$$S_\Lambda = -\frac{1}{\kappa^2} \int d^4x \sqrt{-g} \Lambda.$$

Einstein equations with Λ

Varying the total action leads to

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa^2 T_{\mu\nu}.$$

Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives allows the addition of a constant term,

$$S_\Lambda = -\frac{1}{\kappa^2} \int d^4x \sqrt{-g} \Lambda.$$

Einstein equations with Λ

Varying the total action leads to

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa^2 T_{\mu\nu}.$$

- Λ acts like a uniform vacuum energy density (present even when $T_{\mu\nu} = 0$).

Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives allows the addition of a constant term,

$$S_\Lambda = -\frac{1}{\kappa^2} \int d^4x \sqrt{-g} \Lambda.$$

Einstein equations with Λ

Varying the total action leads to

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \kappa^2 T_{\mu\nu}.$$

- Λ acts like a uniform vacuum energy density (present even when $T_{\mu\nu} = 0$).
- It is compatible with covariance and conservation laws.

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)

A vector field ξ^μ generates an isometry iff

$$\mathcal{L}_\xi g_{\mu\nu} = 0 \quad \iff \quad \nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0.$$

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)

A vector field ξ^μ generates an isometry iff

$$\mathcal{L}_\xi g_{\mu\nu} = 0 \quad \iff \quad \nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0.$$

- Spherical symmetry \Rightarrow 3 spacelike Killing vectors (rotations, $SO(3)$).

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)

A vector field ξ^μ generates an isometry iff

$$\mathcal{L}_\xi g_{\mu\nu} = 0 \quad \iff \quad \nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0.$$

- Spherical symmetry \Rightarrow 3 spacelike Killing vectors (rotations, $SO(3)$).
- Stationarity \Rightarrow 1 timelike Killing vector (∂_t).

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)

A vector field ξ^μ generates an isometry iff

$$\mathcal{L}_\xi g_{\mu\nu} = 0 \quad \iff \quad \nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0.$$

- Spherical symmetry \Rightarrow 3 spacelike Killing vectors (rotations, $SO(3)$).
- Stationarity \Rightarrow 1 timelike Killing vector (∂_t).
- Symmetries strongly constrain the allowed form of $g_{\mu\nu}$.

Isometries and Killing vectors (minimal toolkit)

Isometry

A transformation is an **isometry** if it leaves the line element invariant:

$$ds^2 = g_{\mu\nu}(x) dx^\mu dx^\nu \quad \text{is unchanged.}$$

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)

A vector field ξ^μ generates an isometry iff

$$\mathcal{L}_\xi g_{\mu\nu} = 0 \quad \iff \quad \nabla_\mu \xi_\nu + \nabla_\nu \xi_\mu = 0.$$

- Spherical symmetry \Rightarrow 3 spacelike Killing vectors (rotations, $SO(3)$).
- Stationarity \Rightarrow 1 timelike Killing vector (∂_t).
- Symmetries strongly constrain the allowed form of $g_{\mu\nu}$.
- These Killing vectors imply conserved quantities along geodesics (energy and angular momentum).

Schwarzschild problem: assumptions

Goal

Find the gravitational field **outside** a static, spherically symmetric mass.

Schwarzschild problem: assumptions

Goal

Find the gravitational field **outside** a static, spherically symmetric mass.

Input

- **Vacuum exterior:** $T_{ab} = 0 \Rightarrow R_{ab} = 0$.
- **Spherical symmetry:** invariance under spatial rotations ($SO(3)$).
- **Static:** no t -dependence, and one can always eliminate $dt dr$ cross term.

Schwarzschild problem: assumptions

Goal

Find the gravitational field **outside** a static, spherically symmetric mass.

Input

- **Vacuum exterior:** $T_{ab} = 0 \Rightarrow R_{ab} = 0$.
- **Spherical symmetry:** invariance under spatial rotations ($SO(3)$).
- **Static:** no t -dependence, and one can always eliminate $dt dr$ cross term.

How to model this?

Take the full metric and assume spherical symmetry (Killing) and solve the vacuum Einstein's field equations.

Most general static, spherically symmetric metric

Static spherically symmetric Metric (− + ++)

The most general static and spherically symmetric line element can be written as

$$ds^2 = -e^{\nu(r)}dt^2 + e^{a(r)}dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

Most general static, spherically symmetric metric

Static spherically symmetric Metric (− + ++)

The most general static and spherically symmetric line element can be written as

$$ds^2 = -e^{\nu(r)}dt^2 + e^{a(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2).$$

- Time independence: $\partial_t g_{\mu\nu} = 0$
- Spherical symmetry fixes the angular sector
- Two unknown functions: $\nu(r)$ and $a(r)$

Connection coefficients

Non-vanishing Christoffel symbols

The independent non-zero Christoffel symbols are:^{*}

$$\Gamma^t_{tr} = \frac{1}{2}\nu'(r), \quad \Gamma^r_{tt} = \frac{1}{2}\nu'(r)e^{\nu-a},$$

$$\Gamma^r_{rr} = \frac{1}{2}a'(r), \quad \Gamma^r_{\theta\theta} = -re^{-a},$$

$$\Gamma^r_{\phi\phi} = -r \sin^2 \theta e^{-a},$$

$$\Gamma^\theta_{r\theta} = \Gamma^\phi_{r\phi} = \frac{1}{r}, \quad \Gamma^\phi_{\theta\phi} = \cot \theta.$$

(A prime denotes derivative with respect to r . All other components follow by symmetry.)

Ricci tensor components

Non-vanishing components

The Ricci tensor components are:*

$$R_{tt} = \frac{1}{2} e^{\nu-a} \left(\nu'' + \frac{1}{2} \nu'^2 - \frac{1}{2} a' \nu' + \frac{2}{r} \nu' \right),$$

$$R_{rr} = -\frac{1}{2} \nu'' - \frac{1}{4} \nu'^2 + \frac{1}{4} a' \nu' + \frac{1}{r} a',$$

$$R_{\theta\theta} = 1 - e^{-a} \left(1 - \frac{r}{2} a' + \frac{r}{2} \nu' \right), \quad R_{\phi\phi} = \sin^2 \theta R_{\theta\theta}.$$

(All other components follow by symmetry.)

Vacuum Einstein equations

In vacuum, Einstein's equations reduce to

$$R_{ab} = 0.$$

For the metric ansatz above, there are three non-trivial equations, but only two of them are independent due to Bianchi identities.

Vacuum Einstein equations

In vacuum, Einstein's equations reduce to

$$R_{ab} = 0.$$

For the metric ansatz above, there are three non-trivial equations, but only two of them are independent due to Bianchi identities.
We first consider the (tt) and (rr) components.

The (tt) and (rr) equations

The (tt) component yields

$$\frac{1}{2}\nu'' + \frac{1}{4}(\nu')^2 + \frac{1}{r}\nu' - \frac{1}{4}\nu'a' = 0.$$

The (rr) component gives

$$-\frac{1}{2}\nu'' - \frac{1}{4}(\nu')^2 + \frac{1}{4}\nu'a' + \frac{1}{r}a' = 0.$$

Here primes denote derivatives with respect to r .

Relation between metric functions

Adding the (tt) and (rr) equations, we obtain

$$\frac{1}{r} (\nu' + a') = 0.$$

This integrates immediately to

$$\nu(r) + a(r) = \text{const.}$$

By a constant rescaling of the time coordinate t , the constant can be set to zero, so that

$$\nu(r) = -a(r).$$

The $(\theta\theta)$ equation

Using $a = -\nu$, the $(\theta\theta)$ component of $R_{ab} = 0$ reduces to

$$1 - e^\nu - r\nu'e^\nu = 0.$$

Noting that

$$\frac{d}{dr}(re^\nu) = e^\nu + r\nu'e^\nu,$$

the equation can be rewritten as

$$\frac{d}{dr}(r - re^\nu) = 0.$$

Schwarzschild solution

Integrating, we find

$$r - re^\nu = C,$$

which implies

$$e^{\nu(r)} = 1 - \frac{C}{r}.$$

Since $a = -\nu$, the metric becomes

$$ds^2 = - \left(1 - \frac{C}{r}\right) dt^2 + \left(1 - \frac{C}{r}\right)^{-1} dr^2 + r^2 d\Omega^2,$$

where $d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2$.

Newtonian limit and identification of the constant

To identify the integration constant C , we restore physical units:

$$ds^2 = - \left(1 - \frac{GC}{c^2 r}\right) c^2 dt^2 + \left(1 - \frac{GC}{c^2 r}\right)^{-1} dr^2 + r^2 d\Omega^2.$$

Newtonian limit and identification of the constant

To identify the integration constant C , we restore physical units:

$$ds^2 = - \left(1 - \frac{GC}{c^2 r}\right) c^2 dt^2 + \left(1 - \frac{GC}{c^2 r}\right)^{-1} dr^2 + r^2 d\Omega^2.$$

In the weak-field and slow-motion limit, the only relevant Christoffel symbol is

$$\Gamma^r_{tt} \simeq \frac{GC}{2r^2}.$$

Newtonian limit and identification of the constant

To identify the integration constant C , we restore physical units:

$$ds^2 = - \left(1 - \frac{GC}{c^2 r}\right) c^2 dt^2 + \left(1 - \frac{GC}{c^2 r}\right)^{-1} dr^2 + r^2 d\Omega^2.$$

In the weak-field and slow-motion limit, the only relevant Christoffel symbol is

$$\Gamma^r_{tt} \simeq \frac{GC}{2r^2}.$$

Comparing with Newtonian gravity,

$$\frac{d^2 r}{dt^2} = -\frac{GM}{r^2},$$

we identify

$$C = 2M.$$

Final form of the Schwarzschild metric

Restoring G and c , the Schwarzschild metric reads

$$ds^2 = - \left(1 - \frac{2GM}{c^2r}\right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

This metric describes the exterior gravitational field of an isolated, non-rotating, spherically symmetric mass.

Final form of the Schwarzschild metric

Restoring G and c , the Schwarzschild metric reads

$$ds^2 = - \left(1 - \frac{2GM}{c^2r}\right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

This metric describes the exterior gravitational field of an isolated, non-rotating, spherically symmetric mass.

- **Exact vacuum solution:** $R_{\mu\nu} = 0$ for $r \geq R_{\text{body}}$.

Final form of the Schwarzschild metric

Restoring G and c , the Schwarzschild metric reads

$$ds^2 = - \left(1 - \frac{2GM}{c^2r}\right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

This metric describes the exterior gravitational field of an isolated, non-rotating, spherically symmetric mass.

- **Exact vacuum solution:** $R_{\mu\nu} = 0$ for $r \geq R_{\text{body}}$.
- **Asymptotically flat:** as $r \rightarrow \infty$, spacetime approaches Minkowski.

Final form of the Schwarzschild metric

Restoring G and c , the Schwarzschild metric reads

$$ds^2 = - \left(1 - \frac{2GM}{c^2r}\right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

This metric describes the exterior gravitational field of an isolated, non-rotating, spherically symmetric mass.

- **Exact vacuum solution:** $R_{\mu\nu} = 0$ for $r \geq R_{\text{body}}$.
- **Asymptotically flat:** as $r \rightarrow \infty$, spacetime approaches Minkowski.
- Apparent singularities (metric diverges at some points!) occur at:
 - $r = r_s := 2GM/c^2$ (coordinate singularity, event horizon),

Final form of the Schwarzschild metric

Restoring G and c , the Schwarzschild metric reads

$$ds^2 = - \left(1 - \frac{2GM}{c^2r}\right) c^2 dt^2 + \left(1 - \frac{2GM}{c^2r}\right)^{-1} dr^2 + r^2(d\theta^2 + \sin^2 \theta d\phi^2).$$

This metric describes the exterior gravitational field of an isolated, non-rotating, spherically symmetric mass.

- **Exact vacuum solution:** $R_{\mu\nu} = 0$ for $r \geq R_{\text{body}}$.
- **Asymptotically flat:** as $r \rightarrow \infty$, spacetime approaches Minkowski.
- Apparent singularities (metric diverges at some points!) occur at:
 - $r = r_s := 2GM/c^2$ (coordinate singularity, event horizon),
 - $r = 0$ (true curvature singularity).
- Spherical coordinates are not good, one can introduce other ones (Eddington-Finkelstein) and then $r = r_s$ is non-singular.
- One way to check singularities is by looking into scalars constructed from curvature: For example Kretschmann invariant $K = R^{\lambda\mu\nu\rho}R_{\lambda\mu\nu\rho}$

Birkhoff's theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the *vacuum* Einstein equations is **static** and **asymptotically flat**.

Birkhoff's theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the *vacuum* Einstein equations is **static** and **asymptotically flat**.

- Therefore, the exterior vacuum field of any spherically symmetric body is Schwarzschild.
- Even if the source changes in time (e.g. pulsations), the *exterior* vacuum metric remains static.

Birkhoff's theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the *vacuum* Einstein equations is **static** and **asymptotically flat**.

- Therefore, the exterior vacuum field of any spherically symmetric body is Schwarzschild.
- Even if the source changes in time (e.g. pulsations), the *exterior* vacuum metric remains static. Schwarzschild is the unique spherically symmetric solution of GR in vacuum.

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

- For ordinary objects, typically $r_s \ll R_{\text{body}}$.

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

- For ordinary objects, typically $r_s \ll R_{\text{body}}$.
- Since Schwarzschild is a **vacuum** solution, it applies for

$$r \geq R_{\text{body}}.$$

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

- For ordinary objects, typically $r_s \ll R_{\text{body}}$.
- Since Schwarzschild is a **vacuum** solution, it applies for

$$r \geq R_{\text{body}}.$$

- A black hole forms if the matter radius satisfies $R_{\text{body}} < r_s$.

Schwarzschild radius: Sun and Earth

Characteristic length scale

$$r_s := \frac{2GM}{c^2}.$$

$$r_{s,\odot} \approx 3 \text{ km}, \quad r_{s,\oplus} \approx 0.9 \text{ cm}.$$

- For ordinary objects, typically $r_s \ll R_{\text{body}}$.
- Since Schwarzschild is a **vacuum** solution, it applies for

$$r \geq R_{\text{body}}.$$

- A black hole forms if the matter radius satisfies $R_{\text{body}} < r_s$.
- The hypersurface $r = r_s$ is the **event horizon**: once inside, future-directed causal curves cannot reach infinity.

Outline

1 Motivations for General Relativity

- Newtonian Gravity
- Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry

- Notation and Conventions
- Tensor Fields and Tensor Algebra
- Metric, connection and geometrical quantities

3 Einstein's field equations and foundations

- Guiding principles and sources
- Newtonian limit
- Einstein equations
- Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity

Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild connection $\Gamma^\mu_{\alpha\beta}$ into the geodesic equation

$$\frac{d^2 X^\mu}{d\lambda^2} + \Gamma^\mu_{\alpha\beta} \frac{dX^\alpha}{d\lambda} \frac{dX^\beta}{d\lambda} = 0.$$

Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild connection $\Gamma^\mu{}_{\alpha\beta}$ into the geodesic equation

$$\frac{d^2 X^\mu}{d\lambda^2} + \Gamma^\mu{}_{\alpha\beta} \frac{dX^\alpha}{d\lambda} \frac{dX^\beta}{d\lambda} = 0.$$

Equivalent: use the geodesic Lagrangian

$$\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu, \quad \cdot \equiv \frac{d}{d\lambda}.$$

Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild connection $\Gamma^\mu_{\alpha\beta}$ into the geodesic equation

$$\frac{d^2 X^\mu}{d\lambda^2} + \Gamma^\mu_{\alpha\beta} \frac{dX^\alpha}{d\lambda} \frac{dX^\beta}{d\lambda} = 0.$$

Equivalent: use the geodesic Lagrangian

$$\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu, \quad \cdot \equiv \frac{d}{d\lambda}.$$

Spherical symmetry: without loss of generality take motion in the equatorial plane

$$\theta = \frac{\pi}{2}, \quad \dot{\theta} = 0,$$

so the dynamics reduces to $(t(\lambda), r(\lambda), \phi(\lambda))$.

Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting $\theta = \pi/2$, $\dot{\theta} = 0$, the geodesic Lagrangian

$$\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu$$

becomes

$$\mathcal{L} = \frac{1}{2} \left[-\left(1 - \frac{2M}{r}\right) \dot{t}^2 + \left(1 - \frac{2M}{r}\right)^{-1} \dot{r}^2 + r^2 \dot{\phi}^2 \right].$$

Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting $\theta = \pi/2$, $\dot{\theta} = 0$, the geodesic Lagrangian

$$\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu$$

becomes

$$\mathcal{L} = \frac{1}{2} \left[-\left(1 - \frac{2M}{r}\right) \dot{t}^2 + \left(1 - \frac{2M}{r}\right)^{-1} \dot{r}^2 + r^2 \dot{\phi}^2 \right].$$

Normalization (type of geodesic):

$$-2\mathcal{L} = \epsilon = \begin{cases} 1 & \text{timelike geodesics,} \\ 0 & \text{null geodesics.} \end{cases}$$

Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting $\theta = \pi/2$, $\dot{\theta} = 0$, the geodesic Lagrangian

$$\mathcal{L} = \frac{1}{2} g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu$$

becomes

$$\mathcal{L} = \frac{1}{2} \left[-\left(1 - \frac{2M}{r}\right) \dot{t}^2 + \left(1 - \frac{2M}{r}\right)^{-1} \dot{r}^2 + r^2 \dot{\phi}^2 \right].$$

Normalization (type of geodesic):

$$-2\mathcal{L} = \epsilon = \begin{cases} 1 & \text{timelike geodesics,} \\ 0 & \text{null geodesics.} \end{cases}$$

Interpretation: ϵ is fixed by the causal character of the worldline.

First integrals from cyclic coordinates (t and ϕ)

In Schwarzschild, \mathcal{L} does not depend explicitly on t nor $\phi \Rightarrow$ two conserved conjugate momenta.

First integrals from cyclic coordinates (t and ϕ)

In Schwarzschild, \mathcal{L} does not depend explicitly on t nor $\phi \Rightarrow$ two conserved conjugate momenta.

$$p_t := \frac{\partial \mathcal{L}}{\partial \dot{t}} = -\left(1 - \frac{2M}{r}\right)\dot{t} =: -E \quad \Rightarrow \quad \boxed{E = \left(1 - \frac{2M}{r}\right)\dot{t}.}$$

First integrals from cyclic coordinates (t and ϕ)

In Schwarzschild, \mathcal{L} does not depend explicitly on t nor $\phi \Rightarrow$ two conserved conjugate momenta.

$$p_t := \frac{\partial \mathcal{L}}{\partial \dot{t}} = -\left(1 - \frac{2M}{r}\right)\dot{t} =: -E \quad \Rightarrow \quad \boxed{E = \left(1 - \frac{2M}{r}\right)\dot{t}.}$$

$$p_\phi := \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = r^2 \dot{\phi} =: \ell \quad \Rightarrow \quad \boxed{\ell = r^2 \dot{\phi}.}$$

First integrals from cyclic coordinates (t and ϕ)

In Schwarzschild, \mathcal{L} does not depend explicitly on t nor $\phi \Rightarrow$ two conserved conjugate momenta.

$$p_t := \frac{\partial \mathcal{L}}{\partial \dot{t}} = -\left(1 - \frac{2M}{r}\right)\dot{t} =: -E \quad \Rightarrow \quad \boxed{E = \left(1 - \frac{2M}{r}\right)\dot{t}.}$$

$$p_\phi := \frac{\partial \mathcal{L}}{\partial \dot{\phi}} = r^2 \dot{\phi} =: \ell \quad \Rightarrow \quad \boxed{\ell = r^2 \dot{\phi}.}$$

Meaning: E is the energy per unit mass and ℓ the (specific) angular momentum.

Reducing the problem to a 1D radial equation

Using the conserved quantities

$$\dot{t} = \frac{E}{1 - \frac{2M}{r}}, \quad \dot{\phi} = \frac{\ell}{r^2},$$

and the normalization of the four-velocity,

$$g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu = -\epsilon, \quad \epsilon = \begin{cases} 1 & \text{timelike geodesics,} \\ 0 & \text{null geodesics,} \end{cases}$$

we obtain the radial equation

$$\boxed{\dot{r}^2 = E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right)}.$$

Reducing the problem to a 1D radial equation

Using the conserved quantities

$$\dot{t} = \frac{E}{1 - \frac{2M}{r}}, \quad \dot{\phi} = \frac{\ell}{r^2},$$

and the normalization of the four-velocity,

$$g_{\mu\nu} \dot{X}^\mu \dot{X}^\nu = -\epsilon, \quad \epsilon = \begin{cases} 1 & \text{timelike geodesics,} \\ 0 & \text{null geodesics,} \end{cases}$$

we obtain the radial equation

$$\dot{r}^2 = E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right).$$

Physical interpretation

This is equivalent to a one-dimensional energy equation

$$\frac{1}{2} \dot{r}^2 + V_{\text{eff}}(r) = \frac{1}{2} E^2, \quad V_{\text{eff}}(r) = \frac{1}{2} \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right).$$

Orbit equation $\phi(r)$

To compute observables (perihelion shift, light bending), we want $\phi = \phi(r)$.

Orbit equation $\phi(r)$

To compute observables (perihelion shift, light bending), we want $\phi = \phi(r)$.

From $\ell = r^2 \dot{\phi}$ we have

$$\dot{\phi} = \frac{\ell}{r^2}.$$

Orbit equation $\phi(r)$

To compute observables (perihelion shift, light bending), we want $\phi = \phi(r)$.

From $\ell = r^2 \dot{\phi}$ we have

$$\dot{\phi} = \frac{\ell}{r^2}.$$

From the radial equation,

$$\dot{r}^2 = E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right),$$

so

$$\boxed{\frac{d\phi}{dr} = \frac{\dot{\phi}}{\dot{r}} = \frac{\ell}{r^2} \left[E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right) \right]^{-1/2}}.$$

Orbit equation $\phi(r)$

To compute observables (perihelion shift, light bending), we want $\phi = \phi(r)$.

From $\ell = r^2 \dot{\phi}$ we have

$$\dot{\phi} = \frac{\ell}{r^2}.$$

From the radial equation,

$$\dot{r}^2 = E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right),$$

so

$$\boxed{\frac{d\phi}{dr} = \frac{\dot{\phi}}{\dot{r}} = \frac{\ell}{r^2} \left[E^2 - \left(1 - \frac{2M}{r}\right) \left(\frac{\ell^2}{r^2} + \epsilon\right) \right]^{-1/2}}.$$

- Timelike (perihelion): $\epsilon = 1$
- Null (light bending): $\epsilon = 0$

Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital equation for $u(\phi) = 1/r$ reads

$$\frac{d^2u}{d\phi^2} + u = \frac{M}{\ell^2} + 3Mu^2.$$

Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital equation for $u(\phi) = 1/r$ reads

$$\frac{d^2u}{d\phi^2} + u = \frac{M}{\ell^2} + 3Mu^2.$$

- The first two terms reproduce the Newtonian orbit equation.
- The additional term $3Mu^2$ is a **purely relativistic correction**.

Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital equation for $u(\phi) = 1/r$ reads

$$\frac{d^2u}{d\phi^2} + u = \frac{M}{\ell^2} + 3Mu^2.$$

- The first two terms reproduce the Newtonian orbit equation.
- The additional term $3Mu^2$ is a **purely relativistic correction**.

In Newtonian gravity:

$$\frac{d^2u}{d\phi^2} + u = \frac{M}{\ell^2},$$

which admits closed elliptical orbits.

Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The perihelion advances by

$$\Delta\phi = \frac{6\pi M}{a(1 - e^2)}$$

per revolution, where a is the semi-major axis and e the eccentricity.

Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The perihelion advances by

$$\Delta\phi = \frac{6\pi M}{a(1 - e^2)}$$

per revolution, where a is the semi-major axis and e the eccentricity.

Mercury

$$\Delta\phi_{\text{GR}} \simeq 43'' \text{ per century.}$$

Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The perihelion advances by

$$\Delta\phi = \frac{6\pi M}{a(1 - e^2)}$$

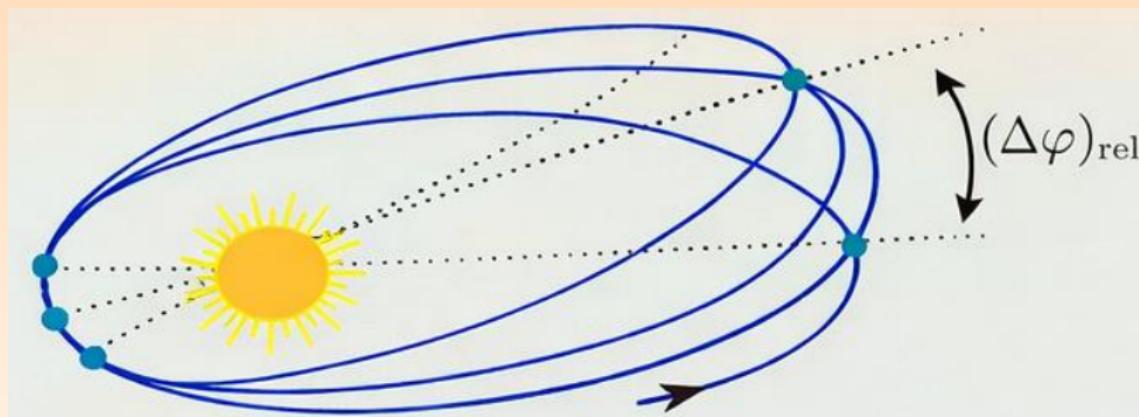
per revolution, where a is the semi-major axis and e the eccentricity.

Mercury

$$\Delta\phi_{\text{GR}} \simeq 43'' \text{ per century.}$$

- Newtonian gravity predicts **no** perihelion shift.
- The observed excess matches the GR prediction precisely.

Perihelion precession (schematic)



- Before GR, the anomaly was attributed to a hypothetical planet ("Vulcan").
- The orbit is not closed: the perihelion advances by $\Delta\varphi$ each revolution.
- In GR this comes from geodesic motion in Schwarzschild spacetime (extra relativistic correction).

Deflection of light: null geodesics

Light rays follow null geodesics ($2\mathcal{L} = 0$). The orbital equation becomes

$$\frac{d^2u}{d\phi^2} + u = 3Mu^2.$$

Deflection of light: null geodesics

Light rays follow null geodesics ($2\mathcal{L} = 0$). The orbital equation becomes

$$\frac{d^2u}{d\phi^2} + u = 3Mu^2.$$

Solving perturbatively for a light ray passing at impact parameter b , one finds a total deflection angle

$$\Delta\phi = \frac{4M}{b}.$$

where $b := \ell/E$ is the impact parameter.

Deflection of light: Newton vs GR

General Relativity

$$\Delta\phi_{\text{GR}} = \frac{4GM}{c^2b}.$$

Deflection of light: Newton vs GR

General Relativity

$$\Delta\phi_{\text{GR}} = \frac{4GM}{c^2b}.$$

Newtonian theory (naive)

$$\Delta\phi_{\text{Newton}} = \frac{2GM}{c^2b}.$$

Deflection of light: Newton vs GR

General Relativity

$$\Delta\phi_{\text{GR}} = \frac{4GM}{c^2b}.$$

Newtonian theory (naive)

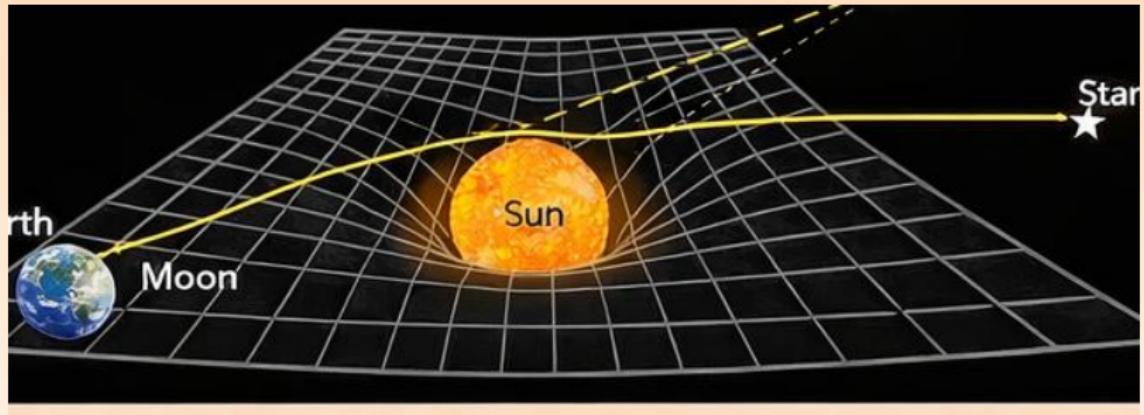
$$\Delta\phi_{\text{Newton}} = \frac{2GM}{c^2b}.$$

- GR predicts **twice** the Newtonian deflection.
- For light grazing the Sun:

$$\Delta\phi_{\text{GR}} \simeq 1.75''.$$

- Confirmed during the 1919 solar eclipse.

Deflection of light by gravity (schematic)



- Light follows null geodesics: the trajectory bends when passing near a massive body.
- The apparent position of a background star is shifted due to spacetime curvature.

Gravitational redshift: origin

The proper time measured by a static observer is

$$d\tau = \sqrt{-g_{tt}} dt.$$

Gravitational redshift: origin

The proper time measured by a static observer is

$$d\tau = \sqrt{-g_{tt}} dt.$$

For the Schwarzschild metric,

$$g_{tt} = - \left(1 - \frac{2M}{r} \right).$$

Gravitational redshift: origin

The proper time measured by a static observer is

$$d\tau = \sqrt{-g_{tt}} dt.$$

For the Schwarzschild metric,

$$g_{tt} = - \left(1 - \frac{2M}{r} \right).$$

The ratio of observed frequencies between two radii r_1 and r_2 is

$$\frac{\nu_2}{\nu_1} = \sqrt{\frac{1 - \frac{2M}{r_1}}{1 - \frac{2M}{r_2}}}.$$

Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the same proper time:

$$d\tau = \sqrt{-g_{tt}(r)} dt.$$

Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the same proper time:

$$d\tau = \sqrt{-g_{tt}(r)} dt.$$

- A clock deeper in a gravitational potential (r smaller) runs **slower**.

Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the same proper time:

$$d\tau = \sqrt{-g_{tt}(r)} dt.$$

- A clock deeper in a gravitational potential (r smaller) runs **slower**.
- A clock far from the gravitating body ($r \rightarrow \infty$) runs **faster**.

Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the same proper time:

$$d\tau = \sqrt{-g_{tt}(r)} dt.$$

- A clock deeper in a gravitational potential (r smaller) runs **slower**.
- A clock far from the gravitating body ($r \rightarrow \infty$) runs **faster**.

For two observers at r_1 and r_2 ,

$$\frac{\Delta\tau_1}{\Delta\tau_2} = \sqrt{\frac{1 - \frac{2M}{r_1}}{1 - \frac{2M}{r_2}}}.$$

Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the same proper time:

$$d\tau = \sqrt{-g_{tt}(r)} dt.$$

- A clock deeper in a gravitational potential (r smaller) runs **slower**.
- A clock far from the gravitating body ($r \rightarrow \infty$) runs **faster**.

For two observers at r_1 and r_2 ,

$$\frac{\Delta\tau_1}{\Delta\tau_2} = \sqrt{\frac{1 - \frac{2M}{r_1}}{1 - \frac{2M}{r_2}}}.$$

Key point

Gravity affects the *rate of time itself*, not only the motion of particles.

Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field than clocks on the Earth's surface.

Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field than clocks on the Earth's surface.

- Gravitational redshift causes satellite clocks to run **faster** than ground clocks.

Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field than clocks on the Earth's surface.

- Gravitational redshift causes satellite clocks to run **faster** than ground clocks.
- Special relativistic time dilation (due to orbital velocity) causes them to run **slower**.

Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field than clocks on the Earth's surface.

- Gravitational redshift causes satellite clocks to run **faster** than ground clocks.
- Special relativistic time dilation (due to orbital velocity) causes them to run **slower**.

The net relativistic correction is approximately

$$\Delta t \simeq 38 \mu\text{s per day.}$$

Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field than clocks on the Earth's surface.

- Gravitational redshift causes satellite clocks to run **faster** than ground clocks.
- Special relativistic time dilation (due to orbital velocity) causes them to run **slower**.

The net relativistic correction is approximately

$$\Delta t \simeq 38 \mu\text{s per day.}$$

Physical consequence

Without relativistic corrections from General Relativity, GPS positioning errors would grow by several kilometers per day.

Gravitational redshift and GPS (schematic)

- Clock rates depend on gravitational potential: time at different altitudes runs differently.
- GPS needs relativistic corrections (GR + SR) to keep timing/position accurate.

Friedmann–Robertson–Walker spacetime

Cosmological assumptions

- **Homogeneity**: all spatial points are equivalent.
- **Isotropy**: no preferred spatial direction.
- Matter content described by a perfect fluid:

$$T^{\mu}_{\nu} = \text{diag}(-\rho, p, p, p).$$

Most general metric compatible with these symmetries

$$ds^2 = -dt^2 + a(t)^2 \left[\frac{dr^2}{1 - kr^2} + r^2(d\theta^2 + \sin^2 \theta d^2\phi) \right],$$

where

- $a(t)$ is the scale factor,
- $k = 0, \pm 1$ determines the spatial curvature.

Friedmann equations and cosmological dynamics

Inserting the FRW metric into Einstein's equations,

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = 8\pi G T_{\mu\nu},$$

yields the **Friedmann equations***:

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho - \frac{k}{a^2} + \frac{\Lambda}{3}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3p) + \frac{\Lambda}{3}$$

Key physical consequences

- Cosmic expansion or contraction ($\dot{a} \neq 0$).
- Acceleration or deceleration determined by $\rho + 3p$.
- Λ can drive accelerated expansion.
- Cosmological redshift: $1 + z = a(t_0)/a(t_{\text{em}})$.

Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1,$$

where:

- $\eta_{\mu\nu}$ is the Minkowski metric,
- $h_{\mu\nu}$ represents a small perturbation of spacetime.

Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1,$$

where:

- $\eta_{\mu\nu}$ is the Minkowski metric,
- $h_{\mu\nu}$ represents a small perturbation of spacetime.

In vacuum, the perturbations $h_{\mu\nu}$ propagate as **waves**:

$$h_{\mu\nu} \sim \text{gravitational waves.}$$

Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}, \quad |h_{\mu\nu}| \ll 1,$$

where:

- $\eta_{\mu\nu}$ is the Minkowski metric,
- $h_{\mu\nu}$ represents a small perturbation of spacetime.

In vacuum, the perturbations $h_{\mu\nu}$ propagate as **waves**:

$$h_{\mu\nu} \sim \text{gravitational waves.}$$

Physical content

In four dimensions, gravitational waves have **two independent polarizations**:

$$h_+ \quad \text{and} \quad h_\times,$$

called the “plus” and “cross” modes.

Gravitational waves: linearised gravity

- Gravitational waves are ripples of spacetime itself.
- They stretch and squeeze distances transverse to their direction of propagation.
- They carry energy and propagate at the speed of light.

Gravitational waves: linearised gravity

- Gravitational waves are ripples of spacetime itself.
- They stretch and squeeze distances transverse to their direction of propagation.
- They carry energy and propagate at the speed of light.

Why they matter

Gravitational waves provide a direct observational probe of strong-field General Relativity and were first detected by LIGO in 2015.

Final message

- **Take your time.** General Relativity is a deep subject and it is completely normal not to understand everything at once.

Final message

- **Take your time.** General Relativity is a deep subject and it is completely normal not to understand everything at once.
- General Relativity makes **remarkable predictions** that have been experimentally confirmed and play a central role in modern research: black holes, gravitational waves, and cosmology.

Final message

- **Take your time.** General Relativity is a deep subject and it is completely normal not to understand everything at once.
- General Relativity makes **remarkable predictions** that have been experimentally confirmed and play a central role in modern research: black holes, gravitational waves, and cosmology.
- **Open questions:** There are many open problems in our understanding of gravity, from fundamental theory to observations, making it an excellent area to start research.

- **Take your time.** General Relativity is a deep subject and it is completely normal not to understand everything at once.
- General Relativity makes **remarkable predictions** that have been experimentally confirmed and play a central role in modern research: black holes, gravitational waves, and cosmology.
- **Open questions:** There are many open problems in our understanding of gravity, from fundamental theory to observations, making it an excellent area to start research.
- **Next step:** read the material again and try to solve the exercises independently — this is where real understanding develops.