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Some information about this course

In three lectures, it is not possible to cover General Relativity in full.

The goal of this course is to introduce some key aspects of GR.
Whenever an asterisk (*) appears in the slides, it indicates additional
material provided as extra practice with fully solved exercises.

For further study, the following classic textbooks are highly
recommended:

1 R. M. Wald, General Relativity
2 S. Weinberg, Gravitation and Cosmology
3 R. d’Inverno, Introducing Einstein’s Relativity
4 C. G. Böhmer, Introduction to General Relativity and Cosmology
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Outline

1 Motivations for General Relativity
Newtonian Gravity
Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry
Notation and Conventions
Tensor Fields and Tensor Algebra
Metric, connection and geometrical quantities

3 Einstein’s field equations and foundations
Guiding principles and sources
Newtonian limit
Einstein equations
Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity
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Newton’s Law of Universal Gravitation

In Newtonian gravity, the force exerted by
a point mass m1 on another point mass
m2 is (1687)

F⃗1→2 = −G
m1m2

|r⃗|2
r⃗

|r⃗| ,

where
r⃗ = x⃗2 − x⃗1

points from m1 to m2.

The gravitational constant (Cavendish) is

G = (6.67428±0.00067)×10−11 m3 kg−1 s−2.

x⃗1

x⃗2

F⃗1→2

O

m1

m2

Gravitational force.
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The Gravitational Field (Point Mass)

Definition. The gravitational field is force
per unit test mass:

g⃗(x⃗) ≡ F⃗ (x⃗)

mtest
.

For a point mass m located at x⃗m, let
r⃗ = x⃗− x⃗m. Newton’s law gives

g⃗(x⃗) = −Gm
r⃗

|r⃗|3 = −G
m

r2
r̂.

Geometric picture: g⃗ always points
toward the source and falls off as 1/r2.

m

x⃗

r

g⃗(x⃗) = −G
m

r2
r̂

Field lines for a point mass.
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Superposition and Potential

Superposition. For many sources, fields add linearly. For a
continuous mass density ρ(x⃗′),

g⃗(x⃗) = −G
∫
R3

ρ(x⃗′)
x⃗− x⃗′

|x⃗− x⃗′|3 d
3x′.

Conservative field (Newtonian gravity). In regions without
time-dependent effects, the field is irrotational:

∇× g⃗ = 0⃗.

Therefore one can introduce a gravitational potential Φ such that

g⃗ = −∇Φ.
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Gravitational Potential and Field Equations

If g⃗ = −∇Φ, then (up to an additive constant) the potential can be
written as

Φ(x⃗) = −G
∫
R3

ρ(x⃗′)

|x⃗− x⃗′| d
3x′ + const.

Poisson equation. The potential is sourced by the mass density:

∇2Φ = 4πGρ.

Equivalent form (Gauss law for gravity). Using g⃗ = −∇Φ,

∇ · g⃗ = −4πGρ.
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Instantaneous Interaction (Action at a Distance)

Instantaneous Interaction
In Newtonian gravity, changes in the mass distribution are transmitted
instantaneously to all points in space. If the source of the field
disappears (ρ→ 0), the gravitational field vanishes everywhere at the
same time. This notion of instantaneous interaction conflicts with the
relativistic principle that no physical influence can propagate faster
than the speed of light.

A question to think about
If the Sun were suddenly removed, would Earth “notice” the change
immediately?
What does Special Relativity force us to conclude about how gravity
should propagate?
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Inertial vs. Gravitational Mass

Two notions of mass
Inertial mass mi: resistance to
acceleration (appears in F = mia).

Gravitational mass mg: “gravitational
charge” (couples to the gravitational
field).

For a test body in a given gravitational
field g,

F = mi a = mg g ⇒ a =
(mg

mi

)
g.

Experimentally, the equality mg = mi

holds to extremely high precision
(∼ 10−17 of order in magnitude), implying
the universality of free fall.

N
O

A
IR

t0

tf

~g ≈ 9.8 m/s2
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Weak Equivalence Principle (WEP)

Statement (Universality of Free Fall)
All test bodies fall the same way in a given gravitational field: their
motion is independent of mass and internal composition.

Newtonian viewpoint
If mg = mi, then

a = g,

so the trajectory depends only on the gravitational field, not on
properties of the test body.

Takeaway
WEP is the empirical clue that gravity is geometric (or at least
universal).
This universality strongly suggests a geometric description.
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Accelerated Frames and Gravity

This shows how an accelerated frame can reproduce the effect of a
uniform gravitational field.

Consider two reference frames:
An inertial frame O.
A frame O′ accelerating with constant acceleration a⃗ relative to O.

Their coordinates are related by

t′ = t, x⃗′ = x⃗− 1
2 a⃗ t

2.

Taking two time derivatives,

d2x⃗′

dt′2
=

d2x⃗

dt2
− a⃗.

If the particle in O experiences a gravitational field g⃗,

d2x⃗′

dt′2
= g⃗ − a⃗.
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Free-Falling Frames

From
d2x⃗′

dt′2
= g⃗ − a⃗,

we observe a key fact:

Free-falling frame
If the accelerated frame satisfies

a⃗ = g⃗,

then
d2x⃗′

dt′2
= 0.

In a free-falling reference frame, particles move along straight lines
with constant velocity.
Gravitational effects can be locally eliminated (over sufficiently small
regions of spacetime).
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Einstein Elevator: Physical Equivalence

Thought experiment
A person inside an elevator falling
freely toward Earth.
A person inside a rocket in deep
space, far from all masses.

In both cases, objects float freely.
A thrown ball follows a straight-line
trajectory.
No local experiment can distinguish
the two situations.

~v

(a) Person in a
rocket.

~g ≈ 9.8 m/s2

EARTH

~v

(b) Person in a lift
falling towards the
Earth.
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Acceleration Mimics Gravity (The Other Direction)

Key idea
Gravity can be simulated by going to a
uniformly accelerating frame.
“ Gravity and acceleration are
operationally indistinguishable locally”.

Consider a rocket far from all masses,
so g⃗ = 0⃗. If the rocket accelerates with
constant acceleration a⃗, the observed
motion in the rocket frame satisfies

d2x⃗′

dt′2
= g⃗ − a⃗ = −a⃗.

If a⃗ = g⃗⊕, objects fall inside the rocket
exactly as on Earth.
A thrown ball follows the same
parabolic trajectory.

~a = ~g ≈ 9.8 m/s2

(e) Person in an
accelerating
rocket.

~g ≈ 9.8 m/s2

EARTH

(f) Person on the
Earth.
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(g) Person in an
accelerating
rocket.

~g ≈ 9.8 m/s2

EARTH

(h) Person on the
Earth.
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Strong Equivalence Principle (SEP)

Strong Equivalence Principle (SEP) - Statement
Locally, the behaviour of matter in an accelerated reference frame
cannot be distinguished from the behaviour of matter in a
corresponding gravitational field.

Local inertial reference frames
If one considers a freely falling reference frame confined to a
sufficiently small region, gravitational inhomogeneities can be
neglected. Such a frame is therefore locally inertial.

In local inertial frames, the laws of physics reduce to those of Special
Relativity including all non-gravitational law of physics.
A test particle, neglecting other forces, is at rest or moves along a
straight line with constant velocity.
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A Physical Consequence of the Equivalence Principle

In local inertial frames, Special Relativity holds.

Therefore, light propagates along straight lines at constant speed.
An observer accelerating relative to such a frame sees curved
trajectories.

Key consequence (qualitative)
Light must be deflected by a gravitational field.

This argument is purely local and qualitative. A quantitative description
requires the spacetime geometry.
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Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
gravity is described as a force acting on particles,

but free-falling observers experience no gravitational force,
and the notion of inertial motion depends on the chosen frame.

Key issue
Newtonian gravity cannot incorporate the equivalence principle in a
fully frame-independent way.

Sebastian Bahamonde Introduction to GR 18 / 129



Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
gravity is described as a force acting on particles,
but free-falling observers experience no gravitational force,

and the notion of inertial motion depends on the chosen frame.

Key issue
Newtonian gravity cannot incorporate the equivalence principle in a
fully frame-independent way.

Sebastian Bahamonde Introduction to GR 18 / 129



Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
gravity is described as a force acting on particles,
but free-falling observers experience no gravitational force,
and the notion of inertial motion depends on the chosen frame.

Key issue
Newtonian gravity cannot incorporate the equivalence principle in a
fully frame-independent way.

Sebastian Bahamonde Introduction to GR 18 / 129



Why Newtonian Gravity Is Not Enough

Conceptual tension
In Newtonian gravity:
gravity is described as a force acting on particles,
but free-falling observers experience no gravitational force,
and the notion of inertial motion depends on the chosen frame.

Key issue
Newtonian gravity cannot incorporate the equivalence principle in a
fully frame-independent way.

Sebastian Bahamonde Introduction to GR 18 / 129



From the Equivalence Principle to Geometry

The equivalence principle implies that gravity can be locally removed
by going to a freely falling frame.

This is possible only locally, not globally.
Different freely falling observers define different local inertial frames.

Key implication
Gravity cannot be described by a single global force field. Instead, it
must be encoded in the geometry of spacetime.
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Why Differential Geometry?

Physical measurements involve clocks and rulers.

Gravity affects how time intervals and spatial distances are measured.
These measurements must be independent of the chosen
coordinates =⇒ diffeomorphism invariance
Therefore, geometry must be described in a coordinate-invariant way.

Strategy
Describe spacetime as a smooth manifold.
Introduce geometric objects that transform covariantly.
Encode gravitational effects in the geometry itself.
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Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.
A manifold M is a set of points such that:

1 M can be mapped into Rn, with n ∈ N, where n is called the
dimension of the manifold;

2 the mapping is one-to-one;
3 if two such mappings overlap, they are related by differentiable

coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.

A manifold M is a set of points such that:
1 M can be mapped into Rn, with n ∈ N, where n is called the

dimension of the manifold;
2 the mapping is one-to-one;
3 if two such mappings overlap, they are related by differentiable

coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.
A manifold M is a set of points such that:

1 M can be mapped into Rn, with n ∈ N, where n is called the
dimension of the manifold;

2 the mapping is one-to-one;
3 if two such mappings overlap, they are related by differentiable

coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.
A manifold M is a set of points such that:

1 M can be mapped into Rn, with n ∈ N, where n is called the
dimension of the manifold;

2 the mapping is one-to-one;
3 if two such mappings overlap, they are related by differentiable

coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.
A manifold M is a set of points such that:

1 M can be mapped into Rn, with n ∈ N, where n is called the
dimension of the manifold;

2 the mapping is one-to-one;

3 if two such mappings overlap, they are related by differentiable
coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Definition of a Manifold

In General Relativity, spacetime is modeled as a smooth manifold.

Definition
Intuitively, a manifold is a space that looks locally like Rn, but may have
a non-trivial global structure.
A manifold M is a set of points such that:

1 M can be mapped into Rn, with n ∈ N, where n is called the
dimension of the manifold;

2 the mapping is one-to-one;
3 if two such mappings overlap, they are related by differentiable

coordinate transformations.

Sebastian Bahamonde Introduction to GR 22 / 129



Example: The Circle S1

Consider the circle S1.

A natural coordinate is an angle ϕ ∈ (−π, π].
The points ϕ = π and ϕ = −π represent the same point.

Consequence
The coordinate ϕ is not one-to-one globally. At least two coordinate
patches are needed to cover the circle.
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Example: The Sphere S2

Spherical coordinates (θ, ϕ) describe the sphere locally.

They break down at the poles and are discontinuous at ϕ = ±π.

Conclusion
No single coordinate system covers the entire sphere. Multiple
overlapping charts are required.
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From geometry to notation

Key transition
To describe physics on manifolds, we need a precise language to
represent geometric objects and their components.
This language is provided by tensor calculus.
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Indices and Components

In differential geometry, the position of indices is essential.

Objects with upper indices differ from those with lower indices.

This distinction is not notational: it carries geometric meaning.

This distinction will become essential once we introduce the metric
and covariant derivatives.
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Einstein Summation Convention

Convention
Whenever an index appears once upstairs and once downstairs, a
summation over that index is implied.

Given objects

Aa = (A1, . . . , An), Ba = (B1, . . . , Bn),

one writes

AaBa ≡
n∑

a=1

AaBa = A1B1 +A2B2 + ...+AnBn.

The summation symbol is omitted.
Repeated indices are summed.
Free indices must match on both sides of an equation.
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Free and Dummy Indices

A dummy index is summed over and can be renamed:

AaBa = AbBb = AµBµ.

A free index labels components and must match on both sides of an
equation.

Rule
Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

wa = T a
b v

b

Sebastian Bahamonde Introduction to GR 28 / 129



Free and Dummy Indices

A dummy index is summed over and can be renamed:

AaBa = AbBb = AµBµ.

A free index labels components and must match on both sides of an
equation.

Rule
Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

wa = T a
b v

b

Sebastian Bahamonde Introduction to GR 28 / 129



Free and Dummy Indices

A dummy index is summed over and can be renamed:

AaBa = AbBb = AµBµ.

A free index labels components and must match on both sides of an
equation.

Rule
Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

wa = T a
b v

b

Sebastian Bahamonde Introduction to GR 28 / 129



Free and Dummy Indices

A dummy index is summed over and can be renamed:

AaBa = AbBb = AµBµ.

A free index labels components and must match on both sides of an
equation.

Rule
Each free index must appear exactly once on each side of an equation.
Dummy indices are summed over and can be relabeled.

wa = T a
b v

b

Sebastian Bahamonde Introduction to GR 28 / 129



Scalar Fields (no indices)

Definition
A scalar field is a function that assigns a real number to each point of
the manifold M :

f : M −→ R.

Scalars do not transform under coordinate changes (invariant).
Their value at a point is coordinate-independent.
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Vectors (Contravariant Vectors) - one index up

Definition
A contravariant vector is an object with one upper index whose
components transform as

V ′a =
∂X ′a

∂Xb
V b

under a coordinate transformation Xa → X ′a(X).

The transformation law defines the geometric nature of a vector.
Vectors transform with the Jacobian of the coordinate map.
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Covariant Vectors (1-Forms) - one index down

Definition
A covariant vector (or 1-form) is an object with one lower index that
transforms as

W ′
b =

∂Xc

∂X ′b Wc.

Covariant vectors transform with the inverse Jacobian.
They are dual to contravariant vectors.
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Tensors of Type (p, q)

Definition
A tensor of type (p, q) is an object with p upper and q lower indices. Its
components transform as

T ′a1···ap
b1···bq =

∂X ′a1

∂Xc1
· · · ∂X

′ap

∂Xcp

∂Xd1

∂X ′b1 · · ·
∂Xdq

∂X ′bq T
c1···cp

d1···dq .

Scalars: (0, 0) Contravariant Vectors: (1, 0) Covariant Vectors:
(0, 1)

The rank of a tensor is p+ q.
If a tensor is zero, then it will be zero in all coordinate systems as well.
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Tensor Algebra: Basic Operations

Addition
Two tensors can be added only if they have the same type and index
structure:

Ra
b
c + Sa

b
c = T a

b
c, Aa +Ba is not defined.

Tensor Product
Given tensors of type (p, q) and (r, s), their tensor product is a tensor
of type (p+ r, q + s):

Ma
b = V aWb.
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Contraction and Trace

Contraction
Given a tensor of type (p, q), one may contract one upper and one
lower index, producing a tensor of type (p− 1, q − 1):

T a
a ≡

∑
a

T a
a.

Trace
For a rank-2 tensor Ma

b, the trace is defined as

trM = Ma
a.

Index check
In any tensor equation, the free indices on both sides must match
exactly.
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Total differential

Definition
Let f be a scalar function of local coordinates (X1, . . . , Xn):

f = f(X1, . . . , Xn).

Its total differential is

df := f,a dX
a =

n∑
a=1

∂f

∂Xa
dXa.

f,a ≡ ∂f/∂Xa (comma notation).
Einstein convention: repeated upper/lower indices are summed.
df is a covector (1-form): it acts linearly on displacements dXa.
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Measuring distances on a manifold

The problem
Given two nearby points on a manifold, how do we define their
distance?

In flat Euclidean space, distance is well defined.
On a general manifold, distance must be defined locally.
This leads naturally to the concept of a metric tensor gµν .
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Euclidean distance in R2

In two-dimensional Euclidean space with Cartesian coordinates (x, y),
the distance between two points is given by

s2 = x2 + y2.

For two nearby points separated by (∆x,∆y),

∆s2 = (∆x)2 + (∆y)2.

Taking the infinitesimal limit, we find the so-called line-element

ds2 = dx2 + dy2.

Line-element
Distance is encoded in a quadratic form built from coordinate
differentials.
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From Euclidean space to manifolds

The line-element expression for Euclidean 2D (flat)

ds2 = dx2 + dy2

can be written in index notation as

ds2 = δab dX
adXb, a, b = 1, 2,

where δab =

(
1 0
0 1

)
= diag(1, 1) and dXa = (dx, dy).

Let us verify this step by step with indices from i = 1, 2:

ds2 = δab dX
adXb

= δ1b dX
1dXb + δ2b dX

2dXb

= (δ11 dX
1dX1 + δ12 dX

1dX2) + (δ21 dX
2dX1 + δ22 dX

2dX2)

= δ11 dx dx+ δ22 dy dy = dx2 + dy2 .

This suggests the generalization:
Replace δab by a position-dependent object gab(X).
Require ds2 to be invariant under coordinate transformations.
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Definition of a metric

Metric tensor
Let Xa and Xa + dXa be two infinitesimally separated points. A metric
is a symmetric rank-2 tensor gab(X) such that

ds2 = gab(X) dXadXb.

ds2 is called the line-element but sometimes people just call is the
metric as well.

gab(X) is an arbitrary function of the coordinates.
It is assumed to be non-degenerate, so an inverse gab exists:

gabg
bc = δa

c.
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Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can
represent the same line-element

Consider M = E2 (2 dimensions) with
Cartesian coordinates (x, y).

ds2 = dx2 + dy2.

The metric tensor is

gab =

(
1 0
0 1

)
= diag(1, 1).

Constant metric
Flat geometry

Sebastian Bahamonde Introduction to GR 40 / 129



Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can
represent the same line-element Consider M = E2 (2 dimensions) with
Cartesian coordinates (x, y).

ds2 = dx2 + dy2.

The metric tensor is

gab =

(
1 0
0 1

)
= diag(1, 1).

Constant metric
Flat geometry

Sebastian Bahamonde Introduction to GR 40 / 129



Example: Euclidean plane in Cartesian coordinates

One can always perform coordinate transformations and still we can
represent the same line-element Consider M = E2 (2 dimensions) with
Cartesian coordinates (x, y).

ds2 = dx2 + dy2.

The metric tensor is

gab =

(
1 0
0 1

)
= diag(1, 1).

Constant metric
Flat geometry

Sebastian Bahamonde Introduction to GR 40 / 129



Change of coordinates: polar coordinates

Introduce polar coordinates (r, φ) via

x = r cosφ, y = r sinφ.

Differentials:

dx = cosφdr − r sinφdφ, dy = sinφdr + r cosφdφ.
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Line element in polar coordinates

Squaring and adding,

dx2 + dy2 = dr2 + r2dφ2.

Thus,
ds2 = dr2 + r2dφ2.

The metric components are

gab =

(
1 0
0 r2

)
.
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Key lesson

The geometry has not changed: the space is still flat.

The metric components changed because the coordinates changed.
Physical distances are coordinate-invariant, but gab is not.

Why this matters
In gravity, we will interpret nontrivial metric components as encoding
gravitational effects.
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Properties of the metric

gab is symmetric:
gab = gba.

In n dimensions, it has n(n+ 1)/2 independent components. In n = 4
contains 10 ind. components.
In a coordinate basis, the metric tensor in 4-dimensions can be
represented as a symmetric 4× 4 matrix:

gab =


g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33

 .

Physical relevance
In metric theories of gravity, all geometric and dynamical information
ultimately derives from gab.
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Signature of the Metric

Statement
At any point p ∈M , the metric tensor gab can be diagonalised. In a
suitable basis, its diagonal entries can be chosen to be ±1.

The number of positive and negative eigenvalues is invariant.
This invariant pair defines the signature of the metric.

Definition
The signature of gab is the number of (+) and (−) signs in its
diagonalised form.
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Lorentzian Metrics and Minkowski Spacetime

Example: Minkowski spacetime
In flat spacetime, the line element is

ds2 = −dt2 + dx2 + dy2 + dz2.

The corresponding metric has diagonal form

gab = diag(−1, 1, 1, 1),

with one sign different from the others.

Lorentzian metric
A metric with signature (−,+, . . . ,+) or (+,−, . . . ,−) is called
Lorentzian. A manifold equipped with such a metric is called a
Lorentzian manifold.
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Metric: Inner Products, Norms and Angles

Given two vectors Ai and Bi at the same point of the manifold, the
metric defines their inner product.

Inner product and norm

A ·B := gijA
iBj , |A|2 := gijA

iAj .

Angle between vectors

cosαA,B =
A ·B
|A| |B| .

These notions generalize familiar Euclidean concepts.
The metric fully encodes the local geometry.
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Inverse Metric and Index Manipulation

For a non-degenerate metric,

det(gij) ̸= 0,

there exists an inverse metric gij defined by

gijgjk = δik.

Raising and lowering indices
Given a contravariant vector Ai, define

Ai := gijA
j , Ai := gijAj .

Key point
The metric establishes a one-to-one correspondence between vectors
and covectors. Only the index position matters.
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Why Ai and Ai are different objects

A quantity with an upper index, Ai, is a contravariant vector, an
element of the tangent space V .

A quantity with a lower index, Ai, is a covector (one-form), an element
of the dual space V ∗⊗.
Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?
There is no canonical map between vectors and covectors. The metric
gij provides an isomorphism:

Ai = gijA
j , Ai = gijAj .

Key idea
The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.

Sebastian Bahamonde Introduction to GR 49 / 129



Why Ai and Ai are different objects

A quantity with an upper index, Ai, is a contravariant vector, an
element of the tangent space V .
A quantity with a lower index, Ai, is a covector (one-form), an element
of the dual space V ∗⊗.

Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?
There is no canonical map between vectors and covectors. The metric
gij provides an isomorphism:

Ai = gijA
j , Ai = gijAj .

Key idea
The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.

Sebastian Bahamonde Introduction to GR 49 / 129



Why Ai and Ai are different objects

A quantity with an upper index, Ai, is a contravariant vector, an
element of the tangent space V .
A quantity with a lower index, Ai, is a covector (one-form), an element
of the dual space V ∗⊗.
Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?
There is no canonical map between vectors and covectors. The metric
gij provides an isomorphism:

Ai = gijA
j , Ai = gijAj .

Key idea
The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.

Sebastian Bahamonde Introduction to GR 49 / 129



Why Ai and Ai are different objects

A quantity with an upper index, Ai, is a contravariant vector, an
element of the tangent space V .
A quantity with a lower index, Ai, is a covector (one-form), an element
of the dual space V ∗⊗.
Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?
There is no canonical map between vectors and covectors. The metric
gij provides an isomorphism:

Ai = gijA
j , Ai = gijAj .

Key idea
The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.

Sebastian Bahamonde Introduction to GR 49 / 129



Why Ai and Ai are different objects

A quantity with an upper index, Ai, is a contravariant vector, an
element of the tangent space V .
A quantity with a lower index, Ai, is a covector (one-form), an element
of the dual space V ∗⊗.
Even though they have the same number of components, vectors and
covectors are not the same mathematical object.

Why do we need a metric?
There is no canonical map between vectors and covectors. The metric
gij provides an isomorphism:

Ai = gijA
j , Ai = gijAj .

Key idea
The position of an index carries geometric meaning. Raising and
lowering indices is only possible once a metric is specified.

Sebastian Bahamonde Introduction to GR 49 / 129



Rank-2 tensors and index positions

A rank-2 tensor may have different index structures:

T ij , Tij , T i
j .

These objects are not equivalent: they belong to different tensor
product spaces (e.g. V ⊗ V , V ∗ ⊗ V ∗, V ⊗ V ∗).
The position of each index determines how the tensor transforms
under coordinate changes.

Lowering indices with the metric

Given a contravariant rank-2 tensor T kl, define

Tij := gik gjl T
kl.

The metric maps V ⊗ V into V ∗ ⊗ V ∗.
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Rank-2 tensors and index positions

Raising indices with the inverse metric
Conversely, given a covariant rank-2 tensor Tkl, define

T ij := gik gjl Tkl.

This requires the inverse metric gij .

Note: Writing Tij as a matrix is just a convenient way of listing
components.
The tensor itself is defined by how its indices transform
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Example: lowering indices in 2D polar coordinates
In 2D polar coordinates (r, φ),

ds2 = dr2 + r2 dφ2, grr = 1, gφφ = r2, grφ = gφr = 0.

Consider a contravariant rank-2 tensor

T ij =

(
2 3
4 5

)
⇐⇒


T rr = 2,

T rφ = 3,

Tφr = 4,

Tφφ = 5.

Lower both indices by

Tij := gik gjl T
kl, k, l ∈ {r, φ}.

Trr component:

Trr = grkgrlT
kl

= grrgrrT
rr + grrgrφT

rφ + grφgrrT
φr + grφgrφT

φφ

= grrgrrT
rr = 2.
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Example: lowering indices in 2D polar coordinates (continued)

Recall the definition

Tij = gik gjl T
kl, k, l ∈ {r, φ},

and the metric components

grr = 1, gφφ = r2, grφ = gφr = 0.

Component Trφ:

Trφ = grkgφlT
kl

= grrgφφT
rφ = 3r2.

Component Tφr:

Tφr = gφkgrlT
kl = gφφgrrT

φr = 4r2.

Component Tφφ:

Tφφ = gφkgφlT
kl = gφφgφφT

φφ = 5r4.
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Metric: Length of a Curve

Given a metric tensor gij on a manifold M , the length of a curve
C : xi(λ), with λ ∈ [λi, λf ], is defined as

(Recall that ds2 = gijdx
idxj)

Definition

L =

∫ λf

λi

ds =

∫ λf

λi

√
gij(x(λ))

dxi

dλ

dxj

dλ
dλ.

This definition is coordinate invariant.
It reduces to the usual arc length in Euclidean space.
The metric determines how distances are measured locally.
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The metric determines how distances are measured locally.
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Geodesics: Extremal Length

Consider a manifold (M, g) endowed with a metric tensor gij . Let
P,Q ∈M .

Definition
A geodesic is a curve γ : λ 7→ xi(λ) joining P and Q whose length

L[γ] =

∫ λf

λi

√
gij(x(λ))

dxi

dλ

dxj

dλ
dλ

is extremal (typically minimal).
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Geodesic Equation

Euler–Lagrange result
Applying the Euler–Lagrange equations to the length functional yields*

d2xi

dλ2
+ Γi

jk
dxj

dλ

dxk

dλ
= f(λ)

dxi

dλ
.

The function f(λ) reflects reparametrisation freedom.

This equation determines free motion once the metric is specified.

Particles in GR will follow this equation! (the shortest path)
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Christoffel Symbols and Canonical Form

Christoffel symbols
The coefficients Γi

jk are defined by

Γi
jk =

1

2
gil (∂jgkl + ∂kgjl − ∂lgjk) .

Affine parametrisation
Choosing an affine parameter (e.g. proper length ℓ), the geodesic
equation takes the canonical form

d2xi

dℓ2
+ Γi

jk
dxj

dℓ

dxk

dℓ
= 0.

In flat Euclidean space, Γi
jk = 0 and geodesics are straight lines.

In curved spaces, Γi
jk encodes the geometry.
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A Glance Forward: From Geometry to Gravity

Let us continue with the geodesic equation, which governs free motion
in a curved spacetime:

d2Xa

dλ2
= −Γa

bc
dXb

dλ

dXc

dλ
.

In Newtonian gravity, the motion of a particle in a gravitational potential
Φ(r) is described by

d2xi

dt2
= − ∂Φ

∂xi
.

Key observation
Since the Christoffel symbols Γa

bc contain first derivatives of the
metric, it is natural to expect that the gravitational potential Φ is
encoded in the spacetime metric itself.

Gravity is no longer a force, but a manifestation of spacetime
geometry.
Newtonian gravity should emerge as an appropriate limit of geodesic
motion.
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Why Partial Derivatives Are Not Enough

Scalars: ∂if transforms covariantly.
Tensors: ∂iT a

b does not transform as a tensor*.

Key issue
Partial derivatives compare tensor components at different points.
There is no canonical way to subtract tensors at distinct points on a
manifold.

Consequence
Without extra structure, there is no coordinate-independent notion of
“constant tensor field”.
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Connection

Definition
A connection Γi

jk is a set of n3 functions such that under coordinate
transformations

Γ̄i
jk =

∂x̄i

∂xl
∂xp

∂x̄j
∂xq

∂x̄k
Γl

pq +
∂x̄i

∂xl
∂2xl

∂x̄j∂x̄k
.

Γi
jk is not a tensor.

The inhomogeneous term compensates the failure of ∂i*.
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Covariant Derivative

Definition (covariant vector)
For a covariant vector field Aj ,

∇iAj := ∂iAj − Γk
ijAk.

∇iAj transforms as a (0, 2) tensor.
The connection precisely cancels the non-tensorial terms.

Contravariant vector

∇iB
k = ∂iB

k + Γk
ijB

j .

Sebastian Bahamonde Introduction to GR 61 / 129



Covariant Derivative

Definition (covariant vector)
For a covariant vector field Aj ,

∇iAj := ∂iAj − Γk
ijAk.

∇iAj transforms as a (0, 2) tensor.

The connection precisely cancels the non-tensorial terms.

Contravariant vector

∇iB
k = ∂iB

k + Γk
ijB

j .

Sebastian Bahamonde Introduction to GR 61 / 129



Covariant Derivative

Definition (covariant vector)
For a covariant vector field Aj ,

∇iAj := ∂iAj − Γk
ijAk.

∇iAj transforms as a (0, 2) tensor.
The connection precisely cancels the non-tensorial terms.

Contravariant vector

∇iB
k = ∂iB

k + Γk
ijB

j .

Sebastian Bahamonde Introduction to GR 61 / 129



Covariant Derivative

Definition (covariant vector)
For a covariant vector field Aj ,

∇iAj := ∂iAj − Γk
ijAk.

∇iAj transforms as a (0, 2) tensor.
The connection precisely cancels the non-tensorial terms.

Contravariant vector

∇iB
k = ∂iB

k + Γk
ijB

j .

Sebastian Bahamonde Introduction to GR 61 / 129



Covariant Derivative of a General Tensor

General rule
For a tensor T a1···ap

b1···bq ,

∇cT
a1...ap

b1...bq = ∂cT
a1...ap

b1...bq+Γa1
ck T

k...ap
b1...bq+· · ·+Γap

ck T
a1...k

b1...bq

−Γk
cb1 T

a1...ap
k...bq − · · · − Γk

cbq T
a1...ap

b1...k.

For example:

∇cT
ab = ∂cT

ab + Γa
ck T

kb + Γb
ck T

ak ,

∇cTab = ∂cTab − Γk
ca Tkb − Γk

cb Tak.

Key lesson
Covariant derivatives depend on the choice of connection.
Different connections⇒ different notions of parallelism.
The difference of two connections is a tensor.
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Curvature tensor

On a manifold, vectors at different points live in different tangent
spaces.

Comparing vectors at different points is not canonical.
A connection ∇ provides a rule to compare nearby vectors.

Key idea
Curvature arises when comparing the result of transporting vectors
along different infinitesimal paths.
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Curvature from covariant derivatives

Scalars
For a scalar field f ,

(∇a∇b −∇b∇a)f = 0.

Vectors
For a vector field V c,

(∇a∇b −∇b∇a)V
c = Rc

dab V
d.

Riemann curvature tensor
The above tensor is defined as:

Rc
dab = ∂aΓ

c
bd − ∂bΓ

c
ad + Γc

aeΓ
e
bd − Γc

beΓ
e
ad
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Geometric meaning of curvature

Parallel transport
A vector V a is parallel transported along a curve with tangent T a if

T b∇bV
a = 0.

Curvature
Transporting a vector around an infinitesimal closed loop does not
return the same vector:

∆V a ∝ Ra
bcd.
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Geometric content of a connection
Up to this point we have implicitly assumed the Levi–Civita connection.
More generally, an affine connection may have three independent features:

Curvature
Failure of vectors to return unchanged after transport around a loop.

Ra
bcd ̸= 0

Torsion
Failure of infinitesimal parallelograms to close.

T a
bc = Γa

bc − Γa
cb

Non-metricity
Failure of lengths and angles to be preserved under transport.

∇agbc ̸= 0
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Geometric meaning: torsion, non-metricity, curvature

Torsion: failure of
infinitesimal

parallelograms to close

1 2

Qµ
νρ

Non-metricity: lengths
and angles not preserved Curvature: vector

changes after parallel
transport around a loop
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Levi–Civita connection

In General Relativity, we work with a unique connection satisfying:{
T a

bc = 0 (torsion-free)
∇agbc = 0∗ (metric-compatible)

Conclusion
All gravitational effects are encoded purely in the metric and then, only
curvature is non-vanishing.
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Structure of the Riemann Curvature Tensor

Independent components
In n dimensions, the Riemann tensor has

1

12
n2(n2 − 1)

independent components due to strong symmetry constraints. So in n = 4 it
contains 20 independent components.

Important symmetries
Antisymmetric in index pairs:

Rabcd = −Rbacd, Rabcd = −Rabdc

Algebraic (cyclic) and differential Bianchi identities:

Rabcd +Rcabd +Rbcad = 0 ,

∇eRabcd +∇dRabec +∇cRabde = 0 .
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Contractions of the Riemann Tensor

The Riemann tensor Ra
bcd encodes the full local curvature associated

with a connection.

First contraction: Ricci tensor
Contracting one contravariant and one covariant index,

Rab := Rc
acb,

defines the Ricci tensor and it is symmetric: Rab = Rba.

Second contraction: scalar curvature
Taking the trace of the Ricci tensor,

R := gabRab,

defines the scalar curvature that is a scalar invariant under
coordinate transformations.
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Outline

1 Motivations for General Relativity
Newtonian Gravity
Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry
Notation and Conventions
Tensor Fields and Tensor Algebra
Metric, connection and geometrical quantities

3 Einstein’s field equations and foundations
Guiding principles and sources
Newtonian limit
Einstein equations
Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity
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Towards a geometric theory of gravity

Guiding principles
We seek a theory of gravity that:
is formulated in a geometric and covariant way,

is invariant under general coordinate transformations (diffeomorphism
invariant)
incorporates the equivalence principle,
reduces to Newtonian gravity in the weak-field limit.

Strategy
These requirements suggest that gravity should be encoded in
spacetime geometry, through tensors constructed from the metric and
its derivatives.
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Energy–momentum tensor

Motivation
In General Relativity, the gravitational field must be sourced by a local,
covariant object encoding energy and momentum.

Definition
The energy–momentum tensor Tab is a symmetric rank–(0, 2) tensor
that represents local densities and fluxes of energy and momentum.

Tµν =


T 00 T 01 T 02 T 03

T 10 T 11 T 12 T 13

T 20 T 21 T 22 T 23

T 30 T 31 T 32 T 33

 =

(
T 00 T 0j

T i0 T ij

)
.

T00: energy density
T0i: momentum density (energy flux)
Tij : stresses (pressure and shear)
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Energy–momentum tensor: Maxwell field

Electromagnetic field
Let Fab be the electromagnetic field strength tensor.

Energy–momentum tensor
The energy–momentum tensor of the Maxwell field is

Tab = FacFb
c − 1

4
gabFcdF

cd.

Traceless: T a
a = 0

Encodes energy density, Poynting flux and stresses
Fully covariant and symmetric
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Energy–momentum tensor: Perfect fluid

Perfect fluid
A perfect fluid is characterised by:
Energy density ρ

Isotropic pressure p

Four–velocity ua

Energy–momentum tensor

Tab = (ρ+ p)uaub + p gab.

In the rest frame: ua = (1, 0, 0, 0)

Non–relativistic matter: p≪ ρ
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Non–relativistic limit

Assumptions
Weak gravitational field
Velocities v ≪ c

Pressure negligible: p≪ ρ

Energy–momentum tensor
In this limit,

T00 ≃ ρ, T0i ≃ 0, Tij ≃ 0.

Only the energy density contributes at leading order.
This limit will be used to fix the coupling constant and identify the
correct gravitational source.
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Newtonian limit of gravity

Weak field expansion
We write the metric as

gµν = ηµν + hµν , |hµν | ≪ 1.

Geodesic equation
In the Newtonian limit (weak gravitational field and small velocities),

d2x⃗

dt2
≃ −1

2
∇⃗h00.

Identifying g⃗ = −∇⃗Φ gives

h00 ≃ −2Φ.
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Poisson equation and gravity

Newtonian gravity
The Poisson equation reads

∇2Φ = 4πGρ.

Metric perturbation
Using h00 ≃ −2Φ, we obtain

∇2g00 = 8πGT00.

This identifies the energy density as the gravitational source.
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From energy density to a covariant source

The Newtonian limit singles out the 00-component:

∇2g00 ←→ T00.

In a relativistic theory, the source must be a rank-2 tensor valid in all
coordinate systems.

Energy–momentum tensor
The natural covariant generalisation of the energy density is

Tµν .
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General form of the field equations

Guided by the Newtonian limit, we postulate field equations of the form

Gµν = κ2Tµν ,

where Gµν is a geometric tensor constructed from the metric.

The constant κ2 is fixed by the Newtonian limit to be 8πG. Recall that
in other units, c ̸= 1 and then κ2 = 8πG

c4

At this stage, the precise form of Gµν is still unknown.
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Constraints on the geometric tensor

The tensor Gµν must satisfy:
Be constructed from gµν and its derivatives (up to second order).

Be symmetric:
Gµν = Gνµ.

Since ∇µT
µν = 0, it must be covariantly conserved:

∇µG
µν = 0,

Must recover Newtonian limit for weak grav fields.
The most general rank-2 tensor (without a constant) satisfying those
conditions is:

Gµν = C1Rµν + C2gµνR,

where C1 and C2 are constants that are related C1 = −2C2 to ensure
covariant conservation.
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Einstein tensor

Up to an overall constant, the unique tensor satisfying all requirements
is

Gµν = Rµν −
1

2
gµνR

This tensor is called the Einstein tensor.
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Einstein field equations

The Einstein field equations without setting c = 1 read

Rµν −
1

2
Rgµν =

8πG

c4
Tµν .

The left-hand side is built solely from the metric and its first and
second derivatives.
It is symmetric and covariantly conserved:

∇µ

(
Rµν − 1

2Rgµν
)
= 0,

consistently matching ∇µT
µν = 0.

In the weak-field (Newtonian) limit, it reproduces Poisson’s equation.
In four spacetime dimensions, gµν has 10 independent components.
Therefore, the Einstein equations form a system of

10 coupled, non-linear, second-order partial differential equations.
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Trace and vacuum Einstein equations

Taking the trace
In 4-dimensions, by contracting the Einstein equations with gµν , we find

gµν
(
Rµν −

1

2
Rgµν

)
=

8πG

c4
gµνTµν ,

we obtain
R− 1

2
(4)R = −R =

8πG

c4
T,

where T = gµνTµν is the trace of the energy–momentum tensor.

Equivalent form
Substituting back, the Einstein equations in 4D can be written as

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
.
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Vacuum Einstein equations

Vacuum
In the absence of matter,

Tµν = 0,

the Einstein equations reduce to

Rµν = 0.

This condition implies R = 0 (Ricci scalar)
Spacetimes satisfying Rµν = 0 are called Ricci-flat.
Ricci-flat does not imply flat spacetime:

Rµν = 0 ̸⇒ Rρ
σµν = 0.

Vacuum solutions can still possess non-trivial curvature.
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Geometrical interpretation of gravity

Wheeler’s interpretation
“Spacetime tells matter how to move;
matter tells spacetime how to curve.”

In General Relativity, gravity is not a
force.
Free-falling particles follow geodesics
of a curved spacetime.
The curvature is generated by energy
and momentum, encoded in Tµν .

This contrasts with Newtonian gravity,
where gravity acts as a force in a fixed,
flat background.
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Einstein equations from an action principle

Motivation
So far, the Einstein field equations were introduced from:
geometric identities,
physical requirements (symmetry, conservation),
and the Newtonian limit.

Alternative viewpoint
There exists an equivalent formulation:
the Einstein equations can be obtained from a variational principle,
by extremising an action with respect to the metric.

This approach places General Relativity within the standard framework
of classical field theory.
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Einstein–Hilbert action

Gravitational action
The dynamics of the gravitational field can be obtained from the action

SGR =
1

2κ2

∫
d4x
√−g R+ Sm,

where g = det(gµν) and Sm is the matter action.

The fundamental variable is the metric gµν .
Field equations follow from the stationarity condition

δSGR = 0

under arbitrary variations δgµν .
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Variation of the gravitational action

Variation of the integrand
The variation of the gravitational term gives

δ(
√−gR) = Rδ

√−g +√−g δR.

Metric determinant
Using

δ
√−g = − 1

2
√−g δg =

1

2

√−g (gµνδgµν) = −
1

2

√−g gµν δgµν ,

where we used gµνδg
µν = −gµνδgµν that can be found by using

δgµν = −gµα (δgαβ) gβν .

Thus, the first term becomes

−1

2

√−g R gµν δg
µν .
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Variation of the scalar curvature

Since R = gµνRµν ,
√−gδR =

√−gδ(Rµνδg
µν) =

√−gRµν δg
µν +

√−ggµνδRµν .

Now, by replacing the Ricci tensor in terms of Levi-Civita:

Rµν = Rλ
µλν = ∂λΓ

λ
µν − ∂νΓ

λ
µλ + Γλ

σλΓ
σ
µν − Γλ

σνΓ
σ
µλ

we find
√−gδR =

√−gRµνδg
µν +

√−g∇ρ (g
σνδΓρ

νσ − gσρδΓµ
µσ) .

Important identity:
√−g∇µA

µ = ∇µ

(√−g Aµ
)
= ∂µ

(√−g Aµ
)

Therefore, the second term does not contribute to the field equations
(it is a boundary term!)
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Result of the gravitational variation

Gravitational contribution
After neglecting the boundary term, the variation yields

δSGR =
1

2κ2

∫
d4x
√−g

(
Rµν −

1

2
Rgµν

)
δgµν .

The Einstein tensor emerges naturally from the variational principle.
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Matter sector and field equations

Energy–momentum tensor
The energy–momentum tensor is defined by

Tµν = − 2√−g
δSm

δgµν
.

Einstein field equations
Requiring δSGR = 0 for arbitrary δgµν leads to

Rµν −
1

2
Rgµν = κ2Tµν .
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Cosmological constant

Generalised gravitational action
The most general gravitational action with at most second derivatives
allows the addition of a constant term,

SΛ = − 1

κ2

∫
d4x
√−gΛ.

Einstein equations with Λ

Varying the total action leads to

Rµν −
1

2
Rgµν + Λgµν = κ2Tµν .

Λ acts like a uniform vacuum energy density (present even when
Tµν = 0).
It is compatible with covariance and conservation laws.
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Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).
Stationarity⇒ 1 timelike Killing vector (∂t).
Symmetries strongly constrain the allowed form of gµν .
These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).
Stationarity⇒ 1 timelike Killing vector (∂t).
Symmetries strongly constrain the allowed form of gµν .
These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).

Stationarity⇒ 1 timelike Killing vector (∂t).
Symmetries strongly constrain the allowed form of gµν .
These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).
Stationarity⇒ 1 timelike Killing vector (∂t).

Symmetries strongly constrain the allowed form of gµν .
These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).
Stationarity⇒ 1 timelike Killing vector (∂t).
Symmetries strongly constrain the allowed form of gµν .

These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Isometries and Killing vectors (minimal toolkit)

Isometry
A transformation is an isometry if it leaves the line element invariant:

ds2 = gµν(x) dx
µdxν is unchanged.

Equivalently, the metric is constant along the symmetry flow.

Killing vector (infinitesimal generator)
A vector field ξµ generates an isometry iff

Lξgµν = 0 ⇐⇒ ∇µξν +∇νξµ = 0.

Spherical symmetry⇒ 3 spacelike Killing vectors (rotations, SO(3)).
Stationarity⇒ 1 timelike Killing vector (∂t).
Symmetries strongly constrain the allowed form of gµν .
These Killing vectors imply conserved quantities along geodesics
(energy and angular momentum).

Sebastian Bahamonde Introduction to GR 95 / 129



Schwarzschild problem: assumptions

Goal
Find the gravitational field outside a static, spherically symmetric
mass.

Input
Vacuum exterior: Tab = 0⇒ Rab = 0.
Spherical symmetry: invariance under spatial rotations (SO(3)).
Static: no t-dependence, and one can always eliminate dt dr cross
term.

How to model this?
Take the full metric and assume spherical symmetry (Killing) and solve
the vacuum Einstein’s field equations.
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Most general static, spherically symmetric metric

Static spherically symmetric Metric (−+++)

The most general static and spherically symmetric line element can be
written as

ds2 = −eν(r)dt2 + ea(r)dr2 + r2(dθ2 + sin2 θ dϕ2).

Time independence: ∂tgµν = 0

Spherical symmetry fixes the angular sector
Two unknown functions: ν(r) and a(r)
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Connection coefficients

Non-vanishing Christoffel symbols
The independent non-zero Christoffel symbols are:*

Γt
tr =

1

2
ν ′(r), Γr

tt =
1

2
ν ′(r)eν−a,

Γr
rr =

1

2
a′(r), Γr

θθ = −re−a,

Γr
ϕϕ = −r sin2 θ e−a,

Γθ
rθ = Γϕ

rϕ =
1

r
, Γϕ

θϕ = cot θ.

(A prime denotes derivative with respect to r. All other components follow by
symmetry.)
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Ricci tensor components

Non-vanishing components
The Ricci tensor components are:*

Rtt =
1

2
eν−a

(
ν ′′ +

1

2
ν ′2 − 1

2
a′ν ′ +

2

r
ν ′
)
,

Rrr = −
1

2
ν ′′ − 1

4
ν ′2 +

1

4
a′ν ′ +

1

r
a′,

Rθθ = 1− e−a
(
1− r

2
a′ +

r

2
ν ′
)
, Rϕϕ = sin2 θ Rθθ.

(All other components follow by symmetry.)
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Vacuum Einstein equations

In vacuum, Einstein’s equations reduce to

Rab = 0.

For the metric ansatz above, there are three non-trivial equations, but
only two of them are independent due to Bianchi identities.

We first consider the (tt) and (rr) components.
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The (tt) and (rr) equations

The (tt) component yields

1

2
ν ′′ +

1

4
(ν ′)2 +

1

r
ν ′ − 1

4
ν ′a′ = 0.

The (rr) component gives

−1

2
ν ′′ − 1

4
(ν ′)2 +

1

4
ν ′a′ +

1

r
a′ = 0.

Here primes denote derivatives with respect to r.
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Relation between metric functions

Adding the (tt) and (rr) equations, we obtain

1

r

(
ν ′ + a′

)
= 0.

This integrates immediately to

ν(r) + a(r) = const.

By a constant rescaling of the time coordinate t, the constant can be
set to zero, so that

ν(r) = −a(r).

Sebastian Bahamonde Introduction to GR 102 / 129



The (θθ) equation

Using a = −ν, the (θθ) component of Rab = 0 reduces to

1− eν − rν ′eν = 0.

Noting that
d

dr
(reν) = eν + rν ′eν ,

the equation can be rewritten as

d

dr
(r − reν) = 0.
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Schwarzschild solution

Integrating, we find
r − reν = C,

which implies

eν(r) = 1− C

r
.

Since a = −ν, the metric becomes

ds2 = −
(
1− C

r

)
dt2 +

(
1− C

r

)−1

dr2 + r2dΩ2,

where dΩ2 = dθ2 + sin2 θ dϕ2.

Sebastian Bahamonde Introduction to GR 104 / 129



Newtonian limit and identification of the constant

To identify the integration constant C, we restore physical units:

ds2 = −
(
1− GC

c2r

)
c2dt2 +

(
1− GC

c2r

)−1

dr2 + r2dΩ2.

In the weak-field and slow-motion limit, the only relevant Christoffel
symbol is

Γr
tt ≃

GC

2r2
.

Comparing with Newtonian gravity,

d2r

dt2
= −GM

r2
,

we identify
C = 2M.
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Final form of the Schwarzschild metric

Restoring G and c, the Schwarzschild metric reads

ds2 = −
(
1− 2GM

c2r

)
c2dt2 +

(
1− 2GM

c2r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2).

This metric describes the exterior gravitational field of an isolated,
non-rotating, spherically symmetric mass.

Exact vacuum solution: Rµν = 0 for r ≥ Rbody.
Asymptotically flat: as r →∞, spacetime approaches Minkowski.
Apparent singularities (metric diverges at some points!) occur at:*

r = rs := 2GM/c2 (coordinate singularity, event horizon),
r = 0 (true curvature singularity).

Spherical coordinates are not good, one can introduce other ones
(Eddington-Finkelstein) and then r = rs is non-singular.
One way to check singularities is by looking into scalars constructed
from curvature: For example Kretschmann invariant K = RλµνρRλµνρ
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Birkhoff’s theorem (statement)

Theorem (Birkhoff)
Any spherically symmetric solution of the vacuum Einstein equations is
static and asymptotically flat.

Therefore, the exterior vacuum field of any spherically symmetric
body is Schwarzschild.
Even if the source changes in time (e.g. pulsations), the exterior
vacuum metric remains static. Schwarzschild is the unique spherically
symmetric solution of GR in vacuum.
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Schwarzschild radius: Sun and Earth

Characteristic length scale

rs :=
2GM

c2
.

rs,⊙ ≈ 3 km, rs,⊕ ≈ 0.9 cm.

For ordinary objects, typically rs ≪ Rbody.
Since Schwarzschild is a vacuum solution, it applies for

r ≥ Rbody.

A black hole forms if the matter radius satisfies Rbody < rs.
The hypersurface r = rs is the event horizon: once inside,
future-directed causal curves cannot reach infinity.
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Outline

1 Motivations for General Relativity
Newtonian Gravity
Equivalence Principle and the Meaning of Mass

2 Tensorial calculus and differential geometry
Notation and Conventions
Tensor Fields and Tensor Algebra
Metric, connection and geometrical quantities

3 Einstein’s field equations and foundations
Guiding principles and sources
Newtonian limit
Einstein equations
Action principle

4 The Schwarzschild solution

5 Classical predictions of General Relativity
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Geodesics in Schwarzschild: setup

Goal: obtain the equations of motion by inserting the Schwarzschild
connection Γµ

αβ into the geodesic equation

d2Xµ

dλ2
+ Γµ

αβ
dXα

dλ

dXβ

dλ
= 0.

Equivalent: use the geodesic Lagrangian

L =
1

2
gµνẊ

µẊν , ˙≡ d

dλ
.

Spherical symmetry: without loss of generality take motion in the
equatorial plane

θ =
π

2
, θ̇ = 0,

so the dynamics reduces to (t(λ), r(λ), ϕ(λ)).
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Geodesic Lagrangian in the equatorial plane

Using the Schwarzschild line element and setting θ = π/2, θ̇ = 0, the
geodesic Lagrangian

L =
1

2
gµνẊ

µẊν

becomes

L =
1

2

[
−
(
1− 2M

r

)
ṫ 2 +

(
1− 2M

r

)−1
ṙ 2 + r2ϕ̇ 2

]
.

Normalization (type of geodesic):

−2L = ϵ =

{
1 timelike geodesics,
0 null geodesics.

Interpretation: ϵ is fixed by the causal character of the worldline.
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ṫ 2 +

(
1− 2M

r

)−1
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First integrals from cyclic coordinates (t and ϕ)

In Schwarzschild, L does not depend explicitly on t nor ϕ⇒ two
conserved conjugate momenta.

pt :=
∂L
∂ṫ

= −
(
1− 2M

r

)
ṫ =: −E ⇒ E =

(
1− 2M

r

)
ṫ.

pϕ :=
∂L
∂ϕ̇

= r2ϕ̇ =: ℓ ⇒ ℓ = r2ϕ̇.

Meaning: E is the energy per unit mass and ℓ the (specific) angular
momentum.
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Reducing the problem to a 1D radial equation

Using the conserved quantities

ṫ =
E

1− 2M
r

, ϕ̇ =
ℓ

r2
,

and the normalization of the four–velocity,

gµνẊ
µẊν = −ϵ, ϵ =

{
1 timelike geodesics,
0 null geodesics,

we obtain the radial equation

ṙ 2 = E2 −
(
1− 2M

r

)(
ℓ2

r2
+ ϵ

)
.

Physical interpretation
This is equivalent to a one–dimensional energy equation

1

2
ṙ 2 + Veff(r) =

1

2
E2, Veff(r) =

1

2

(
1−

2M

r

)(
ℓ2

r2
+ ϵ

)
.

Sebastian Bahamonde Introduction to GR 113 / 129



Reducing the problem to a 1D radial equation

Using the conserved quantities
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µẊν = −ϵ, ϵ =

{
1 timelike geodesics,
0 null geodesics,

we obtain the radial equation
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Orbit equation ϕ(r)

To compute observables (perihelion shift, light bending), we want
ϕ = ϕ(r).

From ℓ = r2ϕ̇ we have

ϕ̇ =
ℓ

r2
.

From the radial equation,

ṙ 2 = E2 −
(
1− 2M

r

)(
ℓ2

r2
+ ϵ

)
,

so
dϕ

dr
=

ϕ̇

ṙ
=

ℓ

r2

[
E2 −

(
1− 2M

r

)(
ℓ2

r2
+ ϵ

)]−1/2

.

Timelike (perihelion): ϵ = 1

Null (light bending): ϵ = 0
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Perihelion precession: relativistic orbit equation

For timelike geodesics in Schwarzschild spacetime, the orbital
equation for u(ϕ) = 1/r reads

d2u

dϕ2
+ u =

M

ℓ2
+ 3Mu2.

The first two terms reproduce the Newtonian orbit equation.
The additional term 3Mu2 is a purely relativistic correction.

In Newtonian gravity:
d2u

dϕ2
+ u =

M

ℓ2
,

which admits closed elliptical orbits.
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Perihelion precession: prediction and observation

The relativistic correction implies that bound orbits are not closed. The
perihelion advances by

∆ϕ =
6πM

a(1− e2)

per revolution, where a is the semi-major axis and e the eccentricity.

Mercury

∆ϕGR ≃ 43′′ per century.

Newtonian gravity predicts no perihelion shift.
The observed excess matches the GR prediction precisely.
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Perihelion precession (schematic)

Before GR, the anomaly was attributed to a hypothetical planet (“Vulcan”).

The orbit is not closed: the perihelion advances by ∆φ each revolution.

In GR this comes from geodesic motion in Schwarzschild spacetime (extra
relativistic correction).
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Deflection of light: null geodesics

Light rays follow null geodesics (2L = 0). The orbital equation becomes

d2u

dϕ2
+ u = 3Mu2.

Solving perturbatively for a light ray passing at impact parameter b, one
finds a total deflection angle

∆ϕ =
4M

b
.

where b := ℓ/E is the impact parameter.
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Deflection of light: Newton vs GR

General Relativity

∆ϕGR =
4GM

c2b
.

Newtonian theory (naive)

∆ϕNewton =
2GM

c2b
.

GR predicts twice the Newtonian deflection.
For light grazing the Sun:

∆ϕGR ≃ 1.75′′.

Confirmed during the 1919 solar eclipse.
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Deflection of light by gravity (schematic)

Light follows null geodesics: the trajectory bends when passing near a
massive body.

The apparent position of a background star is shifted due to spacetime
curvature.
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Gravitational redshift: origin

The proper time measured by a static observer is

dτ =
√−gtt dt.

For the Schwarzschild metric,

gtt = −
(
1− 2M

r

)
.

The ratio of observed frequencies between two radii r1 and r2 is

ν2
ν1

=

√√√√1− 2M
r1

1− 2M
r2

.
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Gravitational redshift: physical meaning

In a static gravitational field, clocks at different radii do not measure the
same proper time:

dτ =
√
−gtt(r) dt.

A clock deeper in a gravitational potential (r smaller) runs slower.
A clock far from the gravitating body (r →∞) runs faster.

For two observers at r1 and r2,

∆τ1
∆τ2

=

√√√√1− 2M
r1

1− 2M
r2

.

Key point
Gravity affects the rate of time itself, not only the motion of particles.
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Gravitational time dilation and GPS

Satellites orbiting the Earth experience a weaker gravitational field
than clocks on the Earth’s surface.

Gravitational redshift causes satellite clocks to run faster than ground
clocks.
Special relativistic time dilation (due to orbital velocity) causes them to
run slower.

The net relativistic correction is approximately

∆t ≃ 38 µs per day.

Physical consequence
Without relativistic corrections from General Relativity, GPS positioning
errors would grow by several kilometers per day.
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Gravitational redshift and GPS (schematic)

Clock rates depend on gravitational potential: time at different altitudes runs
differently.

GPS needs relativistic corrections (GR + SR) to keep timing/position
accurate.
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Friedmann–Robertson–Walker spacetime

Cosmological assumptions
Homogeneity: all spatial points are equivalent.
Isotropy: no preferred spatial direction.
Matter content described by a perfect fluid:

Tµ
ν = diag(−ρ, p, p, p).

Most general metric compatible with these symmetries

ds2 = −dt2 + a(t)2
[

dr2

1− kr2
+ r2(dθ2 + sin2 θd2ϕ)

]
,

where
a(t) is the scale factor,
k = 0,±1 determines the spatial curvature.
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Friedmann equations and cosmological dynamics

Inserting the FRW metric into Einstein’s equations,

Gµν + Λgµν = 8πGTµν ,

yields the Friedmann equations*:

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3

Key physical consequences
Cosmic expansion or contraction (ȧ ̸= 0).
Acceleration or deceleration determined by ρ+ 3p.
Λ can drive accelerated expansion.
Cosmological redshift: 1 + z = a(t0)/a(tem).
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Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

gµν = ηµν + hµν , |hµν | ≪ 1,

where:
ηµν is the Minkowski metric,
hµν represents a small perturbation of spacetime.

In vacuum, the perturbations hµν propagate as waves:

hµν ∼ gravitational waves.

Physical content
In four dimensions, gravitational waves have two independent
polarizations:

h+ and h×,

called the “plus” and “cross” modes.

Sebastian Bahamonde Introduction to GR 127 / 129



Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

gµν = ηµν + hµν , |hµν | ≪ 1,

where:
ηµν is the Minkowski metric,
hµν represents a small perturbation of spacetime.

In vacuum, the perturbations hµν propagate as waves:

hµν ∼ gravitational waves.

Physical content
In four dimensions, gravitational waves have two independent
polarizations:

h+ and h×,

called the “plus” and “cross” modes.

Sebastian Bahamonde Introduction to GR 127 / 129



Gravitational waves: linearised gravity

In the weak-field regime, the spacetime metric can be written as

gµν = ηµν + hµν , |hµν | ≪ 1,

where:
ηµν is the Minkowski metric,
hµν represents a small perturbation of spacetime.

In vacuum, the perturbations hµν propagate as waves:

hµν ∼ gravitational waves.

Physical content
In four dimensions, gravitational waves have two independent
polarizations:

h+ and h×,

called the “plus” and “cross” modes.

Sebastian Bahamonde Introduction to GR 127 / 129



Gravitational waves: linearised gravity

Gravitational waves are ripples of spacetime itself.
They stretch and squeeze distances transverse to their direction of
propagation.
They carry energy and propagate at the speed of light.

Why they matter
Gravitational waves provide a direct observational probe of strong-field
General Relativity and were first detected by LIGO in 2015.
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Final message

Take your time. General Relativity is a deep subject and it is
completely normal not to understand everything at once.

General Relativity makes remarkable predictions that have been
experimentally confirmed and play a central role in modern research:
black holes, gravitational waves, and cosmology.

Open questions: There are many open problems in our
understanding of gravity, from fundamental theory to observations,
making it an excellent area to start research.

Next step: read the material again and try to solve the exercises
independently — this is where real understanding develops.
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