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Exercises - Solutions Institute for Basic Science

Solutions of exercises

1. Solution to Exercise 1:

(a)

Step 1: Expand the contraction.
By Einstein summation,

AiBi = AxBx + AyBy. (1)

Step 2: Substitute the components.
With Ai = (1, 2) and Bi = (3, 4),

AiBi = (1)(3) + (2)(4) = 3 + 8 = 11. (2)

(b)

We are given

ds2 = dx2 + dy2, δij =

(
1 0
0 1

)
. (3)

Step 1: Lower the index.
By de�nition,

Ai = δijA
j. (4)

Thus
Ax = δxxA

x + δxyA
y = 1 · Ax + 0 · Ay = Ax, (5)

Ay = δyxA
x + δyyA

y = 0 · Ax + 1 · Ay = Ay. (6)

So
Ai = (Ax, Ay) = (1, 2). (7)

Step 2: Compute AiAi.

AiAi = AxAx + AyAy = (1)(1) + (2)(2) = 5. (8)

(c)

We are given
ds2 = dr2 + r2dϕ2. (9)

Metric components.

Step 1: Identify xi = (r, ϕ) and match ds2 = gijdx
idxj.

Comparing terms,

grr = 1, gϕϕ = r2, grϕ = gϕr = 0. (10)
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Step 2: Write gij as a matrix.

gij(r) =

(
1 0
0 r2

)
. (11)

Lower the components Ai = (Ar, Aϕ).

Step 1: Use Ai = gijA
j.

Then
Ar = grrA

r + grϕA
ϕ = 1 · Ar + 0 · Aϕ = Ar, (12)

Aϕ = gϕrA
r + gϕϕA

ϕ = 0 · Ar + r2Aϕ = r2Aϕ. (13)

Hence
Ai = (Ar, Aϕ) =

(
Ar, r2Aϕ

)
. (14)

Why does this di�er from part (b)?
The space is still �at, but the metric components in polar coordinates are not
δij; instead gϕϕ = r2 depends on position. Therefore lowering an index changes
the numerical components:

Aϕ ̸= Aϕ for all r. (15)

This change is due to the coordinate choice, not curvature.

(d)

We are given

ds2 = r2 dθ2 + (R + r cos θ)2 dϕ2, R > r > 0. (16)

Metric components and matrix form.

Step 1: Match ds2 = gijdx
idxj with xi = (θ, ϕ).

Thus
gθθ = r2, gϕϕ = (R + r cos θ)2, gθϕ = gϕθ = 0. (17)

Step 2: Matrix form.

gij(θ) =

(
r2 0
0 (R + r cos θ)2

)
. (18)

Lower V i = (V θ, V ϕ).

Step 1: Use Vi = gijV
j.

Then
Vθ = gθθV

θ + gθϕV
ϕ = r2V θ, (19)

Vϕ = gϕθV
θ + gϕϕV

ϕ = (R + r cos θ)2V ϕ. (20)

So
Vi = (Vθ, Vϕ) =

(
r2V θ, (R + r cos θ)2V ϕ

)
. (21)
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Compute V iVi and comment.

Step 1: Contract.

V iVi = V θVθ + V ϕVϕ. (22)

Step 2: Substitute the lowered components.

V iVi = V θ(r2V θ)+V ϕ
(
(R+r cos θ)2V ϕ

)
= r2(V θ)2+(R+r cos θ)2(V ϕ)2. (23)

Comment.
Even if V θ and V ϕ are constant numbers, the scalar V iVi generally depends on
position through θ, because the metric component

gϕϕ(θ) = (R + r cos θ)2 (24)

varies along the torus. This illustrates that inner products and norms are de-
termined by the metric.
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2. Solution to Exercise 2

We work on the plane in polar coordinates (r, ϕ) with metric

ds2 = dr2 + r2dϕ2. (25)

We use index labels (1, 2) = (r, ϕ), i.e. xi = (r, ϕ).

(a) Metric components gij and inverse metric gij.

Step 1: Read o� gij from ds2 = gijdx
idxj.

Comparing
ds2 = 1 · dr2 + r2 · dϕ2, (26)

we obtain
grr = 1, gϕϕ = r2, grϕ = gϕr = 0. (27)

Step 2: Matrix form.

gij =

(
1 0
0 r2

)
. (28)

Step 3: Invert the matrix to obtain gij.
Since gij is diagonal,

gij =

(
1 0

0
1

r2

)
, (29)

that is,

grr = 1, gϕϕ =
1

r2
, grϕ = gϕr = 0. (30)

(b) Non-vanishing Christo�el symbols.

We use

Γi
jk =

1

2
giℓ (∂jgkℓ + ∂kgjℓ − ∂ℓgjk) . (31)

Step 1: Derivatives of the metric components.
The only coordinate-dependent component is

gϕϕ = r2, (32)

so
∂rgϕϕ = 2r, ∂ϕgϕϕ = 0, (33)

while all derivatives of grr = 1 and grϕ = 0 vanish.

Step 2: Compute Γr
ϕϕ.

Setting i = r, j = ϕ, k = ϕ,

Γr
ϕϕ =

1

2
grℓ (∂ϕgϕℓ + ∂ϕgϕℓ − ∂ℓgϕϕ) . (34)

Only ℓ = r contributes, hence

Γr
ϕϕ =

1

2
grr(−∂rgϕϕ) = −1

2
(2r) = −r. (35)

4



Step 3: Compute Γϕ
rϕ and Γϕ

ϕr.
Taking i = ϕ, j = r, k = ϕ,

Γϕ
rϕ =

1

2
gϕℓ (∂rgϕℓ + ∂ϕgrℓ − ∂ℓgrϕ) . (36)

Only ℓ = ϕ contributes, so

Γϕ
rϕ =

1

2
gϕϕ∂rgϕϕ =

1

2

(
1

r2

)
(2r) =

1

r
. (37)

By symmetry of the Levi�Civita connection,

Γϕ
ϕr = Γϕ

rϕ =
1

r
. (38)

Step 4: Result.
The non-vanishing Christo�el symbols are

Γr
ϕϕ = −r, Γϕ

rϕ = Γϕ
ϕr =

1

r
. (39)

Step 5: Check that the Riemann tensor vanishes.

The Riemann curvature tensor is de�ned by

Ri
jkl = ∂kΓ

i
jl − ∂lΓ

i
jk + Γi

kmΓ
m

jl − Γi
lmΓ

m
jk. (40)

From the previous steps, the only non-vanishing Christo�el symbols are

Γr
ϕϕ = −r, Γϕ

rϕ = Γϕ
ϕr =

1

r
. (41)

We now check explicitly that all components of Ri
jkl vanish.

Step 5a: Component Rr
ϕrϕ.

This is the only potentially non-zero independent component. Using the de�-
nition,

Rr
ϕrϕ = ∂rΓ

r
ϕϕ − ∂ϕΓ

r
ϕr + Γr

rmΓ
m

ϕϕ − Γr
ϕmΓ

m
rϕ. (42)

We evaluate each term:

∂rΓ
r
ϕϕ = ∂r(−r) = −1, ∂ϕΓ

r
ϕr = 0. (43)

Next, since Γr
rm = 0 for all m, the third term vanishes. For the last term, the

only non-zero contribution comes from m = ϕ:

Γr
ϕϕΓ

ϕ
rϕ = (−r)

(
1

r

)
= −1. (44)
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Putting everything together,

Rr
ϕrϕ = (−1)− 0 + 0− (−1) = 0. (45)

Step 5b: Remaining components.

All other components of the Riemann tensor either vanish trivially or are related
to Rr

ϕrϕ by the symmetries of the Riemann tensor. Therefore,

Ri
jkl = 0 for all indices i, j, k, l. (46)

Although the Christo�el symbols are non-zero in polar coordinates, the Rie-
mann tensor vanishes identically. This con�rms that the metric

ds2 = dr2 + r2dϕ2 (47)

describes �at space, and that the non-zero Christo�el symbols arise purely from
the use of curvilinear coordinates.

(c)

Step 1: Components of the vector �eld.

V r(r, ϕ) = 1, V ϕ(r, ϕ) = 0. (48)

Step 2: Compute partial derivatives.
Since the components are constant,

∂rV
r = ∂ϕV

r = ∂rV
ϕ = ∂ϕV

ϕ = 0, (49)

or equivalently,
∂jV

i = 0 for all i, j. (50)

(d)

By de�nition,
∇jV

i = ∂jV
i + Γi

jkV
k. (51)

Using part (c), ∂jV
i = 0, so

∇jV
i = Γi

jkV
k. (52)

Since V k = (1, 0),
∇jV

i = Γi
jr. (53)

Step 1: Components with i = r.

∇rV
r = Γr

rr = 0, ∇ϕV
r = Γr

ϕr = 0. (54)

Step 2: Components with i = ϕ.

∇rV
ϕ = Γϕ

rr = 0, ∇ϕV
ϕ = Γϕ

ϕr =
1

r
. (55)

Step 3: Matrix form.

(∇jV
i) =

(
0 0

0
1

r

)
. (56)
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3. Solution to Exercise 3:

a)
Step 1: Di�erentiate the equation with respect to x̄i.

By de�nition,

∂̄iĀjk ≡
∂

∂x̄i
Ājk. (57)

Applying the product rule to the equation,

∂̄iĀjk = ∂̄i

(
∂xl

∂x̄j

)
∂xm

∂x̄k
Alm +

∂xl

∂x̄j
∂̄i

(
∂xm

∂x̄k

)
Alm +

∂xl

∂x̄j

∂xm

∂x̄k
∂̄i(Alm). (58)

Step 2: Simplify the �rst two terms (second derivatives of the coordinate map).

Since xl = xl(x̄),

∂̄i

(
∂xl

∂x̄j

)
=

∂2xl

∂x̄i ∂x̄j
, ∂̄i

(
∂xm

∂x̄k

)
=

∂2xm

∂x̄i ∂x̄k
. (59)

Step 3: Apply the chain rule to the last term ∂̄i(Alm).

The components Alm are functions of the original coordinates xn, and xn =
xn(x̄). Hence, by the chain rule,

∂̄i(Alm) =
∂xn

∂x̄i
∂nAlm. (60)

Step 4: Substitute Eqs.

Plugging (59) and (60) into (58) gives

∂̄iĀjk =
∂2xl

∂x̄i ∂x̄j

∂xm

∂x̄k
Alm +

∂xl

∂x̄j

∂2xm

∂x̄i ∂x̄k
Alm +

∂xl

∂x̄j

∂xm

∂x̄k

∂xn

∂x̄i
∂nAlm. (61)

Reordering terms,

∂̄iĀjk =
∂xl

∂x̄j

∂xm

∂x̄k

∂xn

∂x̄i
∂nAlm +

(
∂2xl

∂x̄i ∂x̄j

∂xm

∂x̄k
+

∂xl

∂x̄j

∂2xm

∂x̄i ∂x̄k

)
Alm. (62)

This is precisely the transformation law.

Step 5: Why ∂iAjk is not a tensor.

If ∂iAjk were a (0, 3) tensor, it would transform as

∂̄iĀjk
?
=

∂xn

∂x̄i

∂xl

∂x̄j

∂xm

∂x̄k
∂nAlm. (7)
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But (6) contains an additional term involving second derivatives of the coordi-
nate transformation, so (7) is false in general. Therefore ∂iAjk does not trans-
form tensorially.

b)

We want to prove that the covariant derivative of a (0, 2) tensor transforms
tensorially:

∇̄iĀjk =
∂xn

∂x̄i

∂xl

∂x̄j

∂xm

∂x̄k
∇nAlm. (63)

Step 1: Start from the de�nition of the covariant derivative.

For a (0, 2) tensor,

∇nAlm = ∂nAlm − Γp
nl Apm − Γp

nm Alp. (64)

In barred coordinates,

∇̄iĀjk = ∂̄iĀjk − Γ̄p
ij Āpk − Γ̄p

ik Ājp. (65)

Step 2: Use the tensor transformation law for Ajk.

We take as given

Ājk =
∂xl

∂x̄j

∂xm

∂x̄k
Alm. (66)

Di�erentiating (66) with respect to x̄i (product rule + chain rule) yields

∂̄iĀjk =
∂xl

∂x̄j

∂xm

∂x̄k

∂xn

∂x̄i
∂nAlm

+

(
∂2xl

∂x̄i∂x̄j

∂xm

∂x̄k
+

∂xl

∂x̄j

∂2xm

∂x̄i∂x̄k

)
Alm. (67)

Step 3: Use the (inhomogeneous) transformation law of the connection.

As seen in class, the Christo�el symbols transform as

Γ̄p
ij =

∂x̄p

∂xq

∂xr

∂x̄i

∂xs

∂x̄j
Γq

rs +
∂x̄p

∂xq

∂2xq

∂x̄i∂x̄j
. (68)

Step 4: Evaluate Γ̄p
ijĀpk and Γ̄p

ikĀjp.

First, write

Āpk =
∂xa

∂x̄p

∂xb

∂x̄k
Aab, Ājp =

∂xa

∂x̄j

∂xb

∂x̄p
Aab. (69)

Use the Jacobian identity
∂x̄p

∂xq

∂xa

∂x̄p
= δaq. (70)
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Plugging (68) and (69) into Γ̄p
ijĀpk and simplifying with (70) gives

Γ̄p
ijĀpk =

∂xr

∂x̄i

∂xs

∂x̄j

∂xb

∂x̄k
Γa

rsAab +
∂2xa

∂x̄i∂x̄j

∂xb

∂x̄k
Aab. (71)

Similarly,

Γ̄p
ikĀjp =

∂xr

∂x̄i

∂xs

∂x̄k

∂xa

∂x̄j
Γb

rs Aab +
∂xa

∂x̄j

∂2xb

∂x̄i∂x̄k
Aab. (72)

Step 5: Substitute into the de�nition of ∇̄iĀjk and show cancellation.

Insert (67), (71), and (72) into (65). The second-derivative terms in (67) cancel
exactly against the second-derivative terms in (71) and (72) (after relabelling
dummy indices).

What remains is

∇̄iĀjk =
∂xl

∂x̄j

∂xm

∂x̄k

∂xn

∂x̄i

(
∂nAlm − Γp

nlApm − Γp
nmAlp

)
. (73)

Step 6: Recognize ∇nAlm.

Using the de�nition (64) inside (73), we obtain

∇̄iĀjk =
∂xn

∂x̄i

∂xl

∂x̄j

∂xm

∂x̄k
∇nAlm, (74)

which is exactly the desired tensorial transformation law (63).

c)

The partial derivative ∂iAjk describes how the components of the tensor Ajk

vary with the coordinates. However, these components are de�ned with respect
to a basis that itself depends on the coordinate system. In general coordinates,
the basis vectors or one-forms change from point to point.

As a result, when taking a partial derivative, one is implicitly ignoring the
variation of the basis. Under a general coordinate transformation, this leads
to additional terms that depend on the chosen coordinates, and therefore the
partial derivative of a tensor does not transform as a tensor itself.

The covariant derivative is introduced precisely to account for this e�ect. It
modi�es the partial derivative by incorporating information about how the basis
changes from point to point. This ensures that the resulting object depends only
on the geometric tensor �eld and not on the particular coordinate system used.

For this reason, the covariant derivative is essential in a generally covariant
theory, where physical laws must have the same form in all coordinate systems.
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4. Solution Exercise 4:

We start from the action with the square-root Lagrangian

S[x] =

∫ λ2

λ1

dλL, L =
√
gµν(x) ẋµẋν , ẋµ ≡ dxµ

dλ
. (75)

Step 1: Vary the path.
We perform the variation

xµ(λ) → xµ(λ) + δxµ(λ), δxµ(λ1) = δxµ(λ2) = 0. (76)

Then

δẋµ =
d

dλ

(
δxµ
)
. (77)

Step 2: Compute δL.
De�ne

A ≡ gµν(x) ẋ
µẋν , so that L =

√
A. (78)

Then

δL =
1

2
√
A

δA. (79)

Since gµν depends on x, its variation is

δgµν(x) = ∂ρgµν(x) δx
ρ. (80)

Therefore
δA = δgµν ẋ

µẋν + gµν δẋ
µẋν + gµν ẋ

µδẋν . (81)

Using the symmetry gµν = gνµ, the last two terms combine:

δA = ∂ρgµν δx
ρ ẋµẋν + 2 gµν ẋ

µ δẋν . (82)

Hence

δL =
1

2L
∂ρgµν ẋ

µẋν δxρ +
1

L
gµν ẋ

µ δẋν . (83)

Step 3: Compute δS and integrate by parts.
We have

δS =

∫ λ2

λ1

dλ δL =

∫ λ2

λ1

dλ

[
1

2L
∂ρgµν ẋ

µẋν δxρ +
1

L
gµν ẋ

µ δẋν

]
. (84)

Integrate the second term by parts, using δẋν = d
dλ
(δxν):∫ λ2

λ1

dλ
1

L
gµν ẋ

µ δẋν =

[
1

L
gµν ẋ

µ δxν

]λ2

λ1

−
∫ λ2

λ1

dλ
d

dλ

(
1

L
gµν ẋ

µ

)
δxν . (85)

The boundary term vanishes because δxν(λ1) = δxν(λ2) = 0. Thus

δS =

∫ λ2

λ1

dλ

[
1

2L
∂νgαβ ẋ

αẋβ − d

dλ

(
1

L
gµν ẋ

µ

)]
δxν . (86)
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Step 4: Euler�Lagrange equations.
Since δxν is arbitrary (with �xed endpoints), δS = 0 implies

d

dλ

(
1

L
gµν ẋ

µ

)
− 1

2L
∂νgαβ ẋ

αẋβ = 0. (87)

Multiplying by L gives

d

dλ
(gµν ẋ

µ)− L̇

L
gµν ẋ

µ − 1

2
∂νgαβ ẋ

αẋβ = 0. (88)

Expanding the total derivative,

d

dλ
(gµν ẋ

µ) = ∂ρgµν ẋ
ρẋµ + gµν ẍ

µ, (89)

so the equation becomes

gµν ẍ
µ + ∂ρgµν ẋ

ρẋµ − 1

2
∂νgαβ ẋ

αẋβ =
L̇

L
gµν ẋ

µ. (90)

Raising the index with gνσ,

ẍσ + Γσ
αβ ẋ

αẋβ =
L̇

L
ẋσ, (91)

where

Γσ
αβ =

1

2
gσν (∂αgβν + ∂βgαν − ∂νgαβ) . (92)

Step 5: A�ne parameter and the standard geodesic equation.
If λ is chosen to be an a�ne parameter (e.g. proportional to proper length/time),
then L is constant along the curve, so L̇ = 0. In that case the equation reduces
to

ẍσ + Γσ
αβ ẋ

αẋβ = 0, (93)

which is the standard geodesic equation.
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5. Solution Exercise 5:

Step 1: Write the de�nition of the covariant derivative of a covariant rank-2
tensor.
For any Tµν ,

∇αTµν = ∂αTµν − Γρ
αµTρν − Γρ

ανTµρ. (94)

Setting Tµν = gµν , we have

∇αgµν = ∂αgµν − Γρ
αµgρν − Γρ

ανgµρ. (95)

Step 2: Lower the upper index of Γ using the metric.
De�ne

Γλµν ≡ gλρΓ
ρ
µν . (96)

Then the last two terms become

Γρ
αµgρν = Γναµ, Γρ

ανgµρ = Γµαν . (97)

So
∇αgµν = ∂αgµν − Γναµ − Γµαν . (98)

Step 3: Compute Γλµν from the Levi-Civita expression.
Start from

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (99)

Multiply both sides by gλρ:

Γλµν = gλρΓ
ρ
µν =

1

2
gλρg

ρσ (∂µgνσ + ∂νgµσ − ∂σgµν) . (100)

Using gλρg
ρσ = δσλ, we get

Γλµν =
1

2
(∂µgνλ + ∂νgµλ − ∂λgµν) . (101)

Step 4: Substitute Γναµ and Γµαν .
From the formula above,

Γναµ =
1

2
(∂αgµν + ∂µgαν − ∂νgαµ) , (102)

Γµαν =
1

2
(∂αgνµ + ∂νgαµ − ∂µgαν) . (103)

Step 5: Plug into ∇αgµν and simplify.
Recall

∇αgµν = ∂αgµν − Γναµ − Γµαν . (104)

Substitute:

∇αgµν = ∂αgµν −
1

2
(∂αgµν + ∂µgαν − ∂νgαµ)−

1

2
(∂αgνµ + ∂νgαµ − ∂µgαν) .
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Use the symmetry gµν = gνµ, hence ∂αgνµ = ∂αgµν :

∇αgµν = ∂αgµν −
1

2
(∂αgµν + ∂µgαν − ∂νgαµ)−

1

2
(∂αgµν + ∂νgαµ − ∂µgαν) .

Now expand and collect terms:

∇αgµν = ∂αgµν −
1

2
∂αgµν −

1

2
∂µgαν +

1

2
∂νgαµ −

1

2
∂αgµν −

1

2
∂νgαµ +

1

2
∂µgαν .

Everything cancels pairwise:

∂αgµν −
1

2
∂αgµν −

1

2
∂αgµν = 0, (105)

−1

2
∂µgαν +

1

2
∂µgαν = 0,

1

2
∂νgαµ −

1

2
∂νgαµ = 0. (106)

Therefore,
∇αgµν = 0. (107)

This property is called metric compatibility and is one of the de�ning fea-
tures of the Levi-Civita connection. This also means that nonmetricity is zero
(angles and norms are preserved under in�nitesimal parallel transportation)
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6. Solution Exercise 6:

Spherical symmetry means invariance under spatial rotations, i.e. the spacetime
admits three Killing vectors generating SO(3), and the metric is invariant under
their �ows. In coordinates (t, r, θ, ϕ), the rotational Killing vectors act only on
(θ, ϕ).

Step 1: Write the rotational Killing vectors on the 2-sphere
A convenient basis of Killing vectors generating rotations is

ξ(1) = ∂ϕ,

ξ(2) = − sinϕ ∂θ − cot θ cosϕ ∂ϕ,

ξ(3) = cosϕ ∂θ − cot θ sinϕ ∂ϕ.

They satisfy the so(3) commutation relations and have no t or r components.

Step 2: Use the Killing vector implies Lξgµν = 0.
The Killing equation ∇(µξν) = 0 is equivalent to

(Lξg)µν = 0, (108)

where the Lie derivative is

(Lξg)µν = ξρ∂ρgµν + gρν∂µξ
ρ + gµρ∂νξ

ρ. (109)

We will impose this for the three rotational ξ(i).

Step 3: First constrain the θ and ϕ dependence using ξ(1) = ∂ϕ.
For ξ = ∂ϕ we have ξρ∂ρ = ∂ϕ and ∂µξ

ρ = 0. Thus

(L∂ϕg)µν = ∂ϕgµν = 0. (110)

Hence all metric components are independent of ϕ:

∂ϕgµν = 0. (111)

Step 4: Use the remaining rotations to eliminate mixed angular terms.
Now impose Lξ(2)g = 0 and Lξ(3)g = 0. These vectors mix θ and ϕ and generate
all rotations on the sphere.

A key consequence is:

There is no non-zero rotationally invariant 1-form on the 2-sphere.

The objects gtθ dθ+gtϕ dϕ and grθ dθ+grϕ dϕ transform as 1-forms on the sphere.
If the metric is invariant under all rotations, these 1-forms must be invariant
under SO(3). Therefore they must vanish:

gtθ = gtϕ = grθ = grϕ = 0. (112)

Similarly, the mixed angular piece gθϕ dθ dϕ is not invariant under all rotations
(it would pick out preferred directions on the sphere), so spherical symmetry
forces

gθϕ = 0. (113)
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Step 5: Determine the form of the angular 2-metric.
After Step 4, the metric splits into a (t, r) block and an angular block:

ds2 = gab(t, r, θ) dx
adxb + gAB(t, r, θ) dx

AdxB, (114)

with a, b ∈ {t, r} and A,B ∈ {θ, ϕ}, and no cross terms.

Spherical symmetry means that the angular part gAB must be invariant under
all rotations on the sphere. But the only SO(3)-invariant rank-2 symmetric
tensor on S2 is proportional to the unit-sphere metric γAB:

γAB dxAdxB = dθ2 + sin2 θ dϕ2. (115)

Therefore,
gAB(t, r, θ, ϕ) = D(t, r) γAB(θ, ϕ), (116)

i.e.
gθθ = D(t, r), gϕϕ = D(t, r) sin2 θ. (117)

In particular, D cannot depend on (θ, ϕ), otherwise the metric would not be
invariant under rotations.

Step 6: Determine the remaining components.
The remaining nonzero components live in the (t, r) block:

gtt(t, r), gtr(t, r), grr(t, r). (118)

They cannot depend on θ or ϕ because any angular dependence would break
rotational invariance. Thus we rename

gtt = −A(t, r), gtr = B(t, r), grr = C(t, r), (119)

where the minus sign in gtt is conventional for Lorentzian signature.

Putting everything together, the most general spherically symmetric metric is

ds2 = −A(t, r) dt2 + 2B(t, r) dt dr + C(t, r) dr2 +D(t, r) (dθ2 + sin2 θ dϕ2).

(120)

Optional Step 7: Show that B(t, r) can be removed locally.
Consider a coordinate rede�nition

t′ = t′(t, r), r′ = r. (121)

One can choose t′(t, r) so that the dt′ dr cross term vanishes (this is a standard
diagonalization of the 2D metric in the (t, r) subspace). Hence locally one may
set B = 0, giving

ds2 = −A(t, r) dt2 + C(t, r) dr2 +D(t, r) (dθ2 + sin2 θ dϕ2). (122)

Optional Step 8: Show that in the static case one can choose D(r) = r2.

After Optional Step 7, the metric can be written (locally) as

ds2 = −A(r) dt2 + C(r) dr2 +D(r) (dθ2 + sin2 θ dϕ2), (123)
15



where we have used that the spacetime is static, so all metric functions depend
only on r.

Consider now a rede�nition of the radial coordinate

r̃ ≡
√

D(r). (124)

Since D(r) > 0 and depends only on r, this transformation is purely radial and
invertible (at least locally).

In terms of the new coordinate r̃, the angular sector becomes

D(r) (dθ2 + sin2 θ dϕ2) = r̃ 2(dθ2 + sin2 θ dϕ2). (125)

The radial part of the metric transforms as

C(r) dr2 = C̃(r̃) dr̃ 2, (126)

where the new function C̃(r̃) absorbs the Jacobian factor

C̃(r̃) = C(r)

(
dr

dr̃

)2

. (127)

Therefore, without loss of generality, one can always choose coordinates such
that

D(r) = r2. (128)

This choice is known as the areal radius, since the area of the 2-spheres of
constant r is A = 4πr2.

16



7. Solution Exercise 7:

Step 0: Metric components and inverse metric.
In coordinates (t, r, θ, ϕ),

gµν = diag
(
−eν , ea, r2, r2 sin2 θ

)
, (129)

gµν = diag

(
−e−ν , e−a,

1

r2
,

1

r2 sin2 θ

)
. (130)

Step 1: Non-vanishing derivatives of the metric.
Since ν = ν(r) and a = a(r),

∂rgtt = −eνν ′, ∂rgrr = eaa′, (131)

∂rgθθ = 2r, ∂rgϕϕ = 2r sin2 θ, ∂θgϕϕ = 2r2 sin θ cos θ. (132)

�

a)

Step 2: Compute the independent Christo�el symbols.

We use

Γρ
µν =

1

2
gρσ (∂µgνσ + ∂νgµσ − ∂σgµν) , Γρ

µν = Γρ
νµ. (133)

Γt
tr:

Γt
tr =

1

2
gtt∂rgtt =

1

2
(−e−ν)(−eνν ′) =

1

2
ν ′. (134)

Γr
tt:

Γr
tt =

1

2
grr(−∂rgtt) =

1

2
e−aeνν ′ =

1

2
ν ′eν−a. (135)

Γr
rr:

Γr
rr =

1

2
grr∂rgrr =

1

2
a′. (136)

Γr
θθ:

Γr
θθ =

1

2
grr(−∂rgθθ) = −re−a. (137)

Γr
ϕϕ:

Γr
ϕϕ = −r sin2 θ e−a. (138)

Γθ
rθ = Γϕ

rϕ:

Γθ
rθ = Γϕ

rϕ =
1

r
. (139)

Γϕ
θϕ:

Γϕ
θϕ = cot θ. (140)

Γθ
ϕϕ:

Γθ
ϕϕ = − sin θ cos θ. (141)
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The independent non-vanishing Christo�el symbols are

Γt
tr =

1

2
ν ′, Γr

tt =
1

2
ν ′eν−a, Γr

rr =
1

2
a′, Γr

θθ = −re−a, Γr
ϕϕ = −r sin2 θ e−a,

(142)

Γθ
rθ = Γϕ

rϕ =
1

r
, Γϕ

θϕ = cot θ, Γθ
ϕϕ = − sin θ cos θ, (143)

plus symmetry in the lower indices.

�

b)

Step 1: Non-vanishing components of Rµν .

Using the de�nition

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

µνΓ
σ
λσ − Γσ

µλΓ
λ
νσ, (144)

and substituting the Christo�el symbols obtained above, one �nds after direct
calculation:

Rtt =
1

2
eν−a

(
ν ′′ +

1

2
ν ′2 − 1

2
a′ν ′ +

2

r
ν ′
)
, (145)

Rrr = −1

2
ν ′′ − 1

4
ν ′2 +

1

4
a′ν ′ +

1

r
a′, (146)

Rθθ = 1− e−a
(
1− r

2
a′ +

r

2
ν ′
)
, Rϕϕ = sin2 θ Rθθ. (147)

All remaining components vanish by symmetry.

�

c)

Step 1: Substitute the Schwarzschild functions.
Let

eν = f(r), ea =
1

f(r)
, f(r) = 1− 2M

r
. (148)

Then

ν ′ =
f ′

f
, a′ = −f ′

f
, ν ′′ =

f ′′

f
− (f ′)2

f 2
. (149)

with

f ′ =
2M

r2
, f ′′ = −4M

r3
. (150)

Step 2: Vanishing of Rtt and Rrr.
Both components contain the combination

f ′′ +
2

r
f ′ = 0, (151)
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hence
Rtt = 0, Rrr = 0. (152)

Step 3: Vanishing of Rθθ and Rϕϕ.

Rθθ = 1− f − rf ′ = 1−
(
1− 2M

r

)
− 2M

r
= 0, (153)

and therefore
Rϕϕ = sin2 θ Rθθ = 0. (154)

Therefore, for the Schwarzschild solution:

Rµν = 0. (155)

This means that it is a solution of Einstein's �eld equations in vacuum.
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8. Solution Exercise 8:

(a)

Step 1: Start from the given invariant.
We are told that for Schwarzschild

K ≡ RµνρσR
µνρσ =

48M2

r6
. (156)

Since K is a scalar, its value does not depend on the coordinate system.

Step 2: Evaluate K at the horizon r = 2M .
Substitute r = 2M :

K(2M) =
48M2

(2M)6
. (157)

Compute the power:
(2M)6 = 26M6 = 64M6. (158)

Therefore,

K(2M) =
48M2

64M6
=

48

64

1

M4
=

3

4M4
, (159)

which is �nite.

Step 3: Check the behavior as r → 0.
As r → 0,

K =
48M2

r6
−→ ∞, (160)

so curvature diverges at the origin.

Step 4: Interpret the result.
Because K is �nite at r = 2M , the hypersurface r = 2M is not a curvature
singularity. Because K diverges at r = 0, the point r = 0 is a true (physical)
curvature singularity.

(b)

Step 1: Rewrite the metric using f(r).
De�ne

f(r) ≡ 1− 2M

r
. (161)

Then

ds2 = −f dt2+f−1 dr2+r2(dθ2+sin2 θ dϕ2) ≡ −f dt2+f−1 dr2+r2dΩ2. (162)

Step 2: De�ne the tortoise coordinate r∗.
We de�ne

r∗ ≡ r + 2M ln
∣∣∣ r

2M
− 1
∣∣∣ . (163)

Step 3: Di�erentiate r∗ to obtain dr∗.
Di�erentiate with respect to r:

dr∗
dr

= 1 + 2M
d

dr

[
ln
∣∣∣ r

2M
− 1
∣∣∣] . (164)
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Using d
dr
ln |u| = u′

u
with u = r

2M
− 1, we get

u′ =
1

2M
,

d

dr
ln |u| = 1/(2M)

r
2M

− 1
=

1

r − 2M
. (165)

Hence

dr∗
dr

= 1 + 2M
1

r − 2M
=

r − 2M + 2M

r − 2M
=

r

r − 2M
=

1

1− 2M
r

=
1

f(r)
. (166)

Therefore,

dr∗ =
dr

f
. (167)

Step 4: De�ne advanced time v and compute dt.
De�ne

v ≡ t+ r∗. (168)

Di�erentiate:
dv = dt+ dr∗. (169)

Using dr∗ =
dr
f
,

dt = dv − dr∗ = dv − dr

f
. (170)

Step 5: Substitute dt into the metric and expand.
Start with the t-part:

−f dt2 = −f

(
dv − dr

f

)2

. (171)

Expand the square: (
dv − dr

f

)2

= dv2 − 2

f
dv dr +

1

f 2
dr2. (172)

Multiply by −f :

−f dt2 = −f dv2 + 2 dv dr − 1

f
dr2. (173)

Step 6: Add the radial term f−1dr2.
Now include +f−1dr2:

−f dt2 + f−1dr2 =

(
−f dv2 + 2 dv dr − 1

f
dr2
)
+

1

f
dr2 = −f dv2 + 2 dv dr.

(174)

Step 7: Write the �nal Eddington�Finkelstein metric.
Thus, in coordinates (v, r, θ, ϕ),

ds2 = −
(
1− 2M

r

)
dv2 + 2 dv dr + r2(dθ2 + sin2 θ dϕ2). (175)
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Step 8: Check regularity at r = 2M .
At r = 2M ,

gvv = −
(
1− 2M

r

)
→ 0, gvr = 1, grr = 0, (176)

and all angular terms are �nite. There is no diverging factor like f−1. Hence
the metric is regular at r = 2M in Eddington�Finkelstein coordinates.

(c)

Combine the two results.
From part (a), K is �nite at r = 2M , so there is no curvature singularity there.
From part (b), we found coordinates where the metric is manifestly regular at
r = 2M .

r = 2M is a coordinate singularity (the event horizon),
r = 0 is a true curvature singularity.
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9. Solution Exercise 9:

(a)

Using
x = r sin θ cosϕ, y = r sin θ sinϕ, z = r cos θ, (177)

one �nds the standard identity

dx2 + dy2 + dz2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2. (178)

Therefore the metric becomes

ds2 = −dt2 + a(t)2
(
dx2 + dy2 + dz2

)
, (179)

which is manifestly homogeneous and isotropic.

(b)

Step 1: Metric and inverse metric.

g00 = −1, gij = a(t)2δij, (180)

g00 = −1, gij = a(t)−2δij. (181)

Step 2: Non-vanishing derivatives.

∂0gij = 2aȧ δij, ∂kgµν = 0. (182)

Step 3: Compute the nonzero Christo�els.

Γ0
ij =

1

2
g00 (−∂0gij) = aȧ δij =

ȧ

a
gij, (183)

Γi
0j = Γi

j0 =
1

2
gik∂0gjk =

ȧ

a
δij. (184)

All other Christo�el symbols vanish.

(c)

De�ne the Hubble parameter

H ≡ ȧ

a
. (185)

The Ricci tensor is

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + Γλ

µνΓ
σ
λσ − Γσ

µλΓ
λ
νσ. (186)

Step 1: R00

Γλ
00 = 0, Γλ

0λ = 3H. (187)

Thus

R00 = −∂0(3H)− 3H2 = −3(Ḣ +H2) = −3
ä

a
. (188)
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Step 2: Rij.
Using Γ0

ij = aȧ δij and Γi
0j = Hδij, one �nds

Rij = (aä+ 3ȧ2)δij =

(
ä

a
+ 2H2

)
gij. (189)

Step 3: Ricci scalar.

R = gµνRµν = 6

(
ä

a
+H2

)
. (190)

(d)

We use
Gµν + Λgµν = 8πGTµν . (191)

Step 1: Stress-energy tensor components.
With uµ = (1, 0, 0, 0) and g00 = −1,

T00 = ρ, T0i = 0, Tij = p gij. (192)

Step 2: Einstein tensor components.
From part (c),

G00 = 3H2, Gij = −
(
2
ä

a
+H2

)
gij. (193)

Step 3: 00-component (�rst Friedmann equation).
For µν = 00,

G00 + Λg00 = 8πGT00. (194)

Substituting G00 = 3H2, g00 = −1, T00 = ρ,

3H2 − Λ = 8πGρ, (195)

hence

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
. (196)

Step 4: Spatial ij-component (acceleration equation).
For µν = ij,

Gij + Λgij = 8πGTij = 8πGp gij. (197)

Substitute Gij = −(2ä/a+H2)gij and cancel gij ̸= 0:

−2
ä

a
−H2 + Λ = 8πGp. (198)

Using H2 = 8πG
3
ρ+ Λ

3
,

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (199)
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ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (200)

(e)

We work with the �at FRW metric in Cartesian coordinates

ds2 = −dt2 + a(t)2δijdx
idxj, H ≡ ȧ

a
. (201)

For a perfect �uid at rest in comoving coordinates,

T µν = (ρ+ p)uµuν + p gµν , uµ = (1, 0, 0, 0). (202)

Step 1: Components of T µν .
Since g00 = −1 and gij = a−2δij,

T 00 = ρ, T 0i = 0, T ij = p a−2δij. (203)

Step 2: Write ∇µT
µ0 = 0.

By de�nition,
∇µT

µν = ∂µT
µν + Γµ

µλT
λν + Γν

µλT
µλ. (204)

Setting ν = 0,
∇µT

µ0 = ∂µT
µ0 + Γµ

µλT
λ0 + Γ0

µλT
µλ. (205)

Step 3: Evaluate each term.

(i) Derivative term:

∂µT
µ0 = ∂0T

00 = ρ̇. (206)

(ii) Trace-connection term:

Γµ
µλT

λ0 = Γµ
µ0 T

00. (207)

Since
Γµ

µ0 = Γ0
00 + Γi

i0 = 3H, (208)

we get
Γµ

µλT
λ0 = 3Hρ. (209)

(iii) Last term:

Γ0
µλT

µλ = Γ0
ijT

ij. (210)

Using Γ0
ij = aȧ δij and T ij = p a−2δij,

Γ0
ijT

ij = 3Hp. (211)

Step 4: Conservation equation.

∇µT
µ0 = ρ̇+ 3H(ρ+ p) = 0, (212)
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therefore
ρ̇+ 3H(ρ+ p) = 0. (213)

Even in the presence of a cosmological constant,

Gµν + Λgµν = 8πGTµν , (214)

the matter conservation law ∇µT
µν = 0 holds because ∇µG

µν = 0 and ∇µg
µν =

0.
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