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Exercises Institute for Basic Science

Proposed exercises

1. Exercise 1:

Consider a 2-dimensional space.

(a)

Let A® = (A%, AY) = (1,2) and B; = (B, By) = (3,4). Using the Einstein

summation convention, compute
A'B;. (1)

Consider flat space written in Cartesian coordinates (x,y), with line element

ds? = da® + dy?, %=C0> @)
0 1
Lower the index of A? using '
A; =6 A7, (3)
and compute '
A'A;. (4)

Now describe the same flat space using polar coordinates (r, ¢). The line element
becomes
ds? = dr® 4+ r?d¢*. (5)

a) Write the metric components g;; in matrix form.
b) Consider a vector with contravariant components

Al = (A", A?). (6)

Lower the index using A; = gijAj and compute A, and Ag.

¢) Compare with part (b) and explain why the components of A; are different,
even though the space is still flat.

Finally, consider a genuinely curved geometry: a 2-dimensional torus parametri-
zed by angles (0, ¢), with induced metric

ds®> = r>df? + (R + rcos 0)? d¢?, R>r>0, (7)

where R and r are constants (geometric parameters of the torus, not coordina-
tes).

a) Write the metric components g;; in matrix form.

b) Given a vector Vi = (V? V?), compute the covariant components
Vi = gi; V7. (8)

¢) Compute the scalar V*V; and comment on its dependence on 6.



2. Exercise 2

Consider polar coordinates (r, ¢) on the plane, with metric (flat)

(a)
(b)

(©)

(d)

ds® = dr? + r2d¢>. (9)

Write the metric components g;; and the inverse metric g%/.

Compute the non-vanishing Christoffel symbols

. 1.
I = §9ZZ (0jgre + Orkgje — Oegj) (10)

and check that the Riemann tensor is zero (meaning that the spacetime is flat).

Consider the contravariant vector field
Vi=(1,0). (11)

Compute the partial derivatives 8jVi.

Define the covariant derivative of a contravariant vector by
ViVi=0;,Vi+ T, V", (12)

and compute V;V? explicitly.

3. Exercise 3

Let Aj;; be a covariant tensor field of type (0,2). Under a change of coordinates
x' s Z'(z), its components transform as

(a)

ozt dz™

jk — %W Im- (13)

Differentiate the expression above with respect to Z° and use the chain rule to
show that

~ oxt dx™ o™
0ilik = 527 9k o7 00T OZF | 01 0T 0Tk (14)

2,0 m l 2,..m
anAlm+<6w oz ozt 0%z > .

and explain why it does not transform as a tensor.

Now consider the covariant derivative V;Aj ;. Using its transformation proper-
ties, show that

oz™ Ozt o™
9zt 0zd Oz*

i.e. that the covariant derivative transforms as a tensor of type (0, 3).

ViAj, = Vi Aim, (15)

Explain the difference between 0;Aj;, and V;A;j, and why the introduction of
the covariant derivative is necessary in a generally covariant theory.



4. Exercise 4:

Consider a curve z#(\) connecting two fixed points A and B in a spacetime with
metric g, (). Define the (length) action

A2
Sa] = / L, L = \[gu(w)iriv, (16)
A

1

where ## = %. By varying the curve z#(\) — x#(X\) + 0z#(\) with fixed endpoints

dxt (A1) = dxt(N2) =0, (17)
derive the geodesic equation
& + 17, e"'s" =0, (18)
where )
P = 59" (Ougvo + 0vGpus = D Guv) (19)

5. Exercise 5:

Show that for the Levi-Civita connection (Christoffel symbols), the covariant deriva-
tive of the metric vanishes:

6. Exercise 6: Use the Killing equation
Vius) =0 (21)

to show that the most general spherically symmetric line element in spherical
coordinates (t,7,0,¢) can be written as

ds®> = —A(t,r)dt* + 2B(t,r) dtdr + C(t,r) dr® + D(t,r) (d6? + sin® 0 d¢?), (22)

i.e. (i) there are no dt df, dtde, dr df, dr dp, df d¢ terms, and (ii) the angular block
is proportional to the metric on the unit 2-sphere.

(Optional 1) Show that by a redefinition of the time coordinate
t — t'(tr), (23)
one can always set B(¢,7) = 0 locally.

(Optional 2) Show that in the static case one can always choose the radial coordinate
such that
D(r) = r2. (24)

7. Exercise 7:

Consider the static and spherically symmetric line element
ds? = —e"Mdt? + M dr? + r2(d6? + sin® 0 d¢?). (25)

a) Find (step by step) the independent non-vanishing components of the Levi-
Civita connection



b) Using these results, compute the non-vanishing components of the Ricci tensor
R, and express them in terms of v(r) and a(r).

¢) Finally, impose the Schwarzschild form
2M oM\
e’ =1 — e ") = <1 — > , (26)

and show explicitly that

for r > 2M.

8. Exercise 8:

Consider the Schwarzschild metric
oM oM\ !
ds® = — <1 - 7«> dt* + <1 — T) dr® + r2(d6? + sin? 6 d¢?). (28)

A useful curvature invariant is the Kretschmann scalar
K = Ry, R (29)

For Schwarzschild it is known that

A8 M2

K =
r6

. (30)

Since K is a scalar (coordinate-invariant), if it diverges at some radius then the spa-
cetime has a true curvature singularity there. Conversely, if the metric coefficients
blow up but K stays finite, the “singularity” may be only a coordinate singularity.

(a) Using K = 487% 2, check whether the spacetime is singular at » = 2M and at
r = 0.

(b) Introduce ingoing Eddington—Finkelstein coordinates by defining

r« =7+ 2MIn V=141, (31)

r
),
53
Rewrite the Schwarzschild metric in coordinates (v,7,0,¢) and show that the
metric is regular at r = 2M.

(¢) Explain why this shows that r = 2M is not a true singularity, while r = 0 is.

9. Exercise 9:

The spatially flat FRW metric (k = 0) is usually written in spherical coordinates as
ds® = —dt* + a(t)® (dr® + r*d6* + r* sin® 0 d¢?) . (32)
(a) Show that by introducing Cartesian coordinates
z = rsinf cos ¢, = rsinfsin ¢, z =rcos, (33)
the metric can be written as

ds* = —dt* + a(t)? (dz* + dy* + dzz) . (34)
4



(b) Using the Cartesian form of the metric, compute the independent non-vanishing

Christoffel symbols.

(c) Compute explicitly the non-vanishing components of the Ricci tensor and the

Riccei scalar.

(d) Assume the matter content is a perfect fluid with
T = (p+ p)upty + D g, u =1(1,0,0,0).
Use FEinstein field equations with a cosmological constant,
Guw +Agu =81GT,,,

to derive the Friedmann equations for £ = 0:

.\ 2 .
a 8rG A a ArG A
H2:<> =g Pty = (3t

a 3 3 3

(e) Show that energy-momentum conservation,
vV, T* =0,

leads to the continuity equation

Il
SH=F

p+3H(p+p) =0, H

(35)

(36)

(38)

(39)



