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Some information about this course

@ In three lectures, it is not possible to cover General Relativity in full.

@ The goal of this course is to introduce some key aspects of GR.
Whenever an asterisk (*) appears in the slides, it indicates additional
material provided as extra practice with fully solved exercises.

@ For further study, the following classic textbooks are highly
recommended:
@ R. M. Wald, General Relativity
Q S. Weinberg, Gravitation and Cosmology
Q@ R. d'Inverno, Introducing Einstein’s Relativity
© C. G. Béhmer, Introduction to General Relativity and Cosmology
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o Motivations for General Relativity
@ Newtonian Gravity
@ Equivalence Principle and the Meaning of Mass

Q Tensorial calculus and differential geometry
@ Notation and Conventions
@ Tensor Fields and Tensor Algebra
@ Metric, connection and geometrical quantities

9 Einstein’s field equations and foundations
@ Guiding principles and sources
@ Newtonian limit
@ Einstein equations
@ Action principle

@ The Schwarzschild solution
Q Classical predictions of General Relativity
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@ Motivations for General Relativity
@ Newtonian Gravity
@ Equivalence Principle and the Meaning of Mass
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Newton’s Law of Universal Gravitation

In Newtonian gravity, the force exerted by
a point mass my on another point mass
mo is (1687)

— AN IULD) ?7
Fioo=-G— =,
|72 |7
where
o - o Gravitational force.
T=%x9 — X1

points from m4 to ms.

The gravitational constant (Cavendish) is

G = (6.67428-+0.00067)x107 1! m?kg~!s72,
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The Gravitational Field (Point Mass)

Definition. The gravitational field is force

per unit test mass: \ ‘ /
L \ ?
= ™~ 0/ ol

For a point mass m located at 7,,,, let

7= Z — Z,,. Newton’s law gives /'// >\V\
3(#) -

!

—

7(7) = — T _qMs
g(%) = Gm|F|3 Gr2r.

Geometric picture: 7 always points ACELIIED RERERIEss:

toward the source and falls off as 1/72.
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Superposition and Potential

Superposition. For many sources, fields add linearly. For a

4

continuous mass density p(Z'),
d3a’.

9@ =G | @)
R3

-7
T—a3
Conservative field (Newtonian gravity). In regions without
time-dependent effects, the field is irrotational:
V x g =0.
Therefore one can introduce a gravitational potential  such that
§=-Vo.
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Gravitational Potential and Field Equations

If § = —V®, then (up to an additive constant) the potential can be
written as

=
®(%) = -G f(xz d®z’ + const.
r3 | T — &

Poisson equation. The potential is sourced by the mass density:

V2® = 47G p.

Equivalent form (Gauss law for gravity). Using g = -V,

V.g=—-4rGp.
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Instantaneous Interaction (Action at a Distance)

Instantaneous Interaction

In Newtonian gravity, changes in the mass distribution are transmitted
instantaneously to all points in space. If the source of the field
disappears (p — 0), the gravitational field vanishes everywhere at the
same time. This notion of instantaneous interaction conflicts with the
relativistic principle that no physical influence can propagate faster
than the speed of light.

Sebastian Bahamonde Introduction to GR 9/129



Instantaneous Interaction (Action at a Distance)
Instantaneous Interaction

In Newtonian gravity, changes in the mass distribution are transmitted
instantaneously to all points in space. If the source of the field
disappears (p — 0), the gravitational field vanishes everywhere at the
same time. This notion of instantaneous interaction conflicts with the
relativistic principle that no physical influence can propagate faster
than the speed of light.

A question to think about

@ If the Sun were suddenly removed, would Earth “notice” the change
immediately?

@ What does Special Relativity force us to conclude about how gravity
should propagate?
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Inertial vs. Gravitational Mass

Two notions of mass

o Inertial mass m;: resistance to
acceleration (appears in F = m;a).
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Inertial vs. Gravitational Mass

Two notions of mass

o Inertial mass m;: resistance to
acceleration (appears in F = m;a).

o Gravitational mass m,: “gravitational
charge” (couples to the gravitational
field).
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Inertial vs. Gravitational Mass

Two notions of mass ( (©0) ,
o Inertial mass m;: resistance to \.'.ﬁ.' )
acceleration (appears in F = mja). b bt X

o Gravitational mass m,: “gravitational
charge” (couples to the gravitational
field).

[]

ST

[]

Lo
For a test body in a given gravitational Lo
field g, | % '

)

9

Ak

myg : :
F=ma=myg = az(E)g. @A@‘;
ARSI

.

Experimentally, the equality m, = m;
holds to extremely high precision

(~ 10717 of order in magnitude), implying
the universality of free fall.
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Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their
motion is independent of mass and internal composition.
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Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their
motion is independent of mass and internal composition.

Newtonian viewpoint

If mg = m;, then

a=g,

so the trajectory depends only on the gravitational field, not on
properties of the test body.
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Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)

All test bodies fall the same way in a given gravitational field: their
motion is independent of mass and internal composition.

Newtonian viewpoint
If mg = m;, then
a=g,
so the trajectory depends only on the gravitational field, not on
properties of the test body.

Takeaway

WEP is the empirical clue that gravity is geometric (or at least
universal).
This universality strongly suggests a geometric description.

| A\
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Accelerated Frames and Gravity

This shows how an accelerated frame can reproduce the effect of a
uniform gravitational field.
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Accelerated Frames and Gravity

This shows how an accelerated frame can reproduce the effect of a
uniform gravitational field.
Consider two reference frames:

@ An inertial frame O.
o A frame O’ accelerating with constant acceleration d relative to O.
Their coordinates are related by

t=t, T=i-iat’
Taking two time derivatives,
?F T
dt?t di2
If the particle in O experiences a gravitational field g,
d*i’
@z =9
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Free-Falling Frames

From
a2y L
@z I
we observe a key fact:
Free-falling frame
If the accelerated frame satisfies
a=g,
then
A2z
dt/2 =

@ In a free-falling reference frame, particles move along straight lines
with constant velocity.

@ Gravitational effects can be locally eliminated (over sufficiently small
regions of spacetime).
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Einstein Elevator: Physical Equivalence

Thought experiment

@ A person inside an elevator falling
freely toward Earth.

@ A person inside a rocket in deep
space, far from all masses.
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Einstein Elevator: Physical Equivalence

Thought experiment

@ A person inside an elevator falling
freely toward Earth.

@ A person inside a rocket in deep
space, far from all masses.

@ In both cases, objects float freely.

@ A thrown ball follows a straight-line
trajectory.

@ No local experiment can distinguish

the two situations. (c) Personin a (d) Person in a lift
rocket. falling towards the
Earth.
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Acceleration Mimics Gravity (The Other Direction)

Gravity can be simulated by going to a
uniformly accelerating frame.
“ Gravity and acceleration are
operationally indistinguishable locally”.
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Acceleration Mimics Gravity (The Other Direction)

Gravity can be simulated by going to a
uniformly accelerating frame.
“ Gravity and acceleration are
operationally indistinguishable locally”.

Consider a rocket far from all masses,
so § = 0. If the rocket accelerates with
constant acceleration @, the observed
motion in the rocket frame satisfies

EARTH

il a. (0) Personinan  (h) Person on the
dt'2 accelerating Earth.
rocket.

o If @ = gs, objects fall inside the rocket
exactly as on Earth.
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Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame
cannot be distinguished from the behaviour of matter in a
corresponding gravitational field.
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Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame
cannot be distinguished from the behaviour of matter in a
corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a
sufficiently small region, gravitational inhomogeneities can be
neglected. Such a frame is therefore locally inertial.
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Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame
cannot be distinguished from the behaviour of matter in a
corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a
sufficiently small region, gravitational inhomogeneities can be
neglected. Such a frame is therefore locally inertial.

@ Inlocal inertial frames, the laws of physics reduce to those of Special

Relativity including all non-gravitational law of physics.

Sebastian Bahamonde Introduction to GR

16/129



Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement

Locally, the behaviour of matter in an accelerated reference frame
cannot be distinguished from the behaviour of matter in a
corresponding gravitational field.

Local inertial reference frames

If one considers a freely falling reference frame confined to a
sufficiently small region, gravitational inhomogeneities can be
neglected. Such a frame is therefore locally inertial.

@ Inlocal inertial frames, the laws of physics reduce to those of Special

Relativity including all non-gravitational law of physics.

@ A test particle, neglecting other forces, is at rest or moves along a
straight line with constant velocity.
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A Physical Consequence of the Equivalence Principle

@ In local inertial frames, Special Relativity holds.
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A Physical Consequence of the Equivalence Principle

@ In local inertial frames, Special Relativity holds.
@ Therefore, light propagates along straight lines at constant speed.
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A Physical Consequence of the Equivalence Principle

@ In local inertial frames, Special Relativity holds.
@ Therefore, light propagates along straight lines at constant speed.

@ An observer accelerating relative to such a frame sees curved
trajectories.
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A Physical Consequence of the Equivalence Principle

@ In local inertial frames, Special Relativity holds.
@ Therefore, light propagates along straight lines at constant speed.

@ An observer accelerating relative to such a frame sees curved
trajectories.

Key consequence (qualitative)
Light must be deflected by a gravitational field.

This argument is purely local and qualitative. A quantitative description
requires the spacetime geometry.
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Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
@ gravity is described as a force acting on particles,
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Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
@ gravity is described as a force acting on particles,
@ but free-falling observers experience no gravitational force,

@ and the notion of inertial motion depends on the chosen frame.
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Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
@ gravity is described as a force acting on particles,
@ but free-falling observers experience no gravitational force,
@ and the notion of inertial motion depends on the chosen frame.

Newtonian gravity cannot incorporate the equivalence principle in a
fully frame-independent way.
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From the Equivalence Principle to Geometry

@ The equivalence principle implies that gravity can be locally removed
by going to a freely falling frame.
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From the Equivalence Principle to Geometry

@ The equivalence principle implies that gravity can be locally removed
by going to a freely falling frame.

@ This is possible only locally, not globally.
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From the Equivalence Principle to Geometry

@ The equivalence principle implies that gravity can be locally removed
by going to a freely falling frame.

@ This is possible only locally, not globally.
o Different freely falling observers define different local inertial frames.
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From the Equivalence Principle to Geometry

@ The equivalence principle implies that gravity can be locally removed
by going to a freely falling frame.

@ This is possible only locally, not globally.
o Different freely falling observers define different local inertial frames.

Key implication

Gravity cannot be described by a single global force field. Instead, it
must be encoded in the geometry of spacetime.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.

@ These measurements must be independent of the chosen
coordinates = diffeomorphism invariance
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.

@ These measurements must be independent of the chosen
coordinates —> diffeomorphism invariance

@ Therefore, geometry must be described in a coordinate-invariant way.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.

@ These measurements must be independent of the chosen
coordinates —> diffeomorphism invariance

@ Therefore, geometry must be described in a coordinate-invariant way.

@ Describe spacetime as a smooth manifold.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.

@ These measurements must be independent of the chosen
coordinates —> diffeomorphism invariance

@ Therefore, geometry must be described in a coordinate-invariant way.

@ Describe spacetime as a smooth manifold.
@ Introduce geometric objects that transform covariantly.
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Why Differential Geometry?

@ Physical measurements involve clocks and rulers.
o Gravity affects how time intervals and spatial distances are measured.

@ These measurements must be independent of the chosen
coordinates —> diffeomorphism invariance

@ Therefore, geometry must be described in a coordinate-invariant way.

@ Describe spacetime as a smooth manifold.
@ Introduce geometric objects that transform covariantly.
@ Encode gravitational effects in the geometry itself.
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9 Tensorial calculus and differential geometry
@ Notation and Conventions
@ Tensor Fields and Tensor Algebra
@ Metric, connection and geometrical quantities
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.
Definition

Intuitively, a manifold is a space that looks locally like R™, but may have
a non-trivial global structure.
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like R™, but may have
a non-trivial global structure.

A manifold M is a set of points such that:
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like R™, but may have
a non-trivial global structure.
A manifold M is a set of points such that:
@ M can be mapped into R", with n € N, where n is called the
dimension of the manifold;
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like R™, but may have
a non-trivial global structure.

A manifold M is a set of points such that:

@ M can be mapped into R", with n € N, where n is called the
dimension of the manifold;

@ the mapping is one-to-one;
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like R™, but may have
a non-trivial global structure.

A manifold M is a set of points such that:

D M can be mapped into R, with n € N, where n is called the
dimension of the manifold;

@ the mapping is one-to-one;

9 if two such mappings overlap, they are related by differentiable
coordinate transformations.
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Example: The Circle S*

o Consider the circle S*.
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Example: The Circle S*

o Consider the circle S*.
@ A natural coordinate is an angle ¢ € (—m, 7.
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Example: The Circle S*

o Consider the circle S*.
@ A natural coordinate is an angle ¢ € (—m, .
@ The points ¢ = m and ¢ = —x represent the same point.
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Example: The Circle S*

o Consider the circle S*.
@ A natural coordinate is an angle ¢ € (—m, .
@ The points ¢ = m and ¢ = —x represent the same point.

Consequence

The coordinate ¢ is not one-to-one globally. At least two coordinate
patches are needed to cover the circle.
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Example: The Sphere 52

@ Spherical coordinates (¢, ¢) describe the sphere locally.

Sebastian Bahamonde Introduction to GR 24/129



Example: The Sphere 52

@ Spherical coordinates (¢, ¢) describe the sphere locally.
@ They break down at the poles and are discontinuous at ¢ = +.
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Example: The Sphere 52

@ Spherical coordinates (¢, ¢) describe the sphere locally.
@ They break down at the poles and are discontinuous at ¢ = +.

No single coordinate system covers the entire sphere. Multiple
overlapping charts are required.
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From geometry to notation

Key transition

To describe physics on manifolds, we need a precise language to
represent geometric objects and their components.

This language is provided by tensor calculus.
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Indices and Components

o In differential geometry, the position of indices is essential.
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Indices and Components

o In differential geometry, the position of indices is essential.

@ Objects with upper indices differ from those with lower indices.
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Indices and Components

o In differential geometry, the position of indices is essential.
@ Objects with upper indices differ from those with lower indices.

@ This distinction is not notational: it carries geometric meaning.
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Indices and Components

o In differential geometry, the position of indices is essential.
@ Objects with upper indices differ from those with lower indices.
@ This distinction is not notational: it carries geometric meaning.

@ This distinction will become essential once we introduce the metric
and covariant derivatives.
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Einstein Summation Convention

Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.
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Einstein Summation Convention

Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.

Given objects
A= (A',...,A"),  B,=(Bi,...,Bn),

one writes

A"B, =) A°B,=A'Bi+ A’By + ... + A"B,.

a=1
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Einstein Summation Convention

Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.

Given objects
A= (A',...,A"),  B,=(Bi,...,Bn),

one writes

A"B, =) A°B,=A'Bi+ A’By + ... + A"B,.

a=1

@ The summation symbol is omitted.
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Einstein Summation Convention

Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.

Given objects
A= (A',...,A"),  B,=(Bi,...,Bn),

one writes

A"B, =) A°B,=A'Bi+ A’By + ... + A"B,.

a=1

@ The summation symbol is omitted.
@ Repeated indices are summed.
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Einstein Summation Convention

Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.

Given objects
A= (A',...,A"),  B,=(Bi,...,Bn),

one writes

A"B, =) A°B,=A'Bi+ A’By + ... + A"B,.

a=1

@ The summation symbol is omitted.
@ Repeated indices are summed.
@ Free indices must match on both sides of an equation.
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Free and Dummy Indices

@ A dummy index is summed over and can be renamed:

A*B, = A’B, = A*B,,.
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Free and Dummy Indices

@ A dummy index is summed over and can be renamed:

A*B, = A’B, = A*B,,.

o A free index labels components and must match on both sides of an
equation.
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Free and Dummy Indices

@ A dummy index is summed over and can be renamed:

A*B, = A’B, = A*B,,.

o A free index labels components and must match on both sides of an
equation.

Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.
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Free and Dummy Indices

@ A dummy index is summed over and can be renamed:

A*B, = A’B, = A*B,,.

o A free index labels components and must match on both sides of an
equation.

Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.
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Scalar Fields (no indices)

Definition

A scalar field is a function that assigns a real number to each point of
the manifold M :
f+M—R.
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Scalar Fields (no indices)

Definition

A scalar field is a function that assigns a real number to each point of
the manifold M :
f+M—R.

@ Scalars do not transform under coordinate changes (invariant).
@ Their value at a point is coordinate-independent.
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Vectors (Contravariant Vectors) - one index up

Definition
A contravariant vector is an object with one upper index whose
components transform as

B 8Xla

b
_8va

‘//a

under a coordinate transformation X — X'*(X).

30/129
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Vectors (Contravariant Vectors) - one index up

Definition
A contravariant vector is an object with one upper index whose
components transform as

B 8Xla

b
_8va

V/a

under a coordinate transformation X — X'*(X).

@ The transformation law defines the geometric nature of a vector.
@ Vectors transform with the Jacobian of the coordinate map.
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Covariant Vectors (1-Forms) - one index down

Definition
A covariant vector (or 1-form) is an object with one lower index that
transforms as

0X¢
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Covariant Vectors (1-Forms) - one index down

Definition
A covariant vector (or 1-form) is an object with one lower index that
transforms as

0X¢

@ Covariant vectors transform with the inverse Jacobian.
@ They are dual to contravariant vectors.
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Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and ¢ lower indices. Its
components transform as

ox' X' §Xh  9X
bty = pxer T oXe 9XP | 9XPaL

T/al"'ap cp

dy-dg-
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Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and ¢ lower indices. Its
components transform as

X' 9X'w 9X4  §X%
P— cee s Ty g
1-:0q oXxecl 0X¢p 8X’b1 aX/bq 1::Gq

T/a1-~-ap

@ Scalars: (0,0) Contravariant Vectors: (1,0) Covariant Vectors:
(0,1)
@ The rank of a tensor is p + g.
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Tensors of Type (p, q)

Definition

A tensor of type (p, q) is an object with p upper and ¢ lower indices. Its
components transform as

oxX'  gX'w gXh  9Xa
bibs T Hxe X §xXb "'aX/qu

T/al"'ap 1

-c
pdl---dq-

@ Scalars: (0,0) Contravariant Vectors: (1,0) Covariant Vectors:
(0,1)

@ The rank of a tensoris p + gq.

o If atensor is zero, then it will be zero in all coordinate systems as well.
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Tensor Algebra: Basic Operations

Addition

Two tensors can be added only if they have the same type and index
structure:

GC + SN = T%C, A® + B, is not defined.
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Tensor Algebra: Basic Operations

Two tensors can be added only if they have the same type and index
structure:

GC + SN = T%C, A® + B, is not defined.

Tensor Product

Given tensors of type (p, ¢) and (r, s), their tensor product is a tensor
of type (p+r,q + s):

M = VW,
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Contraction and Trace

Given a tensor of type (p, ¢), one may contract one upper and one
lower index, producing a tensor of type (p — 1,¢ — 1):

GC— ZT“G.
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Contraction and Trace

Given a tensor of type (p, ¢), one may contract one upper and one
lower index, producing a tensor of type (p — 1,4 — 1):

GC— ZT“G.

For a rank-2 tensor M %, the trace is defined as

tr M = M?,.
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Contraction and Trace

Given a tensor of type (p, ¢), one may contract one upper and one
lower index, producing a tensor of type (p — 1,¢ — 1):

GC— Z T2,

For a rank-2 tensor M %, the trace is defined as

tr M = M?,.

In any tensor equation, the free indices on both sides must match
exactly.
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Total differential

Let f be a scalar function of local coordinates (X1!,..., X"):

f=fxt. X",

Its total differential is

oxXe

a=1

df = fadX® = dxe.

o f,=0f/0X* (comma notation).
@ Einstein convention: repeated upper/lower indices are summed.
@ df is a covector (1-form): it acts linearly on displacements d.X*.
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Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their
distance?
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o In flat Euclidean space, distance is well defined.
@ On a general manifold, distance must be defined locally.
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Measuring distances on a manifold

The problem

Given two nearby points on a manifold, how do we define their
distance?

@ In flat Euclidean space, distance is well defined.
@ On a general manifold, distance must be defined locally.
@ This leads naturally to the concept of a metric tensor g,,..
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Euclidean distance in R?

In two-dimensional Euclidean space with Cartesian coordinates (x, y),
the distance between two points is given by

s> =2 +y°
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Euclidean distance in R?

In two-dimensional Euclidean space with Cartesian coordinates (x, y),
the distance between two points is given by

s> =2 +y°
For two nearby points separated by (Ax, Ay),

As? = (Az)% 4 (Ay)2.
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Euclidean distance in R?

In two-dimensional Euclidean space with Cartesian coordinates (z, y),
the distance between two points is given by

s?=22+ y2.
For two nearby points separated by (Ax, Ay),
As? = (Az)% 4 (Ay)2.

Taking the infinitesimal limit, we find the so-called line-element

ds® = da® + dy?.

Line-element

Distance is encoded in a quadratic form built from coordinate
differentials.
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds* = da” + dy®
can be written in index notation as

ds? = 6 dXdX°, a,b=1,2,

where 6, = ((1) (1)) = diag(1,1) and dX* = (dz, dy).
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds® = da? + dy?
can be written in index notation as
ds? = 6 dXdX°, a,b=1,2,

where 6, = ((1) (1)) = diag(1,1) and dX* = (dz, dy).
Let us verify this step by step with indices from i =1, 2:
ds? = 8, dXd X"
= 01p X' dX" + 5o dX?d X"
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds® = da? + dy?
can be written in index notation as
ds? = 6 dXdX°, a,b=1,2,

where 6, = ((1) (1)) = diag(1,1) and dX* = (dz, dy).
Let us verify this step by step with indices from i =1, 2:
ds? = 8, dXd X"
= 615 AX 1 dXP + 5oy dX2dX°
= (611 X dX' 4 619 dX dX?) + (821 dX2dX + 609 dX2dX?)
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds® = da? + dy?
can be written in index notation as
ds? = 6 dXdX°, a,b=1,2,

where 6, = ((1) (1)) = diag(1,1) and dX* = (dz, dy).
Let us verify this step by step with indices from i =1, 2:
ds® = 6, dX*d X"
= 61, dX1dXY + 69y dX?dX?P
= (611 X dX' 4 619 dX dX?) + (821 dX2dX + 609 dX2dX?)
=011 dxdr + 0o dy dy =
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds® = da? + dy?
can be written in index notation as
ds? = 6 dXdX°, a,b=1,2,

where 6, = ((1) (1)) = diag(1,1) and dX* = (dz, dy).
Let us verify this step by step with indices from i =1, 2:
ds® = 6, dX*d X"
= 61, dX1dXY + 69y dX?dX?P
= (611 X dX' 4 619 dX dX?) + (821 dX2dX + 609 dX2dX?)
= 611 dz dx + 99 dy dy = dx® + dy?.
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)
ds® = da? + dy?
can be written in index notation as
ds? = 6 dXdX°, a,b=1,2,

where 6, = (é (1)) = diag(1,1) and dX* = (dz, dy).
Let us verify this step by step with indices from i =1, 2:
ds® = 0 dXdX?
= 61, dX1dXY + 69y dX?dX?P
= (611 X dX' 4 619 dX dX?) + (821 dX2dX + 609 dX2dX?)
= 611 dz dx + 99 dy dy = dx® + dy?.

This suggests the generalization:
@ Replace 4, by a position-dependent object g4, (X).

@ Require ds? to be invariant under coordinate transformations.
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Definition of a metric

Metric tensor

Let X* and X* + dX® be two infinitesimally separated points. A metric
is a symmetric rank-2 tensor g,;(X) such that

ds? = gap(X) dX*dX°.

ds? is called the line-element but sometimes people just call is the
metric as well.
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Definition of a metric

Metric tensor
Let X* and X* + dX® be two infinitesimally separated points. A metric
is a symmetric rank-2 tensor g,;(X) such that

ds? = gap(X) dX*dX°.

ds? is called the line-element but sometimes people just call is the
metric as well.

@ gu(X) is an arbitrary function of the coordinates.
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Definition of a metric

Metric tensor
Let X* and X* + dX® be two infinitesimally separated points. A metric
is a symmetric rank-2 tensor g,;(X) such that

ds? = gap(X) dX*dX°.

ds? is called the line-element but sometimes people just call is the
metric as well.

@ gu(X) is an arbitrary function of the coordinates.
o Itis assumed to be non-degenerate, so an inverse ¢g* exists:

gabgbc = @

Sebastian Bahamonde Introduction to GR 39/129



Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can
represent the same line-element
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Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can

represent the same line-element Consider M = E? (2 dimensions) with
Cartesian coordinates (z,y).

ds® = da® + dy?.
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Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can
represent the same line-element Consider M = E? (2 dimensions) with
Cartesian coordinates (z,y).

ds® = da® + dy?.

The metric tensor is

1 0 .
Gab = (0 1) = diag(1,1).

@ Constant metric
o Flat geometry
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Change of coordinates: polar coordinates

Introduce polar coordinates (r, ) via

T =T COos , Yy = rsine.
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Change of coordinates: polar coordinates

Introduce polar coordinates (r, ) via

T =T COos , Yy = rsine.

Differentials:

dx = cospdr — rsinedp, dy = sin @ dr + rcos @ dp.
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Line element in polar coordinates

Squaring and adding,

da? + dy? = dr? + r2dy?.
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Line element in polar coordinates

Squaring and adding,
da? + dy? = dr? + r2dy?.

Thus,

ds? = dr? + r2dy?.
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Line element in polar coordinates

Squaring and adding,
da? + dy? = dr? + r2dy?.

Thus,

ds® = dr® + r2d<p2.

The metric components are

(10
gab—o,rg'
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Key lesson

@ The geometry has not changed: the space is still flat.
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Key lesson

@ The geometry has not changed: the space is still flat.
@ The metric components changed because the coordinates changed.
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Key lesson

@ The geometry has not changed: the space is still flat.
@ The metric components changed because the coordinates changed.
@ Physical distances are coordinate-invariant, but g,; is not.
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Key lesson

@ The geometry has not changed: the space is still flat.
@ The metric components changed because the coordinates changed.
@ Physical distances are coordinate-invariant, but g,; is not.

In gravity, we will interpret nontrivial metric components as encoding
gravitational effects.
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Properties of the metric

Q@ gup IS symmetric:
9ab = YGba-
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Properties of the metric

Q@ gup IS symmetric:
9ab = YGba-

@ In n dimensions, it has n(n + 1)/2 independent components. In n = 4
contains 10 ind. components.
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9ab = YGba-

@ In n dimensions, it has n(n + 1)/2 independent components. In n = 4
contains 10 ind. components.
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Properties of the metric

Q@ gup IS Symmetric:

9ab = YGba-

@ In n dimensions, it has n(n + 1)/2 independent components. In n = 4

contains 10 ind. components.

@ In a coordinate basis, the metric tensor in 4-dimensions can be
represented as a symmetric 4 x 4 matrix:

goo
go1
902
go3

Jab =

go1
gi1
g12
g13

go2
gi12
g22
g23
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Properties of the metric

9 g,p is Symmetric:

9ab = YGba-

@ In n dimensions, it has n(n + 1)/2 independent components. Inn = 4

contains 10 ind. components.

@ In a coordinate basis, the metric tensor in 4-dimensions can be
represented as a symmetric 4 x 4 matrix:

goo
go1
902
go3

Gab =

goi
gi1
g12
g13

go2
gi12
g22
g23

go3
g13
923
933

Physical relevance

In metric theories of gravity, all geometric and dynamical information

ultimately derives from g,;.
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Signature of the Metric

At any point p € M, the metric tensor g, can be diagonalised. In a
suitable basis, its diagonal entries can be chosen to be +1.
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Signature of the Metric

At any point p € M, the metric tensor g, can be diagonalised. In a
suitable basis, its diagonal entries can be chosen to be +1.

@ The number of positive and negative eigenvalues is invariant.
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Signature of the Metric

At any point p € M, the metric tensor g, can be diagonalised. In a
suitable basis, its diagonal entries can be chosen to be +1.

@ The number of positive and negative eigenvalues is invariant.
@ This invariant pair defines the signature of the metric.
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Signature of the Metric

At any point p € M, the metric tensor g, can be diagonalised. In a
suitable basis, its diagonal entries can be chosen to be +1.

@ The number of positive and negative eigenvalues is invariant.
@ This invariant pair defines the signature of the metric.

Definition

The signature of g, is the number of (+) and (—) signs in its
diagonalised form.
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Lorentzian Metrics and Minkowski Spacetime

Example: Minkowski spacetime
In flat spacetime, the line element is

ds® = —dt? + da? + dy?® + d22.

The corresponding metric has diagonal form

gap = diag(—1,1,1,1),

with one sign different from the others.
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Lorentzian Metrics and Minkowski Spacetime
Example: Minkowski spacetime
In flat spacetime, the line element is
ds® = —dt? + da? + dy?® + d=2.
The corresponding metric has diagonal form
gap = diag(—1,1,1,1),

with one sign different from the others.

Lorentzian metric

A metric with signature (—,+,...,+) or (+,—,...,—) is called
Lorentzian. A manifold equipped with such a metric is called a
Lorentzian manifold.
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Metric: Inner Products, Norms and Angles

Given two vectors A’ and B° at the same point of the manifold, the
metric defines their inner product.

Inner product and norm

A-B:= giinBj, |A|2 = giinAj.
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Metric: Inner Products, Norms and Angles

Given two vectors A’ and B° at the same point of the manifold, the
metric defines their inner product.

Inner product and norm

A-B:= giinBj, |A|2 = giinAj.

Angle between vectors

A-B

COSA B = W
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Metric: Inner Products, Norms and Angles

Given two vectors A’ and B° at the same point of the manifold, the
metric defines their inner product.

Inner product and norm

A-B:= giinBj, |A|2 = giinAj.

Angle between vectors

A-B
Al |B|

COS A B =

@ These notions generalize familiar Euclidean concepts.
@ The metric fully encodes the local geometry.

Sebastian Bahamonde Introduction to GR 47/129



Inverse Metric and Index Manipulation

For a non-degenerate metric,

det(gij) # 0,
there exists an inverse metric ¢*/ defined by

97 gk = '
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Inverse Metric and Index Manipulation

For a non-degenerate metric,

det(gi;) # 0,
there exists an inverse metric ¢*/ defined by

97 gk = '

Raising and lowering indices

Given a contravariant vector A?, define

Ai = gijAJ, Az = gijAj.
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Inverse Metric and Index Manipulation

For a non-degenerate metric,

det(gi;) # 0,
there exists an inverse metric ¢*/ defined by

97 gk = '

Raising and lowering indices

Given a contravariant vector A?, define

Ai o= gijAj, Az o= gijAj.

Key point

The metric establishes a one-to-one correspondence between vectors
and covectors. Only the index position matters.
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Why A’ and A; are different objects

@ A quantity with an upper index, A%, is a contravariant vector, an
element of the tangent space V.
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Why A’ and A; are different objects

@ A quantity with an upper index, A%, is a contravariant vector, an
element of the tangent space V.

@ A quantity with a lower index, 4;, is a covector (one-form), an element
of the dual space V*®.
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Why A’ and A; are different objects

@ A quantity with an upper index, A%, is a contravariant vector, an
element of the tangent space V.

@ A quantity with a lower index, 4;, is a covector (one-form), an element
of the dual space V*®.

@ Even though they have the same number of components, vectors and
covectors are not the same mathematical object.
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Why A’ and A; are different objects

@ A quantity with an upper index, A%, is a contravariant vector, an
element of the tangent space V.

@ A quantity with a lower index, 4;, is a covector (one-form), an element
of the dual space V*®.

@ Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?

There is no canonical map between vectors and covectors. The metric
gi; provides an isomorphism:
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Why A’ and A; are different objects

@ A quantity with an upper index, A?, is a contravariant vector, an
element of the tangent space V.

@ A quantity with a lower index, 4;, is a covector (one-form), an element
of the dual space V*®.

@ Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?

There is no canonical map between vectors and covectors. The metric
gi; provides an isomorphism:

Key idea

The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.
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Rank-2 tensors and index positions

@ A rank-2 tensor may have different index structures:

T9, Ty T
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Rank-2 tensors and index positions

@ A rank-2 tensor may have different index structures:

T9, Ty T

@ These objects are not equivalent. they belong to different tensor
product spaces (e.g. VoV, V @ V* V& V*).
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Rank-2 tensors and index positions

@ A rank-2 tensor may have different index structures:

T9, Ty T

@ These objects are not equivalent. they belong to different tensor
product spaces (e.g. VoV, V @ V* V& V*).

@ The position of each index determines how the tensor transforms
under coordinate changes.
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Rank-2 tensors and index positions

@ A rank-2 tensor may have different index structures:

T, T, T

@ These objects are not equivalent. they belong to different tensor
product spaces (e.g. VoV, V @ V* V& V*).

@ The position of each index determines how the tensor transforms
under coordinate changes.

Lowering indices with the metric

Given a contravariant rank-2 tensor 7%, define
Tij = gik 9j1 T,

The metric maps V ® V into V* @ V*.
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Rank-2 tensors and index positions

Raising indices with the inverse metric
Conversely, given a covariant rank-2 tensor Tj;, define

Tij = gik gﬂ Tkl-

This requires the inverse metric g%/.
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Rank-2 tensors and index positions

Raising indices with the inverse metric

Conversely, given a covariant rank-2 tensor Tj;, define
Tij = gik gﬂ Tkl~

This requires the inverse metric g%/.

Note: Writing 7;; as a matrix is just a convenient way of listing
components.
The tensor itself is defined by how its indices transform

Sebastian Bahamonde Introduction to GR 51/129



Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds* = dr? + r? d(p2, grr =1, Gop = 7'27 Gro = Gpr = 0.
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Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds® = dr® + r? d<p2, grr =1, Gpp= r?, Iro = Gor = 0.

Consider a contravariant rank-2 tensor

TrT — )
.. 2 3 T =3
1) — ’

T _<4 5) = ey,

T*? = 5.
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Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds® = dr® + r? d<p2, grr =1, Gpp= 2, Iro = Gor = 0.

Consider a contravariant rank-2 tensor

T =2,
g 2 3 Tre =3
1y )
T _<4 5) = Ter — 4,
TP — 5.
Lower both indices by
Ti; = gik g0 T, k.l € {r,p}.
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Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds* = dr® + r? d(p2, grr =1, Gop = 7'27 Gro = Gpr = 0.

Consider a contravariant rank-2 tensor

T =2,
g 2 3 Tre =3
1y )
T _<4 5) = Ter — 4,
TP — 5.
Lower both indices by
Ti; = gik g0 T, k.l € {r,p}.

T, component:

Sebastian Bahamonde Introduction to GR 52/129



Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds* = dr® + r? d(p2, grr =1, Gop = 7'27 Gro = Gpr = 0.

Consider a contravariant rank-2 tensor

T =2,
g 2 3 Tre =3
1y )
T _<4 5) = Ter — 4,
TP — 5.
Lower both indices by
Ti; = gik g0 T, k.l € {r,p}.

T, component:

T = grkgrlTkl
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Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds* = dr®* +r* d(p2, grr =1, Gop = 7'27 Gro = Gpr = 0.

Consider a contravariant rank-2 tensor

T =2,
g 2 3 Tre =3
1y )
T _<4 5) = Ter — 4,
TP — 5.
Lower both indices by
T%j = Gik gjl Tkl7 kvl € {7", SO}

T, component:
Tr'r = grkgrlTkl
= GroGrr L & GrrGrod ¥ = GrpGer Lt GroGr LYY
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Example: lowering indices in 2D polar coordinates

In 2D polar coordinates (7, ¢),

ds* = dr®* +r* d(p2, grr =1, Gop = 7'27 Gro = Gpr = 0.

Consider a contravariant rank-2 tensor

T =2,
g 2 3 Tre =3
1y )
T _<4 5) = Ter — 4,
TP — 5.
Lower both indices by
T%j = Gik gjl Tkl7 kvl € {7", SO}

T, component:
Tr'r = grkgrlTkl

= @l AR GOl SR G0 T A GG 1
= gr'r'grrTTT = %
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

T’ij = Gik 9ji Tkly kal € {Ta 90}7
and the metric components

Irr =1, Gpp = 7”2, 9ro = gor = 0.

Component 7. :

Trnp = grkgaplTkl = grrggogoTﬂp

Component 7,
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

T’ij = Gik 9ji Tkly kal € {Ta 90}7
and the metric components

Irr =1, Gpp = 7”2, 9ro = gor = 0.

Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

Component 7;,,:
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

T’ij = Gik 9ji Tkly kal € {Ta 90}7
and the metric components

Irr =1, Gpp = 7”2, 9ro = gor = 0.

Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

Tor = g(pkgrlTkl

Component 7;,,:
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

Tor = g(pkgrlTkl = ggagagrrTLPT

Component 7;,,:
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

T‘PT' = g(PkngTkl - g(,p(,pgrthpT = 4T2.

Component 7;,,:

Sebastian Bahamonde Introduction to GR 53/129



Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

T‘PT' = g(PkngTkl - g(,p(,pgrthpT = 4T2.

Component 7;,,:
Typ = gcpkgcplTkl
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

T‘PT' = g(PkngTkl - g(,p(,pgrthpT = 4T2.

Component 7;,,:

Tpp = gcpkgcplTkl = JopYpeT??

Sebastian Bahamonde Introduction to GR 53/129



Example: lowering indices in 2D polar coordinates (continued)

Recall the definition
Ty = gix g T, k.l € {r ¢},
and the metric components
9r=1, Gpp=71% Grp=gor =0.
Component 7. :

Trnp = grkgaplTkl = grrgWT“" = 37‘2.

Component 7,

T‘PT' = g(PkngTkl - g(,p(,pgrthpT = 4T2.

Component 7;,,:
TSDS@ = gcpkgcplTkl = ggogogcpcpT(p(p = 57'4-
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Metric: Length of a Curve

Given a metric tensor g;; on a manifold M, the length of a curve
C : 2'(X), with X € [\;, Af], is defined as

(Recall that ds* = g;;dx'da?)

Definition
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Metric: Length of a Curve

Given a metric tensor g;; on a manifold M, the length of a curve
C : 2'(X), with X € [\;, Af], is defined as

(Recall that ds* = g;;dx'da?)

A A dml dxi
/ ds_/ \/g” Yy an ™

@ This definition is coordinate invariant.

Definition
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Metric: Length of a Curve

Given a metric tensor g;; on a manifold M, the length of a curve
C : 2'(X), with X € [\;, Af], is defined as

(Recall that ds* = g;;dx'da?)

A A dml dxi
/ ds_/ \/g” Yy an ™

@ This definition is coordinate invariant.
@ It reduces to the usual arc length in Euclidean space.

Definition
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Metric: Length of a Curve

Given a metric tensor g;; on a manifold M, the length of a curve
C : 2'(X), with X € [\;, Af], is defined as

(Recall that ds* = g;;dx'da?)

A A d:zcz dxi
/ ds_/ \/g” Yy an ™

@ This definition is coordinate invariant.
@ It reduces to the usual arc length in Euclidean space.
@ The metric determines how distances are measured locally.

Definition
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Geodesics: Extremal Length

Consider a manifold (M, g) endowed with a metric tensor g;;. Let
P Qe M.

Definition
A geodesic is a curve v : A — z¢()\) joining P and @ whose length

As dwl dxi
/ \/g” Yoy o D

is extremal (typically minimal).
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Geodesic Equation

Euler—Lagrange result
Applying the Euler—Lagrange equations to the length functional yields*

dQ‘EiJr i dijd_xk_f( )dmi
a2 RN AN ar’
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Geodesic Equation

Euler—Lagrange result
Applying the Euler—Lagrange equations to the length functional yields*

d2xi+ i dijd_xk_f( )dmi
a2 RN AN ar’

@ The function f(\) reflects reparametrisation freedom.
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Geodesic Equation

Euler—Lagrange result
Applying the Euler—Lagrange equations to the length functional yields*

deiJr i dijd_xk_f( )dmi
a2 RN AN ar’

@ The function f(\) reflects reparametrisation freedom.
@ This equation determines free motion once the metric is specified.
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Geodesic Equation

Euler—Lagrange result
Applying the Euler—Lagrange equations to the length functional yields*

deiJr i dijd_xk_f( )dmi
a2 RN AN ar’

@ The function f(\) reflects reparametrisation freedom.
@ This equation determines free motion once the metric is specified.

@ Particles in GR will follow this equation! (the shortest path)
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Christoffel Symbols and Canonical Form

Christoffel symbols

The coefficients ', are defined by

. 1.
T = 59” (0591 + Okgji — O1gjk) -
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Christoffel Symbols and Canonical Form

The coefficients ', are defined by

. 1.
T = 59” (0591 + Okgji — O1gjk) -

Affine parametrisation

Choosing an affine parameter (e.g. proper length ¢), the geodesic
equation takes the canonical form

d2 - dad da®

7 —

e TR g ar T
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Christoffel Symbols and Canonical Form

The coefficients ', are defined by

. 1.
T = 59” (0591 + Okgji — O1gjk) -

Affine parametrisation

Choosing an affine parameter (e.g. proper length ¢), the geodesic
equation takes the canonical form

d2 - dad da®

7 —

a9z Tk grar =

o In flat Euclidean space, I''j;, = 0 and geodesics are straight lines.
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Christoffel Symbols and Canonical Form

The coefficients ', are defined by

. 1.
T = 59” (0591 + Okgji — O1gjk) -

Affine parametrisation

Choosing an affine parameter (e.g. proper length ¢), the geodesic
equation takes the canonical form

d2 - dad da®

7 —

a9z Tk grar =

o In flat Euclidean space, I''j;, = 0 and geodesics are straight lines.
o In curved spaces, I';;, encodes the geometry.
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

22X dX® dxe

a

a2 Ty A
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

?xe . dXbdxe
ANz AN an

In Newtonian gravity, the motion of a particle in a gravitational potential

®(r) is described by

A2zt 0P

a2~ dxi
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

?xe . dXbdxe
ANz AN an

In Newtonian gravity, the motion of a particle in a gravitational potential

®(r) is described by

A2zt 0P

a2~ dxi

Key observation

Since the Christoffel symbols I'?;. contain first derivatives of the
metric, it is natural to expect that the gravitational potential ® is
encoded in the spacetime metric itself.
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

KT . dXvdxe
ANz AN an

In Newtonian gravity, the motion of a particle in a gravitational potential

®(r) is described by

A2zt 0P

a2~ dxi

Key observation

Since the Christoffel symbols I'?;. contain first derivatives of the
metric, it is natural to expect that the gravitational potential ® is
encoded in the spacetime metric itself.

@ Gravity is no longer a force, but a manifestation of spacetime
geometry.
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

KT . dXvdxe
ANz AN an

In Newtonian gravity, the motion of a particle in a gravitational potential

®(r) is described by

A2zt 0P

a2~ dxi

Key observation

Since the Christoffel symbols I'?;. contain first derivatives of the
metric, it is natural to expect that the gravitational potential ® is
encoded in the spacetime metric itself.

@ Gravity is no longer a force, but a manifestation of spacetime
geometry.
@ Newtonian gravity should emerge as an appropriate limit of geodesic
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Why Partial Derivatives Are Not Enough

@ Scalars: 9; f transforms covariantly.
@ Tensors: 9;,7%, does not transform as a tensor*.

Partial derivatives compare tensor components at different points.
There is no canonical way to subtract tensors at distinct points on a
manifold.
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Why Partial Derivatives Are Not Enough

@ Scalars: 9; f transforms covariantly.
@ Tensors: 9;,7%, does not transform as a tensor*.

Partial derivatives compare tensor components at different points.

There is no canonical way to subtract tensors at distinct points on a
manifold.

Consequence

Without extra structure, there is no coordinate-independent notion of
“constant tensor field”.

Sebastian Bahamonde Introduction to GR
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Connection

Definition

A connection I'?;, is a set of n? functions such that under coordinate
transformations

— 07! OxP Ol _, oz 9%
M =

92 939 o7k PV 92l dziok”

@ I'';; is not a tensor.
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Connection

Definition

A connection I'?;, is a set of n? functions such that under coordinate
transformations
P 07! OxP Ol _, I @ 0%
& 92l 927 ok M1 9al 9zidTF

@ I'';; is not a tensor.
@ The inhomogeneous term compensates the failure of o;*.
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Covariant Derivative

Definition (covariant vector)

For a covariant vector field A;,

ViAj = 6114] - szJAk
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Covariant Derivative

Definition (covariant vector)

For a covariant vector field A;,

Vid; = 0;A; —TF;; Ay

@ V;A; transforms as a (0, 2) tensor.
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Covariant Derivative

Definition (covariant vector)

For a covariant vector field A;,

Vid; = 0;A; —TF;; Ay

@ V;A; transforms as a (0, 2) tensor.
@ The connection precisely cancels the non-tensorial terms.
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Covariant Derivative

Definition (covariant vector)

For a covariant vector field A;,

Vid; = 0;A; —TF;; Ay

@ V;A; transforms as a (0, 2) tensor.
@ The connection precisely cancels the non-tensorial terms.

Contravariant vector

Vin = ain aF Fkiij.
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Covariant Derivative of a General Tensor

General rule

For atensor T4y, 4,

VT gy = 0T %y g AT g TRy g A AT g TRy

—T% gy TH g gy — oo = Ty, T %y g
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Covariant Derivative of a General Tensor

General rule

For atensor T4y, 4,

VT gy = 0T %y g AT g TRy g A AT g TRy

—T% gy TH g gy — oo = Ty, T %y g

For example:

chab _ acTab + Fack ka + Fbck Tak ,
chab = ac,I’ab - ]-‘kca Ty — chb Tk
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Covariant Derivative of a General Tensor

General rule

For atensor T4y, 4,
VT %y o= 0Ty +T% o TH%y g oo T TRy

—Tcpy T g by — -+ = D¥ep, T %y k-

---0q

For example:

chab _ acTab + Fack ka + Fbck Tak ,
chab = ac,I’ab - ]-‘kca Ty — chb Tk

@ Covariant derivatives depend on the choice of connection.

Sebastian Bahamonde Introduction to GR 62/129



Covariant Derivative of a General Tensor

General rule

For atensor T4y, 4,

Vcjmlmapbl...bq = 8cTa1mapb1...bq+Falck Tkmapb1...bq+' . '+Fapck Talmkln...bq

—Tcpy T g by — -+ = D¥ep, T %y k-

---0q

For example:

chab _ acTab + Fack ka + Fbck Tak ,
chab = ac,I’ab - ]-‘kca Ty — chb Tk

@ Covariant derivatives depend on the choice of connection.
@ Different connections = different notions of parallelism.
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Covariant Derivative of a General Tensor

General rule

For atensor T4y, 4,

VT gy = 0T %y g AT g TRy g A AT g TRy

—Tcpy T g by — -+ = D¥ep, T %y k-

---0q

For example:

chab _ acTab + Fack ka + Fbck Tak ,
chab = 6c,I’ab - ]-‘kca Ty — chb Tk

@ Covariant derivatives depend on the choice of connection.
@ Different connections = different notions of parallelism.
@ The difference of two connections is a tensor.
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Curvature tensor

@ On a manifold, vectors at different points live in different tangent
spaces.
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Curvature tensor

@ On a manifold, vectors at different points live in different tangent
spaces.

@ Comparing vectors at different points is not canonical.
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Curvature tensor

@ On a manifold, vectors at different points live in different tangent
spaces.

@ Comparing vectors at different points is not canonical.
@ A connection V provides a rule to compare nearby vectors.
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Curvature tensor

@ On a manifold, vectors at different points live in different tangent
spaces.

@ Comparing vectors at different points is not canonical.
@ A connection V provides a rule to compare nearby vectors.

Key idea

Curvature arises when comparing the result of transporting vectors
along different infinitesimal paths.
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Curvature from covariant derivatives

For a scalar field f,

(VaVe— Vi Vo) f = 0.
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Curvature from covariant derivatives

For a scalar field f,

(VaVe— Vi Vo) f = 0.

For a vector field V¢,

(VaVi — VeVa)VE = Ry VO

Riemann curvature tensor
The above tensor is defined as:

| R ab = 0T bd — ObT ad + Tl “bd — Tl “aa |
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Geometric meaning of curvature

Parallel transport
A vector V¢ is parallel transported along a curve with tangent 7 if

TV, Ve = 0.
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Geometric meaning of curvature

Parallel transport

A vector V¢ is parallel transported along a curve with tangent 7 if

TV, Ve = 0.

Curvature

Transporting a vector around an infinitesimal closed loop does not
return the same vector:

AV“ X Rabcd.

Sebastian Bahamonde Introduction to GR 65/129



Geometric content of a connection

Up to this point we have implicitly assumed the Levi—Civita connection.
More generally, an affine connection may have three independent features:

Failure of vectors to return unchanged after transport around a loop.

R%cq #0
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Geometric content of a connection

Up to this point we have implicitly assumed the Levi—Civita connection.
More generally, an affine connection may have three independent features:

Failure of vectors to return unchanged after transport around a loop.

R%cq #0

Failure of infinitesimal parallelograms to close.

Tabc = 1—‘abc - 1—‘acb
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Geometric content of a connection

Up to this point we have implicitly assumed the Levi—Civita connection.
More generally, an affine connection may have three independent features:

Curvature
Failure of vectors to return unchanged after transport around a loop.

R%cq #0

Failure of infinitesimal parallelograms to close.

Tabc = 1—‘abc - 1—‘acb )

Failure of lengths and angles to be preserved under transport.

vagbc 7é 0
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Geometric meaning: torsion, non-metricity, curvature

Torsion: failure of
infinitesimal
parallelograms to close

Non-metricity: lengths

and angles not preserved  Curvature: vector
changes after parallel

transport around a loop
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Levi—Civita connection

In General Relativity, we work with a unique connection satisfying:

T% . =0 (torsion-free)
Vagee = 0% (metric-compatible)

All gravitational effects are encoded purely in the metric and then, only
curvature is non-vanishing.
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Structure of the Riemann Curvature Tensor

Independent components

In n dimensions, the Riemann tensor has

1
12"

2(n2 o 1)

independent components due to strong symmetry constraints. So inn =4 it
contains 20 independent components.
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Structure of the Riemann Curvature Tensor

Independent components

In n dimensions, the Riemann tensor has

2¢. 2
— —1
" (" =1)

independent components due to strong symmetry constraints. So inn =4 it
contains 20 independent components.

Important symmetries

@ Antisymmetric in index pairs:

Rabcd = _Rbacda Rabcd = _Rabdc
@ Algebraic (cyclic) and differential Bianchi identities:

Rabcd + Rcabd + Rbcad =0 )

Ve-RaLbcd + Vd-RaLbec + VC-Rabde =0.
e
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Contractions of the Riemann Tensor

The Riemann tensor R%,.; encodes the full local curvature associated
with a connection.

First contraction: Ricci tensor

Contracting one contravariant and one covariant index,
Ry, = RCacby

defines the Ricci tensor and it is symmetric: R, = Rpq-
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Contractions of the Riemann Tensor

The Riemann tensor R%,.; encodes the full local curvature associated
with a connection.

First contraction: Ricci tensor

Contracting one contravariant and one covariant index,

Ry, = RCacb»

defines the Ricci tensor and it is symmetric: R, = Rpq-

Second contraction: scalar curvature
Taking the trace of the Ricci tensor,

R:= gabRaba

defines the scalar curvature that is a scalar invariant under
coordinate transformations.
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Q Einstein’s field equations and foundations
@ Guiding principles and sources
@ Newtonian limit
@ Einstein equations
@ Action principle

Sebastian Bahamonde Introduction to GR avarel



Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
o is formulated in a geometric and covariant way,
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Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
o is formulated in a geometric and covariant way,

@ is invariant under general coordinate transformations (diffeomorphism
invariant)
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Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
o is formulated in a geometric and covariant way,

@ is invariant under general coordinate transformations (diffeomorphism
invariant)

@ incorporates the equivalence principle,
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Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
o is formulated in a geometric and covariant way,

@ is invariant under general coordinate transformations (diffeomorphism
invariant)

@ incorporates the equivalence principle,
@ reduces to Newtonian gravity in the weak-field limit.
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Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
o is formulated in a geometric and covariant way,

@ is invariant under general coordinate transformations (diffeomorphism
invariant)

@ incorporates the equivalence principle,
@ reduces to Newtonian gravity in the weak-field limit.

These requirements suggest that gravity should be encoded in
spacetime geometry, through tensors constructed from the metric and
its derivatives.
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Energy—momentum tensor

In General Relativity, the gravitational field must be sourced by a local,
covariant object encoding energy and momentum.
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Energy—momentum tensor

In General Relativity, the gravitational field must be sourced by a local,
covariant object encoding energy and momentum.

Definition
The energy—momentum tensor 7, is a symmetric rank—(0, 2) tensor
that represents local densities and fluxes of energy and momentum.
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Energy—momentum tensor

In General Relativity, the gravitational field must be sourced by a local,
covariant object encoding energy and momentum.

Definition
The energy—momentum tensor 7, is a symmetric rank—(0, 2) tensor
that represents local densities and fluxes of energy and momentum.
TOO TOI T02 T03

TlO Tll T12 T13 TOO TOj

T20 21 22 23 = (TiO Tij) o

T30 T31 T32 T33

T =
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Energy—momentum tensor

In General Relativity, the gravitational field must be sourced by a local,
covariant object encoding energy and momentum.

Definition
The energy—momentum tensor 7, is a symmetric rank—(0, 2) tensor
that represents local densities and fluxes of energy and momentum.
TOO TOI T02 T03

TlO Tll T12 T13 TOO TOj

T20 21 22 23 = (TiO Tij) o

T30 T31 T32 T33

@ Tyo: energy density

@ Ty;: momentum density (energy flux)

@ Tj;: stresses (pressure and shear)

T =
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Energy—momentum tensor: Maxwell field

Electromagnetic field
Let F,; be the electromagnetic field strength tensor.
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Energy—momentum tensor: Maxwell field

Electromagnetic field
Let F,; be the electromagnetic field strength tensor.

Energy—momentum tensor

The energy—momentum tensor of the Maxwell field is

1
Ty = Facky — - gap FoaF".
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Energy—momentum tensor: Maxwell field

Electromagnetic field
Let F,; be the electromagnetic field strength tensor.

Energy—momentum tensor

The energy—momentum tensor of the Maxwell field is

1
Ty = Facky — - gap FoaF".

o Traceless: 7%, =0
@ Encodes energy density, Poynting flux and stresses
@ Fully covariant and symmetric

Sebastian Bahamonde Introduction to GR 74/129



Energy—momentum tensor: Perfect fluid

Perfect fluid

A perfect fluid is characterised by:
@ Energy density p
@ Isotropic pressure p
o Four—velocity u®
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Energy—momentum tensor: Perfect fluid

Perfect fluid

A perfect fluid is characterised by:
@ Energy density p
@ Isotropic pressure p
o Four—velocity u®

Energy—momentum tensor

Top = (P + p)uaub + D Gab-
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Energy—momentum tensor: Perfect fluid

Perfect fluid

A perfect fluid is characterised by:
@ Energy density p
@ Isotropic pressure p
o Four—velocity u®

Energy—momentum tensor

Top = (P + p)uaub + D Gab-

@ In the rest frame: u® = (1,0,0,0)
@ Non-—relativistic matter: p < p
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Non-relativistic limit

@ Weak gravitational field
o Velocities v < ¢
@ Pressure negligible: p < p

Sebastian Bahamonde Introduction to GR 76/129



Non—relativistic limit
@ Weak gravitational field

o Velocities v < ¢
@ Pressure negligible: p < p

Energy—momentum tensor
In this limit,

Too ~ p, Toi =0, T;; ~ 0.
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Non-—relativistic limit

@ Weak gravitational field
o Velocities v < ¢
@ Pressure negligible: p < p

Energy—momentum tensor
In this limit,

Too ~ p, Toi =0, T;; ~ 0.

Only the energy density contributes at leading order.
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Non-relativistic limit

Assumptions
@ Weak gravitational field
o Velocities v < ¢
@ Pressure negligible: p < p

Energy—momentum tensor

In this limit,

Too ~ p, Toi =0, T;; ~ 0.

Only the energy density contributes at leading order.
This limit will be used to fix the coupling constant and identify the
correct gravitational source.
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Newtonian limit of gravity

Weak field expansion

We write the metric as

gllJ/ = 77;1,1/ + huya |hl“/’ < 1.
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Newtonian limit of gravity

Weak field expansion
W

e write the metric as

g;u/ = 77;1,1/ + h;uu |hl“/| < 1.

Geodesic equation
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Newtonian limit of gravity
Weak field expansion

We write the metric as

g;u/ = 77;1,1/ + h;uu |hl“/| < 1.

Geodesic equation
In the Newtonian limit (weak gravitational field and small velocities),

d*z 1o
a2 = Y
Identifying § = —V® gives
hoo ~ —2.
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Poisson equation and gravity

Newtonian gravity

The Poisson equation reads

V20 = 47Gp.
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Poisson equation and gravity

Newtonian gravity
The Poisson equation reads

V2® = 47Gp.

Metric perturbation

Using hoo ~ —2®, we obtain

V2900 = 87TGT00.
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Poisson equation and gravity

Newtonian gravity

The Poisson equation reads

V2® = 47Gp.

Metric perturbation
Using hoo ~ —2®, we obtain

V2900 = 87TGT00.

This identifies the energy density as the gravitational source.
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From energy density to a covariant source

The Newtonian limit singles out the 00-component:

V2go() — TOO-
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From energy density to a covariant source

The Newtonian limit singles out the 00-component:
V2go() — TOO-

In a relativistic theory, the source must be a rank-2 tensor valid in all
coordinate systems.
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From energy density to a covariant source

The Newtonian limit singles out the 00-component:
V2go() — TOO-

In a relativistic theory, the source must be a rank-2 tensor valid in all
coordinate systems.

Energy—momentum tensor

The natural covariant generalisation of the energy density is

Ty

Sebastian Bahamonde Introduction to GR 79/129



General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form
Guw = &ZT,W,

where G, is a geometric tensor constructed from the metric.
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General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form
Guw = &ZTW,
where G, is a geometric tensor constructed from the metric.

@ The constant ? is fixed by the Newtonian limit to be 87G. Recall that
in other units, ¢ # 1 and then x? = 82
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General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form
Guw = &ZTW,
where G, is a geometric tensor constructed from the metric.

@ The constant 2 is fixed by the Newtonian limit to be 87G. Recall that
in other units, ¢ # 1 and then x? = 82

@ At this stage, the precise form of G, is still unknown.
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Constraints on the geometric tensor

The tensor G, must satisfy:
@ Be constructed from g, and its derivatives (up to second order).
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Constraints on the geometric tensor

The tensor G, must satisfy:
@ Be constructed from g, and its derivatives (up to second order).
@ Be symmetric:
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Constraints on the geometric tensor

The tensor G, must satisfy:
@ Be constructed from g, and its derivatives (up to second order).
@ Be symmetric:

@ Since V,T" = 0, it must be covariantly conserved:
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Constraints on the geometric tensor

The tensor G, must satisfy:
@ Be constructed from g, and its derivatives (up to second order).
@ Be symmetric:

@ Since V,T" = 0, it must be covariantly conserved:

@ Must recover Newtonian limit for weak grav fields.
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Constraints on the geometric tensor

The tensor G, must satisfy:
@ Be constructed from g, and its derivatives (up to second order).
@ Be symmetric:

@ Since V,T" = 0, it must be covariantly conserved:
V/_LGHV = O,

@ Must recover Newtonian limit for weak grav fields.

@ The most general rank-2 tensor (without a constant) satisfying those
conditions is:
G;w = CIRm/ + CQQ,ul/Ra

where C; and C, are constants that are related C; = —2C5 to ensure
covariant conservation.
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Einstein tensor

Up to an overall constant, the unique tensor satisfying all requirements
is

1
Guy = Rl“/ — égl“,R
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Einstein tensor

Up to an overall constant, the unique tensor satisfying all requirements
is

1
G’uy = Rl“/ — ig'w/R

This tensor is called the Einstein tensor.
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Einstein field equations

The Einstein field equations without setting ¢ = 1 read

8rG
A

1
Rl“/ — iRguV = T,LI,V'
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Einstein field equations

The Einstein field equations without setting ¢ = 1 read

8rG
A

1
Rl“/ — iRguV = T,UJ/'

@ The left-hand side is built solely from the metric and its first and
second derivatives.
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Einstein field equations

The Einstein field equations without setting ¢ = 1 read

8rG

1
RMV — iRguV = ? T,UJ/'

@ The left-hand side is built solely from the metric and its first and
second derivatives.

@ It is symmetric and covariantly conserved:
v, (R = Rg™) =0,

consistently matching V,T*" = 0.
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Einstein field equations
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@ The left-hand side is built solely from the metric and its first and
second derivatives.

@ It is symmetric and covariantly conserved:
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consistently matching V,T*" = 0.
@ In the weak-field (Newtonian) limit, it reproduces Poisson’s equation.
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Einstein field equations

The Einstein field equations without setting ¢ = 1 read

8rG

1
RMV — iRg’“’ = ? ij.

@ The left-hand side is built solely from the metric and its first and
second derivatives.

@ It is symmetric and covariantly conserved:
v, (R = Rg™) =0,

consistently matching V,T*" = 0.
@ In the weak-field (Newtonian) limit, it reproduces Poisson’s equation.

@ In four spacetime dimensions, g,,, has 10 independent components.
Therefore, the Einstein equations form a system of

| 10 coupled, non-linear, second-order partial differential equations. |
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Trace and vacuum Einstein equations

Taking the trace
In 4-dimensions, by contracting the Einstein equations with ¢**, we find

y 1 8rG .,
g" (Rm/ - §Rg,uu) = A g" T;wa
we obtain | 8r
T
R——-4R=-R=——
2( ) A

where T' = ¢g"*T,, is the trace of the energy—momentum tensor.
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Trace and vacuum Einstein equations

Taking the trace
In 4-dimensions, by contracting the Einstein equations with ¢**, we find

y 1 8rG .,
g" <R;w - §Rguu) = 0_49” T;wa

we obtain | 8r
T

R——4R=-R=—7-T

2() A

where T' = ¢g"*T,, is the trace of the energy—momentum tensor.

Equivalent form
Substituting back, the Einstein equations in 4D can be written as

8rG 1
RNV = C—4 <TNV — ETQMV) .
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Vacuum Einstein equations

In the absence of matter,
Tuv =0,

the Einstein equations reduce to

Ry, =0.
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Vacuum Einstein equations

In the absence of matter,
Tuv =0,

the Einstein equations reduce to

Ry, =0.

This condition implies R = 0 (Ricci scalar)
@ Spacetimes satisfying R, = 0 are called Ricci-flat.
@ Ricci-flat does notimply flat spacetime:

R/_u/ = O # Rpo—uy = 0-
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Vacuum Einstein equations

In the absence of matter,
Tuv =0,

the Einstein equations reduce to

Ry, =0.

This condition implies R = 0 (Ricci scalar)
@ Spacetimes satisfying R, = 0 are called Ricci-flat.
@ Ricci-flat does notimply flat spacetime:

R/_u/ = O # Rpo—uy = 0-

@ Vacuum solutions can still possess non-trivial curvature.
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Geometrical interpretation of gravity

Wheeler’s interpretation

“Spacetime tells matter how to move;
matter tells spacetime how to curve.”
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Wheeler’s interpretation

“Spacetime tells matter how to move;
matter tells spacetime how to curve.”

In General Relativity, gravity is not a
force.
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of a curved spacetime.
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Geometrical interpretation of gravity

Wheeler’s interpretation

“Spacetime tells matter how to move;
matter tells spacetime how to curve.”

In General Relativity, gravity is not a
force.

Free-falling particles follow geodesics
of a curved spacetime.

The curvature is generated by energy
and momentum, encoded in 7},,,.
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Geometrical interpretation of gravity

Wheeler’s interpretation

“Spacetime tells matter how to move;
matter tells spacetime how to curve.”

In General Relativity, gravity is not a
force.

Free-falling particles follow geodesics
of a curved spacetime.

The curvature is generated by energy
and momentum, encoded in 7},,,.
This contrasts with Newtonian gravity,
where gravity acts as a force in a fixed,
flat background.
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Einstein equations from an action principle

So far, the Einstein field equations were introduced from:
@ geometric identities,
@ physical requirements (symmetry, conservation),
@ and the Newtonian limit.

Sebastian Bahamonde Introduction to GR 87/129



Einstein equations from an action principle

So far, the Einstein field equations were introduced from:

@ geometric identities,
@ physical requirements (symmetry, conservation),
@ and the Newtonian limit.

Alternative viewpoint

There exists an equivalent formulation:
o the Einstein equations can be obtained from a variational principle,
@ by extremising an action with respect to the metric.

v

This approach places General Relativity within the standard framework
of classical field theory.
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Einstein—Hilbert action

Gravitational action
The dynamics of the gravitational field can be obtained from the action

1 4
SGR:W d.’L‘\/—gR—FS’m,

where g = det(g,,) and S, is the matter action.

@ The fundamental variable is the metric g,,,..
o Field equations follow from the stationarity condition

5Ssr =0

under arbitrary variations jg.
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Variation of the gravitational action

Variation of the integrand

The variation of the gravitational term gives

0(vV—gR) = Rov/—g++/—goR.

Metric determinant
Using

1 1 1
_— = — — g v) = —= — I/é /J'V,
5 __959 5V =9(9""0gu) = =5V =9 g 09

where we used g,,,0¢"" = —g""dg,,, that can be found by using
59" = —g"* (8gap) 9"".

5/—g = —
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Variation of the gravitational action

Variation of the integrand

The variation of the gravitational term gives

0(vV—gR) = Rov/—g++/—goR.

Metric determinant
Using

1 1 1
_ = —\/— g v = — —\/— U(S/J'V,

where we used g,,,0¢"" = —g""dg,,, that can be found by using

3g" = —g"* (89ap) 9"
Thus, the first term becomes

5/—g = —

]' v
V9 R g 09" .
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Variation of the scalar curvature

o Since R = g" R,

V—=90R = /—gd(R,6g"") = /—gRu 69" + /—99" 0R,, .

Sebastian Bahamonde Introduction to GR 90/129



Variation of the scalar curvature

o Since R = g" R,
V=90R = \/=g6(Ryu6g"") = /=g Ry 09" + v/ —9g" 0 Ry .
@ Now, by replacing the Ricci tensor in terms of Levi-Civita:
Ry =Ry = 0\ — 9,12 0 + T 0T, — T2,,T7 0
we find
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Variation of the scalar curvature

o Since R = g" R,
V—=96R = V=9g6(Rw69"") = V/—gRu 69" + /=99 6 Ry, .
@ Now, by replacing the Ricci tensor in terms of Levi-Civita:
R;w = RA;I)\V = 8>\F>\[LI/ - aV]-—‘)\;l)\ + PAa/\FU;u/ - FAO’I/FJ/J,A
we find
V—90R = /—gRu,0g"" +/—gV, (¢°" 0" ,c — g7PT'" ;) .
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Variation of the scalar curvature

o Since R = g" R,
V=90R = /=g6(R,09"") = /=g Ry 69" + /=99" 6 Ry -
@ Now, by replacing the Ricci tensor in terms of Levi-Civita:
R;w = RA;LAV = 8)\F>\;w - aul—‘)\u)\ + PAO’APU}UJ - FAO’I/FJ/J,A
we find
V—90R = /—gRu,0g"" +/—gV, (¢°" 0" ,c — g7PT'" ;) .
o Important identity: /=g V,A* =V, (V=g A*) = 8, (v/—g A*)
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Variation of the scalar curvature
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o Important identity: /=g V,A* =V, (V=g A*) = 8, (v/—g A*)
@ Therefore, the second term does not contribute to the field equations
(it is a boundary term!)
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Variation of the scalar curvature

o Since R = g" R,
V—=96R = V=9g6(Rw69"") = V/—gRu 69" + /=99 6 Ry, .
@ Now, by replacing the Ricci tensor in terms of Levi-Civita:
R,uu = RA;I)\V = 8)\1_‘)\;“/ - 81/F>\u)\ + I‘Aa/\rauu - FAO’I/FO-//,A
we find
V—90R = /—gRu,0g"" +/—gV, (¢°" 0" ,c — g7PT'" ;) .

o Important identity: /=g V,A* =V, (V=g A*) = 8, (v/—g A*)

@ Therefore, the second term does not contribute to the field equations
(it is a boundary term!)

@ Hence, the variation of this term is

Variation second term

\% _95R =V _gRuu 5.9“”

+boundary terms
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Result of the gravitational variation

Gravitational contribution

After neglecting the boundary term, the variation yields

1

1
0SGR = 92 d'z V=9 (Rm/ - §Rguv> og"”.

The Einstein tensor emerges naturally from the variational principle.
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Matter sector and field equations

Energy—momentum tensor

The energy—momentum tensor is defined by

ZRG)

T'w/ — ——__gégw

Einstein field equations

Requiring §Sgr = 0 for arbitrary d¢"” leads to

1
Rp/y - §Rg/“/ = h}zT’uV.
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Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives
allows the addition of a constant term,

Sx= - [dovga,

Einstein equations with A

Varying the total action leads to

1
R, — iRg,w + Ag, — R2T,W.
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Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives
allows the addition of a constant term,

Sy = —%/d‘*aﬂ/——gA.

Einstein equations with A

Varying the total action leads to

1
R, — iRg,w + Ag, — R2T,W.

@ A acts like a uniform vacuum energy density (present even when
T, =0).
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Cosmological constant

Generalised gravitational action

The most general gravitational action with at most second derivatives
allows the addition of a constant term,

Sx= - [dovga,

Einstein equations with A

Varying the total action leads to

1
R, — iRg,w + Agu, — R2T,W.

@ A acts like a uniform vacuum energy density (present even when
v = U
@ Itis compatible with covariance and conservation laws.
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@ The Schwarzschild solution
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Isometries and Killing vectors (minimal toolkit)

A transformation is an isometry if it leaves the line element invariant:
ds?® = g, () dztdz”  is unchanged.

Equivalently, the metric is constant along the symmetry flow.
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@ Spherical symmetry = 3 spacelike Killing vectors (rotations, SO(3)).
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@ Spherical symmetry = 3 spacelike Killing vectors (rotations, SO(3)).
o Stationarity = 1 timelike Killing vector (9;).
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A vector field £&# generates an isometry iff
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Isometries and Killing vectors (minimal toolkit)

A transformation is an isometry if it leaves the line element invariant:

ds?® = g, () dztdz”  is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field £&# generates an isometry iff

Leguy =0 — V.6 +V, 5 =0

@ Spherical symmetry = 3 spacelike Killing vectors (rotations, SO(3)).
o Stationarity = 1 timelike Killing vector (9;).

@ Symmetries strongly constrain the allowed form of g,,, .

@ These Killing vectors imply conserved quantities along geodesics

(energy and angular momentum).
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Schwarzschild problem: assumptions

Find the gravitational field outside a static, spherically symmetric
mass.
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Schwarzschild problem: assumptions

Find the gravitational field outside a static, spherically symmetric
mass.

@ Vacuum exterior: T,;, = 0 = R,, = 0.
@ Spherical symmetry: invariance under spatial rotations (SO(3)).

o Static: no t-dependence, and one can always eliminate dt dr cross
term.
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Schwarzschild problem: assumptions

Find the gravitational field outside a static, spherically symmetric
mass.

@ Vacuum exterior: T,;, = 0 = Ry, =
@ Spherical symmetry: invariance under spatial rotations (SO(3)).

o Static: no t-dependence, and one can always eliminate dt dr cross
term.

How to model this?

Take the full metric and assume spherical symmetry (Killing) and solve
the vacuum Einstein’s field equations.

v
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Most general static, spherically symmetric metric

Static spherically symmetric Metric (— + ++)

The most general static and spherically symmetric line element can be
written as

ds? = _eu('r)dt2 + ea(r)dr2 + r2 (d02 + sin2 6 d¢2)
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Most general static, spherically symmetric metric

Static spherically symmetric Metric (— + ++)

The most general static and spherically symmetric line element can be
written as

d82 _ _eu(r)dtZ + ea(r)dr2 + 7,2 (d02 + sin2 0 d¢2)

o Time independence: d;g,,, = 0
@ Spherical symmetry fixes the angular sector
@ Two unknown functions: v(r) and a(r)
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Connection coefficients

Non-vanishing Christoffel symbols
The independent non-zero Christoffel symbols are:*

Forg = F¢r¢ = - F¢0¢ = cot 6.

(A prime denotes derivative with respect to r. All other components follow by
symmetry.)
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Ricci tensor components

Non-vanishing components
The Ricci tensor components are:*

_1V—a " 1/2 1// 2/
Rtt—2e (1/ +21/ —2(11/—|-TI/ ,

1//_1/2 L, 1,

RM:_iy ZI/ +Zay+;a,
Rpp=1—¢¢ <1 — ga’ + £V'> , Ryy = sin? 0 Ryg.

(All other components follow by symmetry.)
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Vacuum Einstein equations

In vacuum, Einstein’s equations reduce to
Ru = 0.

For the metric ansatz above, there are three non-trivial equations, but
only two of them are independent due to Bianchi identities.
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Vacuum Einstein equations

In vacuum, Einstein’s equations reduce to
Ru = 0.

For the metric ansatz above, there are three non-trivial equations, but
only two of them are independent due to Bianchi identities.
We first consider the (¢t) and (rr) components.
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The (tt) and (rr) equations

The (¢t) component yields

1 1 1 1
5V// + Z(V/)Q + ;V' _ Zyla, —0.
The (rr) component gives
1 1 1 1
—51/" = Z(l/,)2 + Zl/a' + ;a' = 0.

Here primes denote derivatives with respect to r.
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Relation between metric functions

Adding the (¢t) and (rr) equations, we obtain

(V' + a/) =0.

S|

This integrates immediately to
v(r) + a(r) = const.

By a constant rescaling of the time coordinate ¢, the constant can be
set to zero, so that

v(r) = —a(r).
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The (60) equation

Using a = —v, the (#9) component of R,;, = 0 reduces to
1—e”—rve’ =0.
Noting that

—(re¥) = e¥ +rv'e”,

dr
the equation can be rewritten as

5(7‘ —re’)=0.

Sebastian Bahamonde Introduction to GR 103/129



Schwarzschild solution

Integrating, we find

r—re’ =C,

which implies
R CIC
T

Since a = —v, the metric becomes

—1
ds® = — <1 — Q) dt? + (1 — g) dr? + r2dQ?,

r

where dQ? = d#? + sin® 0 d¢>.
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Newtonian limit and identification of the constant

To identify the integration constant C, we restore physical units:

=1
ds® = — (1 — ?) Adt?* + (1 - ?) dr® 4+ r*dQ’.
cer cer
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Newtonian limit and identification of the constant

To identify the integration constant C, we restore physical units:

=1
ds® = — (1 — %) Adt?* + (1 - %) dr® 4+ r*dQ’.

In the weak-field and slow-motion limit, the only relevant Christoffel
symbol is

GC

Frtt = —%o
i

Sebastian Bahamonde Introduction to GR

105/129



Newtonian limit and identification of the constant

To identify the integration constant C, we restore physical units:
—1
ds® = — 1—§ Adt? + 1_@ dr? + r2d02.
c2r c2r

In the weak-field and slow-motion limit, the only relevant Christoffel
symbol is

GC
T ~ —
Tr tt = 27"2 .
Comparing with Newtonian gravity,
d*r _ _GM
a2~ 2’
we identify
C=2M
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Final form of the Schwarzschild metric

Restoring G and ¢, the Schwarzschild metric reads
=1
dst=— (1-2GM) gy (1 2CGMN ey r2(d6? + sin® 0 dp?).
c’r c’r

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.
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Final form of the Schwarzschild metric

Restoring G and ¢, the Schwarzschild metric reads

M\ L
ds? = — (1 — 2f2i4> c2dt? + (1 = 2521« ) dr® 4 r2(d6* + sin? 0 d¢?).

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.

@ Exact vacuum solution: R, = 0 for r > Rpoqy.
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Final form of the Schwarzschild metric

Restoring G and ¢, the Schwarzschild metric reads

1
ds?=—(1— ACLY Adt?+ (11— 2CH dr? 4+ r2(d6?* + sin® 6 dp?).
c2r c2r

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.

@ Exact vacuum solution: R, = 0 for r > Rpoqy.

o Asymptotically flat: as » — oo, spacetime approaches Minkowski.
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Final form of the Schwarzschild metric

Restoring G and ¢, the Schwarzschild metric reads

1
ds? = —[1— S Adt?+ (1 - 25 ] dr? + r?(d#? + sin® 6d¢2 .
c2r c2r

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.

@ Exact vacuum solution: R, = 0 for r > Rpoqgy-

o Asymptotically flat: as » — oo, spacetime approaches Minkowski.
@ Apparent singularities (metric diverges at some points!) occur at:*
o 7 =1, :=2GM/c* (coordinate singularity, event horizon),
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Final form of the Schwarzschild metric

Restoring G and ¢, the Schwarzschild metric reads
2GM 2GM\
ds? = — (1 - (’; ) Adt? + (1 - CI; ) dr? +12(d6* + sin® 0 d”).
c°r cr

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.

@ Exact vacuum solution: R, = 0 for r > Rpoqgy-
o Asymptotically flat: as » — oo, spacetime approaches Minkowski.

@ Apparent singularities (metric diverges at some points!) occur at:*

o 7 =1, :=2GM/c* (coordinate singularity, event horizon),
o r = 0 (true curvature singularity).

@ Spherical coordinates are not good, one can introduce other ones
(Eddington-Finkelstein) and then r = r, is non-singular.

@ One way to check singularities is by looking into scalars constructed
from curvature: For example Kretschmann invariant K = RMPR), ..,
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Birkhoff’s theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the vacuum Einstein equations is
static and asymptotically flat.
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Birkhoff’s theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the vacuum Einstein equations is
static and asymptotically flat.

@ Therefore, the exterior vacuum field of any spherically symmetric
body is Schwarzschild.

@ Even if the source changes in time (e.g. pulsations), the exterior
vacuum metric remains static.
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Birkhoff’s theorem (statement)

Theorem (Birkhoff)

Any spherically symmetric solution of the vacuum Einstein equations is
static and asymptotically flat.

@ Therefore, the exterior vacuum field of any spherically symmetric
body is Schwarzschild.

@ Even if the source changes in time (e.g. pulsations), the exterior
vacuum metric remains static. Schwarzschild is the unique spherically
symmetric solution of GR in vacuum.
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Schwarzschild radius: Sun and Earth

Characteristic length scale
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Schwarzschild radius: Sun and Earth

Characteristic length scale

s, ~ 3 km, rs,@ ~ 0.9 cm.
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Schwarzschild radius: Sun and Earth

Characteristic length scale

s, ~ 3 km, rs,@ ~ 0.9 cm.

@ For ordinary objects, typically 75 < Rpody-
@ Since Schwarzschild is a vacuum solution, it applies for

r> Rbody~
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Schwarzschild radius: Sun and Earth

Characteristic length scale

s, ~ 3 km, rs,@ ~ 0.9 cm.

@ For ordinary objects, typically 75 < Rpody-
@ Since Schwarzschild is a vacuum solution, it applies for

r> Rbody~

@ A black hole forms if the matter radius satisfies Ryoqy < 75.
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Schwarzschild radius: Sun and Earth

Characteristic length scale

rso ~ 3 Kkm, rs@ ~ 0.9 cm.

@ For ordinary objects, typically 75 < Rpody-
@ Since Schwarzschild is a vacuum solution, it applies for

r> Rbody~

@ A black hole forms if the matter radius satisfies Ryoqy < 75.

@ The hypersurface r = r; is the event horizon: once inside,
future-directed causal curves cannot reach infinity.
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© Classical predictions of General Relativity
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Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild
connection I'*, 3 into the geodesic equation

dQX“JFFH dX® dX5
a2 BN dr
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Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild
connection I'*, 3 into the geodesic equation

B2XH e 4X° dx?
a2 BTN dA

Equivalent: use the geodesic Lagrangian

1 —_ d
e HXxY =
L 2gWXX, =
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Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild
connection I'*, 3 into the geodesic equation
> X+ ,  AXYdX p
7 Tl ey =
d\ d\ dX\

Equivalent: use the geodesic Lagrangian

1 . .
£:§gMVXMXV, =

Spherical symmetry: without loss of generality take motion in the
equatorial plane

s .
6=3. =0,

so the dynamics reduces to (t(\),7(\), ¢(A)).
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Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting = /2, 6 = 0, the

geodesic Lagrangian
1 A
= 3 G XH XY

becomes

e=g [0 (T e
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Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting = /2, 6 = 0, the
geodesic Lagrangian
1

L= guXrX”

becomes

e=g [0 (T e

Normalization (type of geodesic):

o 1 timelike geodesics,
— = € =
0 null geodesics.
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Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting = /2, 6 = 0, the
geodesic Lagrangian
1 N
L= 3 guwX"X"

becomes

e=g [0 (T e

Normalization (type of geodesic):

o 1 timelike geodesics,
— = € =
0 null geodesics.

Interpretation: e is fixed by the causal character of the worldline.
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First integrals from cyclic coordinates (¢ and ¢)

In Schwarzschild, £ does not depend explicitly on ¢ nor ¢ = two
conserved conjugate momenta.
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First integrals from cyclic coordinates (¢ and ¢)

In Schwarzschild, £ does not depend explicitly on ¢ nor ¢ = two
conserved conjugate momenta.

pt::%:—<1—¥>f:2—E = E:(l—%ﬁ.
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First integrals from cyclic coordinates (¢ and ¢)

In Schwarzschild, £ does not depend explicitly on ¢ nor ¢ = two
conserved conjugate momenta.

pt::%:—<1—¥>f:2—E = Ez(l—%ﬁ.

pqg::g—g:r%ﬁzzﬁ = |L=r2¢.
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First integrals from cyclic coordinates (¢ and ¢)

In Schwarzschild, £ does not depend explicitly on ¢ nor ¢ = two

conserved conjugate momenta.

- oc ( 2M

8t 1—T>f::—E =

oL

2
a¢—r¢—€ =

Dy =

14

23,

Meaning: F is the energy per unit mass and ¢ the (specific) angular

momentum.
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Reducing the problem to a 1D radial equation

Using the conserved quantities

. E . l
t=1—m 4T @

T

and the normalization of the four—velocity,

1 timelike geodesics,

X’U'XV = —¢, E=
Juv {0 null geodesics,

we obtain the radial equation

f2=E2—(1—¥) (f—z-l-e).
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Reducing the problem to a 1D radial equation

Using the conserved quantities

. E . ¢
t=1"mr =@

T

and the normalization of the four—velocity,

1 timelike geodesics,

X’U'Xy = —¢, E=
v {0 null geodesics,

we obtain the radial equation

This is equivalent to a one—dimensional energy equation

1 1
§f2+‘/:eﬁ(7):§E27
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Orbit equation ¢(r)

To compute observables (perihelion shift, light bending), we want

¢ = ¢(r).
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Orbit equation ¢(r)

To compute observables (perihelion shift, light bending), we want
¢ = ¢(r).

From ¢ = r2¢ we have
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Orbit equation ¢(r)

To compute observables (perihelion shift, light bending), we want
¢ = é(r).

From ¢ = r2¢ we have

From the radial equation,

SO
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Orbit equation ¢(r)

To compute observables (perihelion shift, light bending), we want
¢ = é(r).

From ¢ = r2¢ we have

From the radial equation,

SO

o ¢ €., IMN [ 2 —1/2
— === |EF-—(1-— (= .
dr 7 1r? [ < r ) (7“2 te

@ Timelike (perihelion): e =1

@ Null (light bending): e =0

Sebastian Bahamonde Introduction to GR 114/129



Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital
equation for u(¢) = 1/r reads

A2y M
_— = — 2‘
102 +u 72 + 3Mu
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Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital
equation for u(¢) = 1/r reads

A2y M
_— = — 2‘
102 +u 72 + 3Mu

@ The first two terms reproduce the Newtonian orbit equation.
@ The additional term 3M«? is a purely relativistic correction.
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Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital
equation for u(¢) = 1/r reads

A2y M
- = — +3Mu>.
d¢2+u €2+3 U

@ The first two terms reproduce the Newtonian orbit equation.

@ The additional term 3M«? is a purely relativistic correction.

In Newtonian gravity:
dg? Nz

which admits closed elliptical orbits.
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Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The
perihelion advances by

6m M

M=

per revolution, where a is the semi-major axis and e the eccentricity.
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Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The
perihelion advances by

6m M

A=i-a

per revolution, where a is the semi-major axis and e the eccentricity.

Apgr ~ 43" per century. I
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Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The
perihelion advances by

6m M

A=i-a

per revolution, where a is the semi-major axis and e the eccentricity.

Apgr ~ 43" per century. \

@ Newtonian gravity predicts no perihelion shift.
@ The observed excess matches the GR prediction precisely.
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Perihelion precession (schematic)

@ Before GR, the anomaly was attributed to a hypothetical planet (“Vulcan”).
@ The orbit is not closed: the perihelion advances by Ay each revolution.

@ In GR this comes from geodesic motion in Schwarzschild spacetime (extra
relativistic correction).
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Deflection of light: null geodesics

Light rays follow null geodesics (2£ = 0). The orbital equation becomes

d*u 9
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Deflection of light: null geodesics

Light rays follow null geodesics (2£ = 0). The orbital equation becomes

d*u 9

Solving perturbatively for a light ray passing at impact parameter b, one
finds a total deflection angle

where b := ¢/ E is the impact parameter.

Sebastian Bahamonde Introduction to GR 118/129



Deflection of light: Newton vs GR

General Relativity

A4GM
c2b

Ag¢gr =
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Deflection of light: Newton vs GR

General Relativity

A4GM
c2b

Ag¢gr =

Newtonian theory (naive)

2GM
c2b

Ad’Newton =
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Deflection of light: Newton vs GR

General Relativity

A4GM
c2b

Ag¢gr =

Newtonian theory (naive)

2GM

Ad’Newton = W

@ GR predicts twice the Newtonian deflection.
@ For light grazing the Sun:

A¢GR = 1.75".

@ Confirmed during the 1919 solar eclipse.

Sebastian Bahamonde Introduction to GR 119/129



@ Light follows null geodesics: the trajectory bends when passing near a
massive body.

@ The apparent position of a background star is shifted due to spacetime
curvature.
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Gravitational redshift: origin

The proper time measured by a static observer is

dr = vV — Gt dt.
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Gravitational redshift: origin

The proper time measured by a static observer is

dr = vV — Gt dt.

For the Schwarzschild metric,

2M
gu = — (1— —)
;
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Gravitational redshift: origin

The proper time measured by a static observer is

d7 = v/ gaz di.

For the Schwarzschild metric,

2M
gu=— (1——)
;

The ratio of observed frequencies between two radii ; and rs is

_2M

V2 r1
= ~ oM °

51 1 o
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the

same proper time:
dr = \ _gtt(r) dt.
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the

same proper time:
dr = \ _gtt(r) dt.

@ A clock deeper in a gravitational potential (» smaller) runs slower.
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the

same proper time:
dr = \/—gu(r) dt.

@ A clock deeper in a gravitational potential (» smaller) runs slower.
@ A clock far from the gravitating body (r — oo) runs faster.
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the

same proper time:
dr = \/—gu(r) dt.

@ A clock deeper in a gravitational potential (» smaller) runs slower.
@ A clock far from the gravitating body (r — oo) runs faster.
For two observers at r; and ra,

2M
AT1: 1_W
ATy 1—M'

T2
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the

same proper time:
dT =\ _gtt(r) dt

@ A clock deeper in a gravitational potential (» smaller) runs slower.
@ A clock far from the gravitating body (r — oo) runs faster.
For two observers at r; and ra,

2M
AT1: 1_W
ATy 1— 2M~°

T2

Gravity affects the rate of time itself, not only the motion of particles. I
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.

o Gravitational redshift causes satellite clocks to run faster than ground
clocks.
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.

o Gravitational redshift causes satellite clocks to run faster than ground
clocks.

@ Special relativistic time dilation (due to orbital velocity) causes them to
run slower.
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.

o Gravitational redshift causes satellite clocks to run faster than ground
clocks.

@ Special relativistic time dilation (due to orbital velocity) causes them to
run slower.

The net relativistic correction is approximately

At ~ 38 us per day.
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.

o Gravitational redshift causes satellite clocks to run faster than ground
clocks.

@ Special relativistic time dilation (due to orbital velocity) causes them to
run slower.

The net relativistic correction is approximately

At ~ 38 us per day.

Physical consequence

Without relativistic corrections from General Relativity, GPS positioning
errors would grow by several kilometers per day.
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Gravitational redshift and GPS (schematic)

@ Clock rates depend on gravitational potential: time at different altitudes runs
differently.

@ GPS needs relativistic corrections (GR + SR) to keep timing/position
accurate.
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Friedmann—Robertson—Walker spacetime

Cosmological assumptions
@ Homogeneity: all spatial points are equivalent.
o Isotropy: no preferred spatial direction.
@ Matter content described by a perfect fluid:

TF, = diag(—p, p, p, p)-

Most general metric compatible with these symmetries

dr?
1 — kr2

ds® = —d® + a(t)? +7%(d6? + sin® 0d*9) | ,

where
@ af(t) is the scale factor,
@ k =0, +1 determines the spatial curvature.
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Friedmann equations and cosmological dynamics

Inserting the FRW metric into Einstein’s equations,

Gu +Agy =81G 1T,

yields the Friedmann equations*:

@\*_81G kA
a) 3p a? 3
a 4G A
2= 3 =

: (p+ p)+3

Key physical consequences
@ Cosmic expansion or contraction (a # 0).
@ Acceleration or deceleration determined by p + 3p.
@ A can drive accelerated expansion.
@ Cosmological redshift: 1 + z = a(tg)/a(tem)-

Introduction to GR 126/129

Sebastian Bahamonde



Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as
uv = Nuv + hf;wa ‘h/u/’ < 1>

where:
@ 1, is the Minkowski metric,
@ h,, represents a small perturbation of spacetime.
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Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as
uv = Nuv + huv: ‘huu’ < 17

where:
@ 1, is the Minkowski metric,
@ h,, represents a small perturbation of spacetime.
In vacuum, the perturbations b, propagate as waves:

hu., ~ gQravitational waves.
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Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as
Juv = Nuv + h’,ulla ‘huu’ <1,

where:
@ 1, is the Minkowski metric,
@ h,, represents a small perturbation of spacetime.
In vacuum, the perturbations b, propagate as waves:

hu., ~ gQravitational waves.

Physical content

In four dimensions, gravitational waves have two independent
polarizations:

h4 and hx,

called the ‘plus”and “cross” modes.
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Gravitational waves: linearised gravity

o Gravitational waves are ripples of spacetime itself.

@ They stretch and squeeze distances transverse to their direction of
propagation.
@ They carry energy and propagate at the speed of light.
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Gravitational waves: linearised gravity

o Gravitational waves are ripples of spacetime itself.

@ They stretch and squeeze distances transverse to their direction of
propagation.
@ They carry energy and propagate at the speed of light.

Why they matter

Gravitational waves provide a direct observational probe of strong-field
General Relativity and were first detected by LIGO in 2015.
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Final message

o Take your time. General Relativity is a deep subject and it is
completely normal not to understand everything at once.
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@ General Relativity makes remarkable predictions that have been
experimentally confirmed and play a central role in modern research:
black holes, gravitational waves, and cosmology.
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@ General Relativity makes remarkable predictions that have been
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black holes, gravitational waves, and cosmology.

@ Open questions: There are many open problems in our
understanding of gravity, from fundamental theory to observations,
making it an excellent area to start research.
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Final message

o Take your time. General Relativity is a deep subject and it is
completely normal not to understand everything at once.

@ General Relativity makes remarkable predictions that have been
experimentally confirmed and play a central role in modern research:
black holes, gravitational waves, and cosmology.

@ Open questions: There are many open problems in our
understanding of gravity, from fundamental theory to observations,
making it an excellent area to start research.

@ Next step: read the material again and try to solve the exercises
independently — this is where real understanding develops.
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