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Exercises Institute for Basic Science

Proposed exercises

1. Exercise 1:

Consider a 2-dimensional space.

(a) Let Ai = (Ax, Ay) = (1, 2) and Bi = (Bx, By) = (3, 4). Using the Einstein

summation convention, compute

AiBi. (1)

(b) Consider �at space written in Cartesian coordinates (x, y), with line element

ds2 = dx2 + dy2, δij =

(
1 0
0 1

)
. (2)

Lower the index of Ai using

Ai = δijA
j , (3)

and compute

AiAi. (4)

(c) Now describe the same �at space using polar coordinates (r, ϕ). The line element

becomes

ds2 = dr2 + r2dϕ2. (5)

a) Write the metric components gij in matrix form.

b) Consider a vector with contravariant components

Ai = (Ar, Aϕ). (6)

Lower the index using Ai = gijA
j and compute Ar and Aϕ.

c) Compare with part (b) and explain why the components of Ai are di�erent,

even though the space is still �at.

(d) Finally, consider a genuinely curved geometry: a 2-dimensional torus parametri-

zed by angles (θ, ϕ), with induced metric

ds2 = r2 dθ2 + (R+ r cos θ)2 dϕ2, R > r > 0, (7)

where R and r are constants (geometric parameters of the torus, not coordina-

tes).

a) Write the metric components gij in matrix form.

b) Given a vector V i = (V θ, V ϕ), compute the covariant components

Vi = gijV
j . (8)

c) Compute the scalar V iVi and comment on its dependence on θ.
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2. Exercise 2

Consider polar coordinates (r, ϕ) on the plane, with metric (�at)

ds2 = dr2 + r2dϕ2. (9)

(a) Write the metric components gij and the inverse metric gij .

(b) Compute the non-vanishing Christo�el symbols

Γi
jk =

1

2
giℓ (∂jgkℓ + ∂kgjℓ − ∂ℓgjk) , (10)

and check that the Riemann tensor is zero (meaning that the spacetime is �at).

(c) Consider the contravariant vector �eld

V i = (1, 0). (11)

Compute the partial derivatives ∂jV
i.

(d) De�ne the covariant derivative of a contravariant vector by

∇jV
i = ∂jV

i + Γi
jkV

k, (12)

and compute ∇jV
i explicitly.

3. Exercise 3

Let Aij be a covariant tensor �eld of type (0, 2). Under a change of coordinates

xi 7→ x̄i(x), its components transform as

Ājk =
∂xl

∂x̄j
∂xm

∂x̄k
Alm. (13)

(a) Di�erentiate the expression above with respect to x̄i and use the chain rule to

show that

∂̄iĀjk =
∂xl

∂x̄j
∂xm

∂x̄k
∂xn

∂x̄i
∂nAlm +

(
∂2xl

∂x̄i∂x̄j
∂xm

∂x̄k
+

∂xl

∂x̄j
∂2xm

∂x̄i∂x̄k

)
Alm , (14)

and explain why it does not transform as a tensor.

(b) Now consider the covariant derivative ∇iAjk. Using its transformation proper-

ties, show that

∇̄iĀjk =
∂xn

∂x̄i
∂xl

∂x̄j
∂xm

∂x̄k
∇nAlm, (15)

i.e. that the covariant derivative transforms as a tensor of type (0, 3).

(c) Explain the di�erence between ∂iAjk and ∇iAjk, and why the introduction of

the covariant derivative is necessary in a generally covariant theory.
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4. Exercise 4:

Consider a curve xµ(λ) connecting two �xed points A and B in a spacetime with

metric gµν(x). De�ne the (length) action

S[x] =

∫ λ2

λ1

dλL, L =
√

gµν(x) ẋµẋν , (16)

where ẋµ ≡ dxµ

dλ . By varying the curve xµ(λ) → xµ(λ) + δxµ(λ) with �xed endpoints

δxµ(λ1) = δxµ(λ2) = 0, (17)

derive the geodesic equation

ẍρ + Γρ
µν ẋ

µẋν = 0, (18)

where

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (19)

5. Exercise 5:

Show that for the Levi-Civita connection (Christo�el symbols), the covariant deriva-

tive of the metric vanishes:

∇αgµν = 0. (20)

6. Exercise 6: Use the Killing equation

∇(µξν) = 0 (21)

to show that the most general spherically symmetric line element in spherical

coordinates (t, r, θ, ϕ) can be written as

ds2 = −A(t, r) dt2 + 2B(t, r) dt dr + C(t, r) dr2 +D(t, r) (dθ2 + sin2 θ dϕ2), (22)

i.e. (i) there are no dt dθ, dt dϕ, dr dθ, dr dϕ, dθ dϕ terms, and (ii) the angular block

is proportional to the metric on the unit 2-sphere.

(Optional 1) Show that by a rede�nition of the time coordinate

t → t′(t, r), (23)

one can always set B(t, r) = 0 locally.

(Optional 2) Show that in the static case one can always choose the radial coordinate

such that

D(r) = r2. (24)

7. Exercise 7:

Consider the static and spherically symmetric line element

ds2 = −eν(r)dt2 + ea(r)dr2 + r2(dθ2 + sin2 θ dϕ2). (25)

a) Find (step by step) the independent non-vanishing components of the Levi�

Civita connection
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b) Using these results, compute the non-vanishing components of the Ricci tensor

Rµν and express them in terms of ν(r) and a(r).

c) Finally, impose the Schwarzschild form

eν(r) = 1− 2M

r
, ea(r) =

(
1− 2M

r

)−1

, (26)

and show explicitly that

Rµν = 0 (27)

for r > 2M .

8. Exercise 8:

Consider the Schwarzschild metric

ds2 = −
(
1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2). (28)

A useful curvature invariant is the Kretschmann scalar

K ≡ RµνρσR
µνρσ. (29)

For Schwarzschild it is known that

K =
48M2

r6
. (30)

Since K is a scalar (coordinate-invariant), if it diverges at some radius then the spa-

cetime has a true curvature singularity there. Conversely, if the metric coe�cients

blow up but K stays �nite, the �singularity� may be only a coordinate singularity.

(a) Using K = 48M2

r6
, check whether the spacetime is singular at r = 2M and at

r = 0.

(b) Introduce ingoing Eddington�Finkelstein coordinates by de�ning

r∗ ≡ r + 2M ln
∣∣∣ r

2M
− 1

∣∣∣ , v ≡ t+ r∗. (31)

Rewrite the Schwarzschild metric in coordinates (v, r, θ, ϕ) and show that the

metric is regular at r = 2M .

(c) Explain why this shows that r = 2M is not a true singularity, while r = 0 is.

9. Exercise 9:

The spatially �at FRW metric (k = 0) is usually written in spherical coordinates as

ds2 = −dt2 + a(t)2
(
dr2 + r2dθ2 + r2 sin2 θ dϕ2

)
. (32)

(a) Show that by introducing Cartesian coordinates

x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (33)

the metric can be written as

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
. (34)
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(b) Using the Cartesian form of the metric, compute the independent non-vanishing

Christo�el symbols.

(c) Compute explicitly the non-vanishing components of the Ricci tensor and the

Ricci scalar.

(d) Assume the matter content is a perfect �uid with

Tµν = (ρ+ p)uµuν + p gµν , uµ = (1, 0, 0, 0). (35)

Use Einstein �eld equations with a cosmological constant,

Gµν + Λgµν = 8πGTµν , (36)

to derive the Friedmann equations for k = 0:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
,

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (37)

(e) Show that energy�momentum conservation,

∇µT
µν = 0, (38)

leads to the continuity equation

ρ̇+ 3H(ρ+ p) = 0, H ≡ ȧ

a
. (39)
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