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Timeline: Milestones in Water Cherenkov Detector Development
* 1934 — The first Cherenkov observation: ¢ 1997 — AMANDA. The first ice-based

P. A. Cherenkov neutrino telescope. ~Mton

« 1937 — Development of theory: Igor and + 1999 — SNO (D:20) heavy-water detector
Tamm enables flavor-sensitive measurements.

« 1967 — Haverah Park experiment. Maybe « 2002 — KamLAND. The first instrumented
the first water Cherenkov detector (WCD). water Cherenkov outer veto for a non-water
The first surface WCD array main detector.

* 1970s — First Deep-water/large-volume « 2003 — Concept of Gd loaded WCD for
concept (DUMAND). Mton~Gton. neutron tagging.

« 1982, 1983 — IMB and KamiokaNDE. « 2006 — ANTARES. The first sea based

Earliest large underground WCD (~kton) neutrino telescope. ~10 Mton
« 1986 —KamiokaNDE-I|| start. Upgraded for 2010s — R&D of Water based LS (WDbLS)

observation of solar neutrino. (1988: first - K )
observation) é%l%obegiﬁs loaded Super-Kamiokande (SK

1995 — Baikal NT-36. The first Lake-based
neutrino telescope. (3 strings)
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Water tank, Ice, Lake, Sea — distinctive techniques

» Water tank (eg. Super-Kamiokande): purification;
radon removal (for low energy physics);
recirculation; cleanroom assembly.

* [ce (eq. IceCube): drilling; |Ioermanent digital
optical modules(DOM); cold-electronics; ice [I il
optical mapping. H

» Lake/Sea (e.g., Baikal-GVD / KM3NeT): sealed
optical modules; window fouling monitoring;
acoustic positioning; corrosion protection;

pressure housings; electro-optical cabling;
ROV/AUV deployment.
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Choice of Water for Detector Tanks ncc
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Choice of Water for Detector Tanks
» Gd-doped water (Gd-WCD): soluble Gd for Ve\P,x’o\p \%

neutron tagging; not ultrapure — requires Gd . G‘“M‘*V’
handling, monitoring, and dedicated /\ei /\\

recirculation/filtration.

« Water-based liquid scintillator (WbLS): hybrid
Cherenkov + scintillation; not ultrapure —
demands chemical stability control, optical
separation algorithms, and compatibility
measures.




Photon sensors

 Sensor types: large PMTs; multi-PMT,; LAPPDs
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Photon sensors
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» Key specs: guantum
efficiency; time jitter (TTS);
dark rate; pressure and
temperature ratings.
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* Integration elements: base
electronics; HV supply;
magnetic shielding;
optical coupling.



Timing & DAQ architecture

* Timing goals: sub-ns to few-hundred-ps synchronization.

 Clock distribution: GPS / White Rabbit / optical timing;
local oscillator resynchronization.

HK Underwater Case design and
electronics: feedthrough

- DAQ modes: triggered vs continuous streaming;, . B
waveform digitizérs vs TDCs; data reduction strategies.

« Scaling Issues: scale-out distributed architecture (edge
processing, hierarchical aggregation); network and
storacf:;e sCalability; real-time processing pipelines and
fault Tolerance.
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Calibration and environmental monitors

» Calibration: regular gain/timing scans; in-situ optical property
measurement etc.

* Environmental monitor: turbidity, conductivity, radon,
temperature, biofouling monitors.

* Scaling issues: distributed beacon networks with synchronized
timing; automated remote calibration and scheduling;
sampling design (gridded beacons) and simulation-driven
optimization.




Calibration light sources

* Fixed/mobile light injector; embedded LEDs; fiber-based
beacon network; Diffuser

31.6cm

Diffuser ball
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Optical Calibration

Super-Kamiokande V

e Light interaction: absorption; e
scattering; reflection. i o

 Impact: shape and timing of
Cherenkov rings —

reconstruction bias.

» Scale: larger detectors amplify 1GeV e-
delays and attenuation.
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1“ Rayleigh-scattering ;

» Measure: absorption and scattering coefficients, oios o
including angular dependence of scattering. - ———
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* Sensitivity: strongly dependent on impurity type,
particle size, and concentration.
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Materials, housings and anti-fouling

« Housings: pressure ratings; optical window materials; sealing
and connector design.

« Material selection: corrosion-resistant alloys; chemical
compatibility with WbLS/Gd.

 Anti-fouling measures: non-stick coatings; UV mitigation;
mechanical wipers or ROV cleaning plans.



Background control

« Radon removal & monitoring: - %
continuous radon suppression e
and real-time radon sensors. - 4

HEAT

-

» Data-driven noise removal: ~ e B 5 oo
online filtering and offline M e
algorithms to suppress e 1| @
environmental and instrumental | ~
backgrounds. L=y, rue \

"'IE'L'O'_ RADOM SENSOR
o — (INPUT WATER) ﬂ“‘ﬁ
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* Priority for low-energy physics: ——
radon control is critical for ———
solar-neutrino sen5|t|V|ty. SUPER-KAMIOKANDE WATER PURIFICATION SYSTEM SK TANK
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Deployment, maintenance &
background control

* Deployment procedures: drilling / ship / rope / ROV
operations; wet-mate connectors; recovery plans.

* Maintenance: seasonal access constraints (lakes); ROV/AUV
operations (sea); emergency replacement strategies.



Summary

 History: Water Cherenkov detectors have been used since the 1950s for neutrino
and cdsmic-ray physics.

« Medium diversity: Depending on the physics goal, use ice, seawater, lake water,
ultrapure H20, D20, or chemically doped media (WbLS/Gd).

. Desighn dependence: Detector structure, calibration, and maintenance differ with
the chosen medium.

 Scaling impact: Larger detectors increase demands not only on hardware but
also on DAQ, calibration, and monitoring systemes.

« Low-energy requirement: For low-energy physics (e.?., solar neutrinos), stringent
radon removal and background control are éssential



