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What do we need for rare event search experiments?

e Dark matter interactions and neutrinoless double beta decay occur at extremely low
rates

e Key requirements for maximizing the signal-to-background ratio

 Low backgrounds: underground operation, shielding against external radiation,
use of low-radioactive materials, and high radiopurity

 Low energy threshold and high energy resolution
e Jopological discrimination of signal and background events

o Simulation: quantitative evaluation of backgrounds, detector response, and signal
discrimination
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Simulation framework

- for interpreting experimental data

Event generation level
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Monte Carlo simulation chain

Theory

Signal & Background

Detector Simulation

Reconstruction level

Simulated spectrum

Experimental setup

Measured spectrum

Modeling & interpretation
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Background sources In rare-event experiments
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Backgrounds

Cosmogenic

Induced by cosmic rays, primarily
cosmic-ray muons

Muon-induced secondaries

* neutrons

e gammas

* produced in surrounding rock
Depends on

 overburden depth

* surrounding rock and shielding
geometry

Strongly shaped by detector
geometry and veto systems

Radiogenic

Arise from radioactive decays in
* detector materials

* nearby detector structures

* surrounding rock

Rock gammas and (a,n) neutrons
U/Th decay chains and K-40
Radon and its progeny

Dominant at low energies
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Geant4-based simulation

- for detector simulation approach

 Geant4 is a Monte Carlo toolkit for simulating the passage of particles through matter

* Detector geometry and all relevant materials are explicitly implemented within the Geant4
framework

* (Geant4 tracks the transport of particles and interactions in the detector and surrounding
structures

* During this transport, the simulation records energy deposition and the production of secondary
particles in the sensitive volumes

 From these simulated energy deposits we construct the full detector response to background
events

* |n this way, all background sources are consistently propagated to detector observables using
Geant4-based simulation
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Cosmic-ray muon simulation

Surface muon flux

Modified Gaisser parameterization

Mountain profile / Overburden

MUSIC/MUTE

Muon propagation in rock

MUSIC/MUTE

Atmosphere

Underground muon spectrum + muon-induced secondaries

GEANT4/FLUKA

Detector & shielding & muon veto
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GEANT4
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Simulation-driven background mitigation and detector design

« External background mitigation * Simulation enables
e Passive shielding * Quantification of background
attenuation and secondary
* rock overburden production

* lead, copper, polyethylene, water » Evaluation of veto efficiency for

* Active background rejection cosmogenic backgrounds

. muon veto systems » Optimization of trade-offs
between background reduction
e anticoincidence techniques and signal acceptance
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Shielding structure and muon veto system

- for the detector design

Simulated configurations for veto system

GEANT4-based study was performed Yo,
to specify the thickness and layers of ' v, v, Yu, Mu, Ve,
the various shielding materials. All of e
those parameters are reflected in the :

design of the AMoRE-II construction.

-
New concepts for veto system were S \§_

evaluated in simulation before (1 cm e Pb @5'em
. : HPCTRRE. ick,
construction thick)

 Water Cherenkov detector with

active muon veto capability is f
.2 ton

installed above the cryostat rolBme
| o | | . . PE(70cm 160303 cif
* Plastic scintillator detector panels | thick, “With SiPM | | Sion

Pit

are installed on the four sides and | - 27.5ton)
the bottom of the cryostat N\

iron frame (16.3 ton rebar)
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Rock gammas and environmental

- for shielding design optlmlzatlon

—~ 0.08

neutrons

: el |
* Rock radioactivity produces ; . :.#
N 002—¢—i T+$+
* Neutrons (<10 MeV) - ol

Energy (MeV)

& 4 A A 4 A&

Gamma rays (< 4 MeV)

* Rock radioactivity (U, Th, K)
and environmental neutrons .
must be measured on site flon

* Shielding optimization relies
on rock assays and detailed
simulations of the shielding
geometry
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Detector geometry and radiogenic

* Detector and shielding materials produce radiogenic

background

Photon
* Their activities are measured (HPGe, a counters, Ll _
ICP-MS) and put into a detailed geometry model
Teflon

e Simulation shows which parts dominate the
background and how to improve the design

Radioactivity measurement

CC1 (H PGe) —

a |on|zat|on counter (XIA) ICP MC (Alllent 7900)
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From bakground simulations to background modeling
- simulation framework

Theory

* Background simulations

* Individual background sources are generated
and propagated through the full detector
geometry

Signal & Background

e At the reconstruction level we obtain simulated . . .
spectra for each background component Detector Simulation Experimental setup

* Background modeling

» All simulated background components are Simulated Spectra Measured Spectra
added to obtain a total spectrum that can be

directly compared with the data

* The total simulated spectrum is fitted to the
measured data, providing a quantitative :
decomposition of backgrounds and a basis for mOde“ng &

interpretation Interpretation
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 We model the measured background by
simulating all relevant sources in the full
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Simulation for R&D studies

- for better background understanding

* Improving background modeling requires
a more precise and quantitative
understanding of the major background
contributors

* Using a common simulation framework,
we study

» crystal backgrounds (bulk and surface),
e time-dependent cosmogenic isotopes,

 scintillator nonproportionality
embedded directly in the detector
response simulation
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» Systematic uncertainties are estimated
and propagated through simulations

e Using these models and uncertainties,
pseudo-experiments enables for
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Summary

* Rare-event search experiments require extreme background control, beyond what is achievable by experimental
design alone

* Simulation provides a unified framework connecting background sources, detector geometry, shielding, and veto
systems

 Cosmic-ray muons and radiogenic backgrounds must be treated with site-specific and geometry-aware simulations
 Background modeling based on validated simulations is essential for:

e Detector optimization

* Reliable background budgets

* Robust sensitivity projections

* From R&D to final analysis, simulation is a core component of rare-event experiments, enabling credible physics
results
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