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Why Dark Matter?

DARK MATTER'S INVISIBLE INFLUENCE

Supernova Cosmology Project
Amanullah, et al., Ap.J. (2010)
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WIMP scenario

« SM and DM sector are in thermal equalibrium in Early Universe

 Expansion of the Universe makes the departure from the equilibrium
(i.e. Freeze-out)

e The amount of relic abundance is related to the annihilation cross
section at Freeze-out
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Search for WIMP DM

Collider Search

Direct Detection

Indirect Detection



Search for WIMP DM
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Direct Detection




Indirect Search for WIMP

* Annihilation and/or Decay of Dark Matter produces energetic
astrophysical signals, e.g. gamma-ray, cosmic-rays, neutrinos.

Mpy = 1000 GeV ; DM annihilation channel
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FermiLAT data in Gamma-ray sky

 FermilLAT provides gamma-ray map with a ~ 15-years of data set
in a wide range of Galactic coordinates.

EGRET all-sky map of gamma rays above 100 MeV

e Backgrounds of gamma-rays are usually dominated by
- Galactic Diffusion Emission induced by cosmic-ray interacting
with the interstellar medium (ISM), inverse compton scattering
and bremsstrahlung.
- Isotropic Diffuse gamma-rays
- Point sources (Pulsar, SNR, etc.)



Halo-like excess In 15-years data of FermiLAT

Totani recently presented an analysis for halo-like gamma-ray
excess in the 15-years data set of FermiLAT observation
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Halo-like excess In 15-years data of FermiLAT

Totani recently presented an analysis for halo-like gamma-ray
excess in the 15-years data set of FermiLAT observation
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Halo-like excess In 15-years data of FermiLAT

* Totani recently presented an analysis for halo-like gamma-ray
excess in the 15-years data set of FermiLAT observation
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In(L) — ln(Lno—halo)

Halo-like excess In 15-years data of FermiLAT

* Totani recently presented an analysis for halo-like gamma-ray
excess in the 15-years data set of FermiLAT observation
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Both annihilation-like and decay-like fit
show meaningful statistical significances
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Excess around E ~ 20 GeV is shown in both
GALPROP and Fermi-provided GIEM models.



Halo-like excess In 15-years data of FermiLAT
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Does Standard WIMP scenarios
can explain the excess?

(ov) o = 3 x 107 %%cm? /s
* Annihilation cross sectionis large  (ov) = (5 — 8) x 10 *°cm?/s
e Strong constraints from dwarf spheroidal galaxies
* A vanilla scenario with s-wave annihilation is problematic

* What scenarios will be available?



Our model

e Fffective Lagrangian Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)
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A dilaton-like DM-mediator interaction
SM coupling from Higgs-mediator mixing
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Sommerfeld Enhancement

 The Sommerfeld Enhancement is a non-perturbative phenomena
Increasing the amplitude of some processes in the presence of
long-range interactions, originated by the amplification of the
wave function around the interaction point.

* For arbitrary partial waves with angular momentum [, the
enhancement (the ratio total cross section/perturbative cross
section) is given by
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* In our model, a light scalar mediator induces a Yukawa potential

which is responsible for Sommerfeld Enhancement.
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Sommerfeld Enhancement

e The Sommerfeld Enhancement factor in the Coulomb limit is
typically given by

Q7T

S) ~ (—)2 (00) = 81 - {00 (pert.y ~ 1/

(v

» Usually, this effect is saturated around v ~ m,,/m,

 However, near the resonance of zero-energy quasi-bound state,
the effect is significant down to further low velocities.



Resonant scattering
iIn Sommerfeld Enhancement

 1-D analogy of resonant scattering

—

QmV() o B
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The strength of interaction (potential)
determines the condition of resonance.

|¢Z’n‘2 ~ 9 1q2 . 92

cos?(ga) + iz sin”(qa)
Near the resonance, the amplification of the wave
function is further enhanced.




Sommerfeld Enhancement

e The Sommerfeld Enhancement factor in the Coulomb limit is
typically given by

Q7T

S) ~ (—)2 (00) = 81 - {00 (pert.y ~ 1/

v
» Usually, this effect is saturated around v ~ m,,/m,

 However, near the resonance of zero-energy quasi-bound state,
the effect is significant down to further low velocities.

* For the Yukawa potential, the zero-E resonance occurs around

* Near the resonance, the saturation velocity is given at the order
of the amount of off-resonance Aa = o — gy



Sommerfeld Enhancement

Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)

 Numerical solution of radial Schrodinger equation
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Signal process

* The resulting annihilation process will make two pair of quarks in
the final states with an increased cross section.

Gamma-rays




Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)
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Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park

(2512.24662)
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Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park

(2512.24662)
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Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park

(2512.24662)
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Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)

* There are three main regimes:

—  Monochromatic ov
== = Thermal Avg (ov)

1. Perturbative Regime (@ < v < 1) |

¢ Freeze-out
Non-perturbative effect is negligible and 107 1 Halo Bxcess
the perturbative piece is only relevant one.
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Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)

* There are three main regimes:

—  Monochromatic ov
== = Thermal Avg (ov)

1. Perturbative Regime (o < v < 1) |

¢ Freeze-out
Non-perturbative effect is negligible and 107 1 Halo Bxcess
the perturbative piece is only relevant one.

10724 4

2. Sommerfeld Regime (Aa < v < «a)

The Sommerfeld Enhancement becomes
efficient and the cross section scales

as ~1/v
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* There are three main regimes:

1. Perturbative Regime (o < v < 1)

Non-perturbative effect is negligible and
the perturbative piece is only relevant one.

2. Sommerfeld Regime (Aa < v < a)E ©™*
The Sommerfeld Enhancement becomes &
efficient and the cross section scales

10—23

Annihilation cross section

Y. Jho, J.H.Park, M.G.Park, S.C.Park
(2512.24662)

as ~1/v 10-25

3. Saturation Regime (v < vgq¢.)

Sommerfeld Factor is saturated, and the 10-5

cross section recovers its perturbative
behavior ({(ov) o v?).

The constraints from dwarf galaies can
be naturally avoid.
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Gamma-ray signal spectrum

* In our model, the scalar mediators in the final state are highly
boosted with a factor v ~ m,, /m,,

Gamma-rays

* After considering the Lorentz boost .| - Source {f Rest Frame
effect, the spectrum becomes flat S
and box-like.
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Gamma-ray signal spectrum

e Signal spectrum with benchmark parameters
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Other Constraints & Future prospects

* For our benchmark parameters, the most relevant constraints
come from i) the direct detection, ii) Thermal equilibrium
condition. Available mixing between SM Higgs and the scalar
mediator should be in the range 10~7 < 0 < 107°

* Interestingly, searching for the light scalar with a O(10) GeV mass
coupled to SM sector can be promising in future long-lived particle
searches at terrestrial experiments, such as MATHUSLA, SHIP.
FASER

* Antiproton bound from AMS-02 data will be a strong constraints on
some WIMP scenarios. In our case, the mass of mediator is very
low, and the production of secondary nucleon is very suppressed,
and the spectrum becomes much soften and reduced.

* This p-wave + Sommerfeld Enhancement scenario might be
naturally compatible with i) various Milky-Way gamma-ray and/or
cosmic-ray anomalies, ii) dwarf galaxy constraints at much low
velocities in general.



Other Constraints & Future prospects

* This p-wave + Sommerfeld Enhancement scenario might be
naturally compatible with i) various Milky-Way gamma-ray and/or
cosmic-ray anomalies, ii) dwarf galaxy constraints at much low
velocities in general.
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E2% [MeV cm~2 571 sr71]

Summary
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Regarding 15-years data set of FermilL AT, Totani recently provided
an analysis on Halo-like excess of gamma-rays around 20 GeV.

A minimal model of Dark Matter with a CP-even scalar mediator
successfully explains i) freeze-out annihilation cross section, ii)
Halo-excess and iii) the dwarf galaxy constraints.
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