General Relativity Winter Camp 2026
Exercises - Solutions Institute for Basic Science

Sebastian Bahamonde

Solutions of exercises

1. Solution to Exercise 1:

(a)

Step 1: Expand the contraction.
By Einstein summation,

A'B; = A*B, + AYB,,
Step 2: Substitute the components.
With A® = (1,2) and B; = (3,4),
A'B; = (1)(3)+ (2)(4) =3 +8 = 11.

(b)

We are given

2 _ .2 2 (10
ds* = dx* + dy*, 5”—<0 1).

Step 1: Lower the index.
By definition,

Ai == 5ijAj.
Thus
Ay :51114334—5%14?/: 1-A*40-AY = A*,
Ay = 0yg A" + 0,y AV =0- A" +1- AV = AY.
So

A= (A, Ay = (1,2).

Step 2: Compute A’A,;.

ATA; = ATA, + AVA, = (1)(1) + (2)(2) = 5.

(c)
We are given

ds* = dr® + rd¢°.
Metric components.

Step 1: Identify 2’ = (r, ¢) and match ds* = g;;da'da’.
Comparing terms,

Grr = 17 9o = T2> Gr¢p = Gor = 0.
1
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Step 2: Write g;; as a matrix.
1 0
9i5(r) = (0 TQ) .

Lower the components A® = (A", A%).

Step 1: Use A; = g;; A%,
Then
Ay = g A"+ ggA® =1 - A" +0-A? = A",

Ap = gor AT+ gppA® = 0+ A 12 A% = 1242,

Hence
Ai = (Ar,Aqg) = (AT, T2A¢).

Why does this differ from part (b)?

(11)

(14)

The space is still flat, but the metric components in polar coordinates are not
d;;; instead gyp = r* depends on position. Therefore lowering an index changes

the numerical components:
Ay # A? for all 7.
This change is due to the coordinate choice, not curvature.
(d)
We are given
ds® = r*df* + (R + rcos0)? d¢?, R>r>0.

Metric components and matrix form.

Step 1: Match ds® = g;;dz'dz? with z* = (0, ¢).
Thus

G =7% goo= (R+7eos0f, oo = gon = .

Step 2: Matrix form.
r? 0
9i(0) = <0 (R—I—TCOSQ)Z)'

Lower Vi = (V% V9).

Step 1: Use V; = g;; V7.
Then
Vo = gooV’ + goV? =r*V?,
V¢ = g¢9V9 + g¢¢V¢ = (R + 7 cos 9)2V¢.
So
Vi=(Vo, Vy) = (r*V’, (R+rcos)’V?).
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Compute V'V; and comment.
Step 1: Contract.

ViV = VOV + VOV, (22)
Step 2: Substitute the lowered components.
VVi =V (V) + VP ((R+rcos0)?V?) = r* (V)2 4+ (R+rcos0)* (V)% (23)

Comment.
Even if V? and V¢ are constant numbers, the scalar V'V generally depends on
position through 6, because the metric component

9ss(0) = (R 4+ rcos 0)? (24)

varies along the torus. This illustrates that inner products and norms are de-
termined by the metric.



2. Solution to Exercise 2

We work on the plane in polar coordinates (r, ¢) with metric

ds® = dr* + r*d¢’.
We use index labels (1,2) = (r,¢), i.e. ' = (r, ).

(a) Metric components g;; and inverse metric g“.

Step 1: Read off g;; from ds* = g;;dz'da?.
Comparing
ds* = 1-dr? + 1% - d¢?,

we obtain

Grr = 1a Jop = T27 Grop = Gor = 0.

Step 2: Matrix form.

1 0
9ij = 0 r2)-

Step 3: Invert the matrix to obtain ¢g%.

Since g;; is diagonal,
- 1 0
97 = L,
0=

that is,

(b) Non-vanishing Christoffel symbols.
We use

I = 59”2 (0391 + Okgje — Ougjn) -

Step 1: Derivatives of the metric components.
The only coordinate-dependent component is
oo =17,
SO
(‘3ng,¢ = 27“, 8¢g¢¢ = O,
while all derivatives of g,, = 1 and g,4 = 0 vanish.

Step 2: Compute I 44.
Setting i =r, j = ¢, k = ¢,

' 1 T
I g6 = 29" (Os9st + Opgsr — Ougos) -

2
Only ¢ = r contributes, hence
o1

[o = 59" (=0r999) = —5(2r) = —r

(25)
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(32)

(33)

(34)
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Step 3: Compute I'?,.4 and T'?,.
Taking i = ¢, j =1, k = ¢,

1
[%,. = §9¢€ (0r9p0 + OpGre — Orgre) - (36)

Only ¢ = ¢ contributes, so

1 1 /1 1
0= 3070000 = 5 () 2) = 1. 7

By symmetry of the Levi-Civita connection,

1
[, =%, = - (38)
Step 4: Result.
The non-vanishing Christoffel symbols are
" o o _1
F¢¢:—T, Frd):F (br:;' (39)
Step 5: Check that the Riemann tensor vanishes.
The Riemann curvature tensor is defined by
R =0k — Ol i + T D™ gy — Ty (40)

From the previous steps, the only non-vanishing Christoffel symbols are

1
FT(M, = -, F¢r¢ = qud”” = —. (41)
r
We now check explicitly that all components of R';;; vanish.

Step 5a: Component R 4.

This is the only potentially non-zero independent component. Using the defi-
nition,
RT¢T¢, = 8TFT¢¢ - 8¢PT¢T + FTTmFm¢¢ - Frd,mfmr(b. (42)

We evaluate each term:

8,,FT¢¢ = &(—r) = —1, 8¢FT¢T =0. (43)

Next, since ", = 0 for all m, the third term vanishes. For the last term, the
only non-zero contribution comes from m = ¢:

[ s0 % = (=7) <1> =-L (44)
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Putting everything together,
RT¢7«¢ = (—1) —0+0-— (—1) = 0. (45)

Step 5b: Remaining components.

All other components of the Riemann tensor either vanish trivially or are related
to R" 4.4 by the symmetries of the Riemann tensor. Therefore,

Ry =0 for all indices i, j, k, . (46)

Although the Christoffel symbols are non-zero in polar coordinates, the Rie-
mann tensor vanishes identically. This confirms that the metric

ds* = dr? + r*d¢* (47)

describes flat space, and that the non-zero Christoffel symbols arise purely from
the use of curvilinear coordinates.

(c)
Step 1: Components of the vector field.
Vi(r,¢) =1,  V%(r,¢)=0. (48)

Step 2: Compute partial derivatives.
Since the components are constant,

OV =0,V" =0,V? =0,V =0, (49)
or equivalently, A
0;V'=0 foralli,j. (50)
(d)
By definition, ' ' ‘
V,Vi=0;V + T, V" (51)
Using part (c), 9;V* =0, so
V;Vi=T",VF (52)
Since V* = (1,0), . .
v,V =T1",. (53)

Step 1: Components with i = r.

v.Vvi=T1",=0, VoV =T1"4 =0. (54)
Step 2: Components with i = ¢.
V.Ve=T%,=0, V,V°=T%, = % (55)
Step 3: Matrix form.
4 0 0
(V,V) = (O 1) . (56)
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3. Solution to Exercise 3:

a)

Step 1: Differentiate the equation with respect to z°.

By definition,
o _
o Ajp. (57)

Applying the product rule to the equation,

l m l m l
@Ajk:a,-(@_?) oz 4, ﬂ_?ai(éi_)A L0 s A, (58)

51'Ajk =

ozl ) ok~ Oz ok 0z 0Tk

Step 2: Simplify the first two terms (second derivatives of the coordinate map).

Since 2! = 2'(z),
_ [ 0x! d%a! = (Oz™ O*x™
Wo5) = gwam o) = gwose 59)

Step 3: Apply the chain rule to the last term 0;(An,).

The components A, are functions of the original coordinates z™, and z" =
x"(z). Hence, by the chain rule,

ox"

0, Ay (60)

Step 4: Substitute Eqgs.

Plugging (59) and (60) into (58) gives

9%xt O™ oxt 0%z™ 8xl ox™ Ox™

9. A iy Pty |
i = 9705 0zt ™ T Pz oz ozt ™ T 97 9zk ot

A (61)

Reordering terms,

! 2.1 m I 92,.m
Oifhin Sii ?;;k sz On i+ (agz‘ g:zu‘ g:;k * g; ai%w) Aim-| - (62)
This is precisely the transformation law.
Step 5: Why 0, A, is not a tensor.
If 0;Aj, were a (0,3) tensor, it would transform as
DA - Oz™ Oxt Ox™ oA, (7)

ze 0z Oxk



But (6) contains an additional term involving second derivatives of the coordi-
nate transformation, so (7) is false in general. Therefore 0,4, does not trans-

form tensorially.

b)

We want to prove that the covariant derivative of a (0,2) tensor transforms

tensorially:
oz™ Oz! Oz™

91t 071 9TF

Step 1: Start from the definition of the covariant derivative.

?ifljk - vnAlm

For a (0,2) tensor,
VoAim = On A — TPy Apy — TP Ay
In barred coordinates,
Vil = 0;Aj, — TP Apr — TP Ay

Step 2: Use the tensor transformation law for Ajy.

We take as given
- Ozt Ox™
A = ———— Aim.
T i oz
Differentiating (66) with respect to z* (product rule + chain rule) yields
- Ox! Ox™ Oz
0iAjr = — === OnAim
T zi ok ar
( 0?2t Ozm  Oxb 9™ )
P} im

0TI Ok + 0rJ 0xtoTk

Step 3: Use the (inhomogeneous) transformation law of the connection.

As seen in class, the Christoffel symbols transform as

b 00000, 0n0 P

= g m 9w " 9rd 050w

Step 4: Evaluate fpijflpk and f‘pikfljp.

First, write
i ox® Oxb - Ox° Ox?
R L T

Use the Jacobian identity

o0zP 0x° B
0z 0P
8

a
q-

(63)

(64)

(65)

(66)

(68)

(69)

(70)



Plugging (68) and (69) into ['?;; A, and simplifying with (70) gives

_8x”8x88_xbra At Pa O’
PR gz opi ozk T T frion Ok

I, A

A, (71)

Similarly,

_ oz Ox* dx* oz 9*a®

]‘:‘p’bk 1 - . A_ . rs ab A A—sA—1. ab .
9zt 0k O 073 0T 0Tk

(72)
Step 5: Substitute into the definition of vifljk and show cancellation.

Insert (67), (71), and (72) into (65). The second-derivative terms in (67) cancel
eractly against the second-derivative terms in (71) and (72) (after relabelling
dummy indices).

What remains is
B oxt O™ dx™

Vidji = 55 o <0nAlm — TPy Ay — rpnmAlp) (73)
Step 6: Recognize V, Aj,.

Using the definition (64) inside (73), we obtain

—— - Vadim, (74)

which is exactly the desired tensorial transformation law (63).
c)

The partial derivative 0;A;, describes how the components of the tensor Ajj
vary with the coordinates. However, these components are defined with respect
to a basis that itself depends on the coordinate system. In general coordinates,
the basis vectors or one-forms change from point to point.

As a result, when taking a partial derivative, one is implicitly ignoring the
variation of the basis. Under a general coordinate transformation, this leads
to additional terms that depend on the chosen coordinates, and therefore the
partial derivative of a tensor does not transform as a tensor itself.

The covariant derivative is introduced precisely to account for this effect. It
modifies the partial derivative by incorporating information about how the basis
changes from point to point. This ensures that the resulting object depends only
on the geometric tensor field and not on the particular coordinate system used.

For this reason, the covariant derivative is essential in a generally covariant
theory, where physical laws must have the same form in all coordinate systems.



4. Solution Exercise 4:

We start from the action with the square-root Lagrangian
A — L, dat
Slx] = d\ L, L =/gu(x)iriv, = —.
A d\

Step 1: Vary the path.
We perform the variation

aH(A) — zH(N) + sk (N), dzt (A1) = dzt(Ng) = 0.

Then p
gt = (50",
Step 2: Compute o L.
Define
A =g, (x) ", so that L=VA.
Then ]
0L = —=0A.

2v/A
Since g,,, depends on z, its variation is
09 (x) = 0,9, () 62”.

Therefore
0A =g, T"TY + g 0T E” + gy THOTY.

Using the symmetry ¢,, = g,,, the last two terms combine:
0A = 0,9, 02’ 2HT" 4 2 g, T 6TV

Hence
1

0L = —
oL

1
Ol 13" 63° + Gy 3 03",

Step 3: Compute S and integrate by parts.
We have

A2 A2 1 1
58S = [ dASL = / dA [i Oy 8" 02" + G " 5:‘4 .
/\1 >\1

. . d .
Integrate the second term by parts, using 64" = 7 (d2"):

A L I S L I S B
//\1 d\ Zg,wx“ o’ = {Eg,ﬂ,a:“ 5m”} N — /}\1 d\ o\ (Zglwx’“‘> ox”.

The boundary term vanishes because dx” (A1) = dz¥(A3) = 0. Thus

o1 PR S AN
0S = N d\ ﬁﬁygaﬁxx 0 Zg,wx ox”.
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Step 4: Euler-Lagrange equations.
Since dz is arbitrary (with fixed endpoints), 65 = 0 implies

d (1 1
_ _ y':u‘ __aya aﬁ:o 87
35 (Fowi*) = 37 s 87
Multiplying by L gives
d , L 1 o
5 (gu@") — i3 G — 2 OvGap T i’ = 0. (88)
Expanding the total derivative,
o o o
a (guyl' ) = 0pGu T°T +g;u/x 5 (89)
so the equation becomes
) ey 1 wg Lo
@ + 0pgu T — 5 OyGap T°3° = 7 Gt (90)
Raising the index with ¢"7,
L
i+ 17,5377 = -7, (91)
where 1
[ap =597 (Dagsy + Osgav = 0u9ap) (92)

Step 5: Affine parameter and the standard geodesic equation.
If X is chosen to be an affine parameter (e.g. proportional to proper length /time),
then L is constant along the curve, so L = 0. In that case the equation reduces

to
i + 1950 =0, (93)

which is the standard geodesic equation.

11



5. Solution Exercise 5:

Step 1: Write the definition of the covariant derivative of a covariant rank-2
tensor.
For any 7},

Vol = 0T — 170, Th — 1707, (94)

avdpp-

Setting 71),, = g, we have
vaguu = aocguu - Fpaugpu - Fpowgup- (95)

Step 2: Lower the upper index of I' using the metric.
Define

Caw = 917 0 (96)

Then the last two terms become

I apgp = Toap, I avGup = T paw- (97)
So
Vag;w = Oaluv — Fl/a/,L - F,uoa/- (98)
Step 3: Compute I'y,, from the Levi-Civita expression.
Start from )
[P = §gpa (OuGvo + OvGuo — OoGuu) - (99)

Multiply both sides by gy,:

1 o
F)\;w = g)\prp;w = 5 g)\pgp (augzza + 81/9#0 - aaQ,uu) : (100)

Using g,97° = 07, we get

1
P)\;w = 5 (8ugz//\ + az/g,uA - 8/\g;w) . (101)

Step 4: Substitute '), and I',q,.
From the formula above,

1
Fua,u - 5 (8aguu + a,ugoa/ - 8Vgocu) ) (102)
1
Fp,oa/ = 5 (aagl/p, + augoz,u, - augau) . (103)
Step 5: Plug into V,g,, and simplify.
Recall
vagm/ = aag,uzz - Fzzau - F,uoa/- (104)
Substitute:

1
o (aagl/u + al/gozu - augay) .

1
5 (aagw/ + 8;19041/ - 81/9a,u) 9

vaguu = aoag;ux - 9

12



Use the symmetry g,, = gy, hence 0,9, = 0a gyt

vagm/ = OaYuv — 9

Now expand and collect terms:

1
a (aozg;w + a,ugau -

1
81/90(#) Y

2 (aaglw + al/gau - a,uQau) :

1 1 1 1 1
vag;w = aocg;w - §aag/w - §augo¢u + 5&/904;1 - §aag;w - Eal/gau + §8ugow-
Everything cancels pairwise:
1 1
8ozg,uz/ - _aag,uu - _aag;w = O, (105)
2 2
1 1 1 1
_ia“ga” + §8Mgm, = O, §8l,gau — §8l/ga,u, = 0. (106)
Therefore,
vaguu = 0. (107)

This property is called metric compatibility and is one of the defining fea-
tures of the Levi-Civita connection. This also means that nonmetricity is zero
(angles and norms are preserved under infinitesimal parallel transportation)

13



6. Solution Exercise 6:

Spherical symmetry means invariance under spatial rotations, i.e. the spacetime
admits three Killing vectors generating SO(3), and the metric is invariant under
their flows. In coordinates (¢,7,0, ¢), the rotational Killing vectors act only on

(6, 9)-

Step 1: Write the rotational Killing vectors on the 2-sphere
A convenient basis of Killing vectors generating rotations is

£y = Oy,

§2) = —sin ¢ Jy — cot b cos ¢ Dy,
§(3) = cos ¢ Oy — cot O sin ¢ 0.

They satisfy the so(3) commutation relations and have no ¢ or r components.

Step 2: Use the Killing vector implies L¢g,, = 0.
The Killing equation V(,&,) = 0 is equivalent to

(Leg)w =0, (108)

where the Lie derivative is

(‘659)#’/ = Epapglw + gpzzau’fp + g,upazzfp- (109)
We will impose this for the three rotational §.

Step 3: First constrain the 6 and ¢ dependence using &) = 0.
For £ = 04 we have £P0, = 0, and 0,£” = 0. Thus

(£8¢g)ltu = 8¢guu = 0. (110)
Hence all metric components are independent of ¢:

Op Gy = 0. (111)

Step 4: Use the remaining rotations to eliminate mixed angular terms.
Now impose L¢, g = 0 and Le, g = 0. These vectors mix 6 and ¢ and generate
all rotations on the sphere.

A key consequence is:
There is no non-zero rotationally invariant 1-form on the 2-sphere.

The objects g1 d0+ g4 d¢ and gr9 d0+g,4 d¢ transform as 1-forms on the sphere.
If the metric is invariant under all rotations, these 1-forms must be invariant
under SO(3). Therefore they must vanish:

910 = Gt = Gro = Gre = 0. (112)

Similarly, the mixed angular piece gy, df d¢ is not invariant under all rotations
(it would pick out preferred directions on the sphere), so spherical symmetry
forces
gos = 0. (113)
14



Step 5: Determine the form of the angular 2-metric.
After Step 4, the metric splits into a (¢,7) block and an angular block:

ds® = gap(t,r,0) dadz® + gap(t,r,0) detda®, (114)

with a,b € {t,r} and A, B € {0, ¢}, and no cross terms.

Spherical symmetry means that the angular part g4p must be invariant under
all rotations on the sphere. But the only SO(3)-invariant rank-2 symmetric
tensor on S? is proportional to the unit-sphere metric v4p:

Yap dztdz® = do? + sin® 6 dp*. (115)
Therefore,
gAB(t7 T, 67 (b) = D(t7 7’) ’YAB(Qu 925)7 (116)
i.e.
gee = D(t,7),  gss = D(t,r)sin?0. (117)

In particular, D cannot depend on (6, ¢), otherwise the metric would not be
invariant under rotations.

Step 6: Determine the remaining components.
The remaining nonzero components live in the (¢, 7) block:

gu(t,r),  guw(t,r), g (t,7). (118)

They cannot depend on 6 or ¢ because any angular dependence would break
rotational invariance. Thus we rename

g =—Altr),  gr=Btr),  gw=C(t), (119)

where the minus sign in g4 is conventional for Lorentzian signature.

Putting everything together, the most general spherically symmetric metric is

ds®* = —A(t,r)dt* + 2B(t,r)dt dr + C(t,r) dr* + D(t,r) (d6* + sin® 0 d¢?).

(120)
Optional Step 7: Show that B(¢,r) can be removed locally.
Consider a coordinate redefinition
t=1t(tr), r=r. (121)

One can choose t'(¢,r) so that the dt’ dr cross term vanishes (this is a standard
diagonalization of the 2D metric in the (¢,r) subspace). Hence locally one may
set B =0, giving

ds* = —A(t,r)dt* + C(t,r)dr* + D(t,r) (d* + sin® 6 d¢?). (122)

Optional Step 8: Show that in the static case one can choose D(r) = r2.

After Optional Step 7, the metric can be written (locally) as

ds* = —A(r) dt* + C(r) dr® + D(r) (d6? + sin® 0 dp?), (123)
15



where we have used that the spacetime is static, so all metric functions depend
only on 7.

Counsider now a redefinition of the radial coordinate

f

D). (124)

Since D(r) > 0 and depends only on 7, this transformation is purely radial and
invertible (at least locally).

In terms of the new coordinate 7, the angular sector becomes
D(r) (d6? + sin? § dp*) = 72(d6? + sin”® 6 dp?). (125)
The radial part of the metric transforms as
C(r)dr* = C(F) dir?, (126)

where the new function C (7) absorbs the Jacobian factor
~ dr\?
r) = — ] . 12
C(F) = C(r) ( df) (127)

Therefore, without loss of generality, one can always choose coordinates such
that

D(r) = r?. (128)

This choice is known as the areal radius, since the area of the 2-spheres of
constant r is A = 4mr?.

16



7. Solution Exercise 7:

Step 0: Metric components and inverse metric.
In coordinates (¢,r,0, ¢),

g, = diag (—e”, e, r?, r?sin? 9) , (129)
v . -v _—a 1 1
g,u = dlag <—€ , € ﬁ, m) . (130)

Step 1: Non-vanishing derivatives of the metric.
Since v = v(r) and a = a(r),
ar.gtt = _61/’/7 a’/‘grr = eaa/’ (131)
Orgog = 2, Orgpp = 21 sin 0, Dogoe = 2r*sin 6 cos . (132)

a)

Step 2: Compute the independent Christoffel symbols.

We use 1
7, = §gpo (v + Oudus — Oty re, =17, (133)
Fttri
1 1 1
I, = §gtt8rgtt = 5(_6_V)(_6VV/) = §V/- (134)
Iy
1 1 1
I, = Eg”(—@gtt) = 56‘“6”1/ = §V'e”_“. (135)
FTT'T
1 1
FTTr:_Trrrr:_ ,- 136
59" Orgrr = 5a (136)
[ gg
1
9o = §g”"(—6r999) = —re " (137)
Fr¢¢2
[745 = —rsin®fe . (138)
Fere = F¢r¢:
1
Iy =T%4="-. (139)
r
F¢9¢Z
F¢9¢ = cot 6. (140)
F9¢¢Z
%44 = —sinfcosb. (141)

17



The independent non-vanishing Christoffel symbols are

1 1 1
Fttr — 51/17 Frtt — §Vleufa’ Frrr — 5al, FT&G — —re*“, Fr(bd) = _p sin2 6 efa’
(142)
1
Feﬂg = F¢T¢ = -, F¢9¢ = cot 0, F9¢¢ = —sinf cos 0, (143)
r
plus symmetry in the lower indices.
b)
Step 1: Non-vanishing components of R, .
Using the definition
R, = O\, — 0,1 ) + T, 19, — 7,31, (144)
and substituting the Christoffel symbols obtained above, one finds after direct
calculation:
1 1 1 2
Rtt — Eeu—a (V” + EVQ o Ealyl + ;V/) , (145)
1 1 1 1
Rrr = —§I/H — Zylz —|— Za/l// + ;a’, (146)
—a Ty Ty c 02
Rop=1—¢c <1—§a +§1/>, Rys = sin 0 Ryp. (147)
All remaining components vanish by symmetry.
c)
Step 1: Substitute the Schwarzschild functions.
Let ] o0
e’ = f(r), et = ——, fry=1——. (148)
f(r) r
e I I Y
Vo=, a =—-=, V”:———Q. (149)
f f o f
with Y Y
r "
Fr=— Fr=—3 (150)
Step 2: Vanishing of Ry and R,
Both components contain the combination
" 2 !
=0 (151)

18




hence
Rtt - O, Rrr = O

Step 3: Vanishing of Rgy and Ryg4.

Rg@zl—f—rf/:1—<1—¥>—¥:0,

and therefore
R¢¢ = sin2 0 R@g = 0.

Therefore, for the Schwarzschild solution:

R, = 0.

This means that it is a solution of Einstein’s field equations in vacuum.

19
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8. Solution Exercise 8:

(a)
Step 1: Start from the given invariant.
We are told that for Schwarzschild

oo ASM?
K = R, R"" = 5 (156)
Since K is a scalar, its value does not depend on the coordinate system.
Step 2: Evaluate K at the horizon r = 2M.
Substitute r = 2M: A8AL
KQ2M) = ——. 157
(2M) = G (157)
Compute the power:
(2M)% = 2°M° = 64M°. (158)
Therefore,
48M2% 48 1 3
K2M)= ——=—— = 159
(2M) 64M6 64 M*  4MY (159)
which is finite.
Step 3: Check the behavior as » — 0.
Asr — 0,
48 M*?
K=———o0, (160)
r

so curvature diverges at the origin.

Step 4: Interpret the result.

Because K is finite at r = 2M, the hypersurface » = 2M is not a curvature
singularity. Because K diverges at r = 0, the point r = 0 is a true (physical)
curvature singularity.

(b)
Step 1: Rewrite the metric using f(r).
Define

fr)=1—-—. (161)
Then

ds® = —fdt* + f dri 4-r3(d6? +sin® 0 dp?) = — f dt* + f~ drP +r2dQ2. (162)

Step 2: Define the tortoise coordinate r,.

We define ,
L =r42MI ‘——1). 163
r r+ n Yi (163)
Step 3: Differentiate r, to obtain dr,.
Differentiate with respect to r:
dr d r
©_1 2M—[l ’——1H. 164
dr * ar U120 (164)
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Using £ In [u| = % with u = 557 — 1, we get

1 d 1/(2M) 1
(R —1 = = ) 165
T VAN S R o5V (165)
Hence
dr, 1 r—2M +2M r 1 1
=1+2M = = = = . (1
dr + r—2M r—2M r—2M 1—% f(r) (166)
Therefore,
dr
dr, = —. 167
7 (167)
Step 4: Define advanced time v and compute dt.
Define
v=t4r,. (168)
Differentiate:
dv = dt + dr,. (169)
Using dr, = d—fr,
d
dt = dv — dr, = dv — TT (170)
Step 5: Substitute dt into the metric and expand.
Start with the t-part:
dr\ 2
—fdt*=—f (dv—l) . (171)
f
Expand the square:
dr\’ 2 1
dv— — | =dv® — Zdvdr + —dr’. 172
(=) Pt 1)
Multiply by —f:
1
—fdt? = —fdv® + 2dvdr — ~dr®. (173)

f

Step 6: Add the radial term f~'dr2.
Now include + f~tdr?:

1 1
—fdt?* + ftdr? = (—fdv2+2dvdr— ?dT‘Z) + —dr? = —f dv® + 2dv dr.

f
(174)
Step 7: Write the final Eddington—Finkelstein metric.
Thus, in coordinates (v,r,0, ¢),
2 2M 2 20302 | 2 2
ds*=—(1—— | dv* +2dvdr + r*(df* + sin” 0 d¢~). (175)
T
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Step 8: Check regularity at r = 2M.
At r=2M,

2M
oo = — (1 - _> — 0, Gur = 1, grr =0, (176)

r

and all angular terms are finite. There is no diverging factor like f~!. Hence
the metric is regular at r = 2M in Eddington—Finkelstein coordinates.

(c)

Combine the two results.

From part (a), K is finite at r = 2M, so there is no curvature singularity there.
From part (b), we found coordinates where the metric is manifestly regular at
r=2M.

r = 2M is a coordinate singularity (the event horizon),
r = 0 is a true curvature singularity.
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9. Solution Exercise 9:

(a)

Using
x=rsinfcos¢p, y=rsinfsing, z=rcosh, (177)

one finds the standard identity
dz® + dy® + d2* = dr* + r*d6* + r? sin® 0 d¢*. (178)
Therefore the metric becomes
ds® = —dt* + a(t)? (da® + dy? + d2?) (179)
which is manifestly homogeneous and isotropic.

(b)

Step 1: Metric and inverse metric.

goo = —1, 9ij = a(t)25ij7 (180)
g =-1, g9 =a(t) ", (181)

Step 2: Non-vanishing derivatives.
809@' = 2aa 5ij7 akg/“/ = 0. (182)
Step 3: Compute the nonzero Christoffels.
0 L 00 : a
= 39 (—0ogij) = aady; = 2 Jid (183)
. , 1. a
[loj = Tjo = 59" Doy = ~0';. (184)
All other Christoffel symbols vanish.

(c)

Define the Hubble parameter

a
H== 185
, (185)
The Ricci tensor is
R, = O\, — 0,1\ + T2, 17, — 17,507, (186)
Step 1: Roo
My =0, Mo\ = 3H. (187)
Thus .
Roop = —80(3H) — 3H? = —3([ + H?) = —3%. (188)
a
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Step 2: Rzg
Using I'Y;; = aa d;; and I"o; = H4';, one finds

Step 3: Ricci scalar.

f%:gf”RM,:e3<9-+fﬂ>.
a

(d)
We use
G +ANgu =81G T,

Step 1: Stress-energy tensor components.
With u* = (1,0,0,0) and goo = —1,

Too = p, To; =0, Tij = D gij-

Step 2: Einstein tensor components.
From part (c),

GOOIBHZ, Gz’j:— (2%+H2> gij-

Step 3: 00-component (first Friedmann equation).
For pv = 00,
GOO + Aggo = 8&1( TOO-

Substituting GOO = 3H2, doo = —17 T()[) =P,
3H? — A = 87Gp,

hence

. 2

a 81G A
;= () =2, 2

<a> 3 713

Step 4: Spatial ij-component (acceleration equation).
For puv =1y,
Gij + Agi]’ = SWGE]' = 87ergij.

Substitute G;; = —(2d/a + H?)g;; and cancel g;; # 0:

—29—H2+A:87er.
a

Using H? = %p—l— %,

(189)

(190)

(191)

(192)

(193)

(194)

(195)

(196)

(197)

(198)

(199)



inG A
- —L(p+3p)+§. (200)

Q|

(e)

We work with the flat FRW metric in Cartesian coordinates
ds® = —dt* + a(t)?8;;dx'da? g=2 (201)
a

For a perfect fluid at rest in comoving coordinates,

T = (p + p)u'u’ + p g, u' = (1,0,0,0). (202)
Step 1: Components of TH".
Since ¢*° = —1 and ¢ = a=26Y,
TOO =, TOZ' — 0’ Tl] — pa_25ij. (203)

Step 2: Write V, T+ = 0.
By definition,
VT = 0,TH + T+ TN + T 2T+ (204)

Setting v = 0,
V, T = 0, T + T# T + T° T, (205)

Step 3: Evaluate each term.

(i) Derivative term:

9,T" = 9yT" = p. (206)
(ii) Trace-connection term:
DH AT =T, T, (207)
Since
I, =% + T = 3H, (208)
we get
I T = 3Hp. (209)
(iii) Last term:
[0\ =T0,T4. (210)

Using I'Y;; = aad;; and TV = pa=26",
;7% = 3Hp. (211)
Step 4: Conservation equation.
V,.T" = p+3H(p+p) =0, (212)
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therefore

p+3H(p+p)=0. (213)

Even in the presence of a cosmological constant,
G +ANgy =87G T, (214)

the matter conservation law V, 7" = 0 holds because V,G*” = 0 and V ,g"" =
0.
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