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THE SCIENCE QUESTIONS

Nuclear science addresses some of the outstanding challenges to modern physics, including 

the properties and limits of matter, the forces of nature, and the evolution of the universe: 

✓Question 1. How do quarks and gluons make up protons, neutrons, and, ultimately, 

atomic nuclei? 

✓Question 2. How do the rich patterns observed in the structure and reactions of nuclei 

emerge from the interactions between neutrons and protons?

✓Question 3. What are the nuclear processes that drive the birth, life, and death of stars?

✓Question 4. How do we use atomic nuclei to uncover physics beyond the Standard 

Model?

▪ The 2023 Long Range Plan by Nuclear Science Advisory Committee

    (at the request of the DOE Office of Science and the NSF Directorate of Mathematical and Physical Sciences )

Main Scientific Questions in 2023 LRP
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• Only 288 nuclei forms the valley of stability.

• About 3,000 nuclei are known.

• Nuclear theorists estimate about 6,900 nuclei are bound.

• Nuclei away from stability are short lived (down to μsec).
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The limits of the nuclear landscape

J. Erler et al., Nature 486, 509 (2012)
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❖  Properties of Nuclei: mass, Q-value, T1/2, Pn, level densities,  reaction rates,
                     level structure, magic number and drip line

Schematic overview of the nuclear processes on nuclear chart 
H. Schatz, 2016

relatively well known
a little bit known

Unknown?!
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What do we need to study?
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What do we need to study?

• Nuclear Physics Interests: shell evolution, collectivity, dripline phenomena

• Astrophysics Interests: resonances, reaction rates

• Experimental constraints: low intensity RIB, inverse kinematics, low cross sections near 

barrier energies

➔ solid angle + threshold + PID + good calibration to determine experimental reach
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H. L. Crawford et al., 2016

▪ Structure / shell evolution: (d,p), (p,d), inelastic → single-particle, SF, Jπ

▪ Nuclear astrophysics: resonant states, (α,p), (p,γ), (n,γ) → rates
▪ Near-barrier reaction dynamics: elastic/breakup → OMP, coupling effects
▪  Needs: angular distributions + Ex or Q-value + PID + coincidences

Nuclear Reaction Research Topics in Low-Energy RI

Reduced total reaction cross sections

L. Chaturvedi et al., Phys. Rev. C 43, 2541 (1991).
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▪ SSSD vs DSSSD: energy vs position (θ) granularity
▪ Strip pitch / Active area: Δθ & multiplicity handling
▪ Thickness: ΔE/E design, punch-through control
▪ Dead layer & Threshold: low-energy p/α sensitivity
▪ Bias & QC: IV/CV, leakage(T), microdischarge

▪ ΔE–E telescope: particle ID for p/d/t/α
▪ Punch-through / stopping boundaries
▪ Backing detectors (e.g., CsI(Tl)) as option
▪ Calibration methods: α sources + elastic kinematics

Silicon Detector Property Requirements

MSQ25-1000
(50x50 mm2)

TT-500 PSD (190 x 40 mm2)

HELIOS PSD (56 x 12 mm2)

QQQ3 (50.1 mm ID & 99 mm OD)
16x16 strips

QQQ5 (25.3 mm ID & 82 mm OD)
32x4 strips

BB10 (75x40.3 mm2)
8x1 strips

BB15 (75x40.3 mm2)
64x4 strips

BB15 (50x50 mm2)
16x16 strips

YY1 (55 mm ID & 13 mm OD)
16x1 stripsS1 (48 mm ID & 96 mm OD)

64x16 strips
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▪ Large number of channels from the detector setup: Conventional Electronics 
requires space and cost problems, complicated setup, easy signal tracing.

▪ ASIC-based: high channel density, low noise, compact cabling, low cost (~1/10) and 
small space (~1/5), simple setup.
✓ HINP (Heavy Ion Nuclear Physics) Chip: 16 channels per chip, 512 channels per 
motherboard
✓ GET (Generic Electronics for TPC): 64 channels per chip, 256 channels per AsAd 
board

▪ Digitizer-based: waveform access, flexible triggering, rapid bring-up
▪ Sync: common clock/timestamps, coincidence window
▪ Rate & dead time: pileup, buffer, throughput
▪ Grounding/shielding (low noise): vacuum feedthrough, cross-talk control

Electronics and DAQ Systems (Conventional vs ASICs vs Digitizer)

A picture for HINP16C chip and motherboard
G.L. Engel, CAARI Conference (2010)

A picture for μTCA crate
and AsAd board (4 AGET chips)
G. Rogechev, GDSs Workshop (2018)

Digitizer for ASGARD and Stark Jr. with 
domestic company (Notice Korea)

XIA Pixie16 digitizer (PHA)

A picture of Conventional Electronics Set-up

CAEN V-series digitizer (PHA&PSA)
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▪ Purpose: inverse kinematics transfer with large acceptance
▪ Layout concept: barrel + endcap Si strips, 12 detectors/telescopes per ring
▪ Key design: segmentation → Δθ, high solid angle
▪ Typical outputs: angular distributions, Q-value spectra
▪ Integration: target chamber geometry & alignment discipline

ORRUBA and superORRUBA
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D. Bardayan et al. NIMA

ORRUBA （Oak Ridge Rutgers University Barrel Array） 

SuperORRUBA



Sunghoon (Tony) Ahn
Particle Detector Workshop 2026, Feb. 6th, 2026

▪ Doubly Magic nucleus: ¹³²Sn(d,p)¹³³Sn single-particle states (inverse kinematics)
✓ Angular dist. provides ℓ assignment, SF, state identification.
✓ Doubly magic property is confirmed.

▪ Neutron capture reaction rates: 80Ge(d,p)81Ge neutron transfer
✓ Angular dist. provides ℓ assignment, SF, state identification.
✓ The results provides new cross section of 80Ge(n,γ)81Ge reaction.

ORRUBA: Research Highlights
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Proton angular distributions

Calculated DSD cross sections for
 the 80Ge(n,γ)81Ge reaction

S. Ahn et al. PRC 100, 044613 (2019)

Proton angular distributionsQ-value spectrum
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K. Schmidt et al., NPA8 2017
J. Browne et al., PRL 130 212701 (2023)

Proton angular distributions

R. Orlandi et al., PLB 785, 615 (2018)

ORRUBA: Research Highlights

DSD neutron capture cross sections of Sn isotopes

Cross section as a function of Ecm
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▪ Concept: Si identifies reaction channel, γ tags final state (Jπ/level scheme)
▪ Requirements: timestamp sync, coincidence logic, event building
▪ Benefit: background suppression via particle gating
▪ Typical outputs: Ex spectrum with γ coincidence selection
▪ Best for: complex level schemes / weak branches

GODDESS: particle–γ coupling (ORRUBA + γ-ray detector array)

GODDESS design

GODDESS Si Det. Barrel Array

M.R. Hall et al., PRL 122, 052701 (2019)
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▪ Method : vertex → dE/dx → reconstructed CM energy → excitation function
▪ Systematic uncertainty: gas P/T stability, drift calibration, track fit quality
▪ Si systematics: threshold, dead layer, gain matching
▪ Rate issues: pileup/trigger, event size (tracking)
▪ It can provide resonance parameters and reaction rate constraints.

ANASEN: Detector Design & Highlights

Schematic cross-section view of ANASEN

N. Rijal et al. Phys. Rev. Lett. 123, 239902 (2019)

E. Koshchiy et al. NIMA 870 (2017) 1–11

MAPC

14SuperX3 (75x40.3 mm2)
4x4 strips

Ebeam
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Solenoidal Spectrometer + on-axis DSSSD

HELical Orbit Spectrometer (HELIOS) 

ISOLDE Solenoidal Spectrometer (ISS)
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▪ Approach: solenoid kinematics focusing → improved kinematic reconstruction
▪ Detector: on-axis DSSSD array (modular), optimized for Ex/Q-value extraction
▪ Readout: ASICs, dense channels, stable sync
▪ Best for: transfer/inelastic at low energies (< 10 MeV/u)
▪ It can provide high-quality Q-value/Ex spectra and angular distribution
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▪ Parameters: Δθ (strip granularity), alignment, B-field uniformity
▪ Energy-loss correction: target thickness / stopping power tables
▪ Electronics: noise, gain stability, cross-talk
▪ Angle reconstruction affects a mapping to Ex/Q → uncertainty propagation.
▪ ΔQ < 100 keV in total

HELIOS & ISS: Q-value Measurements in Experimental Data

T. L. Tang et al.
PRL 124, 062502 (2020)
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206Hg(d,p)207Hg reaction results

28Si(d,p)29Si reaction results

P. T. MacGregor et al. PRC 104 L051301 (2021)
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CENS Nuclear Chart
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Detectors and Devices Developed at CENS

Beam PID

Detector System for Internal 
Conversion Electrons

A New Plunger Device

Decay Spectroscopy Station
DL-MCP

VOICE (MuSIC)

Diagnostics System

GAGG Scintillator

AToM-X (Active Target TPC)ASGARD
(HPGe Clover Detectors)

STARK
(Si. Strip Detectors)

KWF (Wien filter)

CryoSTAR
(gas cell target)

JETTSTAR
(Gas Jet Target)

CSD
(CENS Silicon Detector)

IDATEN
(LaBr3(Ce) Detectors)
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▪ STARK: Silicon Telescope Array for Reactions in inverse Kinematics
▪ One of the best tools to probe a broad range of nuclear properties (energy, angular momentum, cross 

section, spectroscopic factor).
▪ Powerful experimental method to study direct reaction experiments. 
▪ Providing information into the nuclear structure of exotic nuclei.
▪ Array consisting of 40 double-sided resistive silicon strip detectors.
▪ Large Solid angle coverage: 43° - 78°  and 105° – 150° in polar angle.

Conceptual Design of STARK

Conceptual Design of STARK chamber

22Ne(d,p) reaction simulation with
5 MeV/u beam energy

STARK Detector Development at CENS

19Conceptual Design of STARK Jr.
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Optical Model Potential Study with 40Ar + p elastic scattering

▪ Optical model potential (OMP) parameters are required to predict cross-section for each energy.
▪ Lack of optical model parameters at low energies, especially near the Coulomb barrier.

[Main Goal] Measure 40Ar+p elastic scattering cross-sections at low energies including near the Coulomb 
barrier, and to use them to compare with global OMP predictions and extract parameters.

• At lower energies,

• No gOMP parameters were 

obtained. 

(Ep < 7 MeV)

• No data available near the 

Coulomb barrier. 

• (Vc = 4.1 MeV)

N. T. Okumuşoğlu et al., Phys. Rev. C 75, 034616 (2007).

gOMP results

Experimental 
data
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40Ar + p elastic scattering at KoBRA, RAON

21

ELARK Chamber

8.3 MeV/u
40Ar beam

Al 30.2 & 46.3 um 
degraders at F0

Courtesy of the KoBRA presentation

40Ar beam profile

4.4, 5.9, and 8.3 MeV/u  40Ar beam
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Experimental setup photos
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Results of the 40Ar+p scattering data analysis
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Analyzed by Dr. J. W. Lee (CENS)

Kinematics plot
dE-E plot

Etot = Total deposited energy in dE-E telescopes

Q-value plot
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Angular distribution
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• Differential cross-sections were obtained at 4.4, 5.9, and 8.3 MeV/u.

• SFRESCO fitting results are plotted as a black solid line.
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OMP parameters

25

Extracted new optical model parameters using SFRESCO.

Cross-section to the Rutherford cross-sections for each beam energy

• Perey-Perey(PP) and 

Koning-Delaroche(KD) 

gOMPs work at 8.3 MeV.

• But, underestimate data at 

lower energies.

Submitted to Results in Physics
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User experiments at KoBRA (2025)

ASGARD + Stark Jr.

F3 
Chamber

Ion beams from 
KoBRA 

ASGARD + plunger
Beamline from F3 chamber 

to detector

▪ Four In-beam γ-ray spectroscopy experiments (Oct. 20th ~ Nov. 28th):

✓ Explore Triaxiality and re-measure the lifetime of the excited states in A ~ 80 using fusion evaporation reaction

✓ Probing isospin symmetry and the systematics of single nucleon removal with mirror reactions

✓ High-spin spectroscopy of N~20 nuclei towards the island of inversion by RIB-induced fusion-evaporation reactions 

✓ Coulomb excitation of 181Ta and 197Au with 40Ar
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Summary & Outlook

Summary
▪ In low-energy RI experiments, physics studies is constrained by solid angle, segmentation (Δθ), PID thresholds, and calibration stability 

(not only beam intensity).
▪ Silicon Detector Arrays used in RI Nuclear Physics: large-acceptance Si arrays (ORRUBA), particle–γ coupling (GODDESS), active-target 

hybrids (ANASEN) and solenoidal kinematic focusing (HELIOS/ISS).
▪ We need to consider ΔE–E thickness pairing, dead-layer/threshold control, alignment & energy-loss corrections, and timestamp 

synchronization / event building dominate systematic uncertainties.
▪ In Korea, CENS developed STARK and STARK Jr. to enable  key experimental studies using RI beams.
 ➔ 40Ar + p elastic scattering using ELARK detector system was conducted to study global optical model potential (pGOMP).

Outlook
▪ Detector/DAQ improvements:
✓ In-house silicon detector development is critical.
✓ more robust common-clock timing/event building and standardized calibrations are necessary.

▪ More key experimental studies can be performed using RI beams at world-leading facilities (RIKEN, FRIB, IMP, HIAF and RAON).
✓ Optical Model Potentials for Exotic Nuclei such as 25Na + p elastic scattering measurements
✓ Nuclear structures related to i-process: (d,p) or (d,pγ) with 32Si, 34Si and 32Mg beams
✓ Neutron transfer reactions and ToF mass measurements related to r-process

We welcome your collaborations!!
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Global Silicon Detector Landscape

US: ORRUBA (Si array), GODDESS (Si+γ), ANASEN (active target+Si)
EU: ISS @ ISOLDE (solenoid + on-axis DSSSD)
Japan: CRIB (resonant scattering / thick target)
China: CSHINE (Si telescope + CsI)
Korea: STARK (main array) + STARK Jr. (ΔE–E telescope + digitizer DAQ)
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• Key Research Question:
1. direct measurements of key (α,p) reaction cross sections which important for αp-process and p-process.

• Methods:
1. Thick Target in Inverse Kinematics (TTIK) using TexAT_v2, AToM-X or VOICE
2. (α,p) Reaction in Inverse Kinematics using JENSA, CryoSTAR or JETTSTAR with STARK

CENS αp-explorer Project

32

R. H. Cyburt et al. ApJ 830:55 (2016)
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• Key Research Questions:
1. Indirect measurements of neutron reaction cross sections which are important for i-process and r-process.
2. Mass measurement which are important for r-process.
3. Direct measurements of (α,n) reaction cross sections which are important for weak r-process.

• Methods:
1. (d,p) reaction in inverse kinematics using gas/solid target with STARK.
2. Lifetime measurements of excited states using IDATEN.
3. New mass measurements using Bρ Time-of-Flight or MR-ToF method.
4. (α,n) Thick Target in Inverse Kinematics (TTIK) using MUSIC, VOICE, neutron detector, SECAR or AToM-X.

CENS n*-explorer Project
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Monte-Carlo variations of nuclear mass
Mumpower et al., 2015
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List of Key Unknowns from Sensitivity Studies

❖ Sensitivity Study #1. AIP Advances 4, 041008 (2014)

by R. Surman et al. and no studies for light particles (Z=30~40) yet.

✓  (d,p) or (d,pγ) reactions for (n,γ) reactions with stable beams near 

the interest region.

✓  (d,d) reactions: d-OMP from excitation func.

✓ (p,p) reactions: p-OMP from excitation func.

❖  Sensitivity Study #2. “i-process reaction flow”, PhD. Thesis (2015)

by Hampel et al.

✓  (d,p) or (d,pγ) reactions for (n,γ) reactions:31Si, 32Si , 34S, 45Ca 

and 47Ca

✓  (d,d) reactions: d-OMP from excitation func.

✓ (p,p) reactions: p-OMP from excitation func.
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▪ ΔE–E telescope: PID + threshold optimization, quick diagnostics
▪ Digitizer DAQ (Jr.-dedicated): waveform access, flexible trigger, rapid bring-up
▪ Primary roles: beam tuning, alignment, calibration rehearsal, risk reduction
▪ Deliverables: stable calibration constants, verified noise/threshold, validated timing
▪ Interface: scale results/conditions to STARK main runs

ΔE–E telescope and DAQ systems in STARK

35

X6 PSD (75x40.3 mm2)
8x4 strips

E.C. Pollacco et al. NIMA 887, 2018, 81-93
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