Dark Photon search with an electron beam dump near large liquid scintillator detector at underground

HyangKyu Park

Center for Underground Physics, Institute for Basic Science, Korea

Workshop for Dark Photon Search Seminar room@IBS, Feb. 8, 2017
Model for Dark Photon and Dark Matter

- A simple model to include the dark matter by introducing an extra U(1)’
 - **Contains Dark photon (A’) and Dark matter**

\[\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} F'_{\mu\nu} F'^{\mu\nu} + \frac{1}{2} m_A^2 A'^2 - \sum_f q_f e (A_\mu + e A'_\mu) \bar{f} \gamma^\mu f + \mathcal{L}_{DM}, \]

- Dark Photon and EM charged matter coupling: \(e e \)

Dark matter sector:

\[\mathcal{L}_{DM} = \begin{cases}
\bar{\chi}(i\not{D} - m_\chi)\chi, & \text{fermionic DM (} \chi \text{)}, \\
|D_\mu \varphi|^2 - m_\varphi^2 \varphi^* \varphi, & \text{bosonic DM (} \varphi \text{)}
\end{cases} \]

\[D_\mu = \partial_\mu + ig' A'_\mu \]

- Dark Photon and DM coupling: \(g' \) (U(1)’ charge)
Worldwide map for Dark photon search

Ongoing and proposed experiments

- Mainz (Germany)
- Orsay (France)
- GSI (Germany)
- VEPP (Russia)
- CERN (Europe)
- INFN (Italy)
- KEK (Japan)
- BES (China)
- FNAL (USA)
- SLAC (USA)
- BNL (USA)
- JLab (USA)
Constraints for A'

Astrophysics and other non-accelerator exps. ($m_{A'} < 1$ MeV)

Accelerator exps ($m_{A'} > 1$ MeV)

$A' \rightarrow$ Standard Model

Usually look for A' decays:

Ex) $A' \rightarrow e^+ e^-$
A' production with electron accelerator (I)

Production rate: $\sim \varepsilon^2 \sigma_{\text{brem}}$

- $m_{A'} > 2 m_e$: $A' \rightarrow e^+ e^-$
- $m_{A'} < 2 m_e$: $A' \rightarrow 3 \gamma$ (Highly suppressed)

$\sim 10 \text{ keV} < m_{A'} < 1 \text{ MeV}$ -> Dark-Photon Dark Matter
A’ production with electron accelerator (II)

- A’ production rate in a thick target approximation:

\[N_{A’} \sim 10 \times N_e \epsilon^2 \frac{m_e^2}{m_{A’}^2} \]

\(N_e \): No. of incident electrons on target

- Decay length of A’ for \(m_{A’} > 2 m_e \)

\[L_{dec} \sim 10^{-3} m (\gamma/10)(10^{-4}/\epsilon)^2 (100 \text{MeV}/m_{A’}) \]

For \(m_{A’} =1 \text{ MeV} \) and \(\epsilon =10^{-7} \), \(L_{dec} > 10 \text{ km} \)
Electron beam dump experiments (I)

Old e-beam dump experiments

<table>
<thead>
<tr>
<th>Experiment</th>
<th>target</th>
<th>E_0 [GeV]</th>
<th>N_{el} electrons</th>
<th>N_{el} Coulomb</th>
<th>L_{sh} [m]</th>
<th>L_{dec} [m]</th>
<th>N_{obs}</th>
<th>$N_{95%up}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E141 [47]</td>
<td>W</td>
<td>9</td>
<td>2×10^{15}</td>
<td>0.32 mC</td>
<td>0.12</td>
<td>35</td>
<td>1126$_{-1126}^{+1312}$</td>
<td>3419</td>
</tr>
<tr>
<td>E137 [48]</td>
<td>Al</td>
<td>20</td>
<td>1.87×10^{20}</td>
<td>30 C</td>
<td>179</td>
<td>204</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>E774 [49]</td>
<td>W</td>
<td>275</td>
<td>5.2×10^9</td>
<td>0.83 nC</td>
<td>0.3</td>
<td>2</td>
<td>0$_{-0}^{+9}$</td>
<td>18</td>
</tr>
<tr>
<td>KEK [39]</td>
<td>W</td>
<td>2.5</td>
<td>1.69×10^{17}</td>
<td>27 mC</td>
<td>2.4</td>
<td>2.2</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Orsay [40]</td>
<td>W</td>
<td>1.6</td>
<td>2×10^{16}</td>
<td>3.2 mC</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Electron beam dump experiments (II)

E137@SLAC (1988)

- 20 GeV
- Target: Aluminum plates
 - Al target was cooled with cooling water
- 179 m for shielding
- 204 m for decay region

Decay region in air (204 m)
Electron beam dump experiments (III)

KEK (1986)

- 2.5 GeV
- 3.5-cm-thick tungsten
- 2.4 m for shielding
- 2.2 m for decay region
Electron beam dump experiments (IV)

DarkLight Experiment @ Jlab FEL

- Use the Energy Recovering Linac (ERL)
- Gaseous hydrogen target inside beam pipe.
- 100 MeV, 10 mA -> 1 MW of power

Target design
We are considering the following features for the proposal,

- A large scale detector is located at a deep underground lab.
 - 1 kton of LS with \(\sim 200 \) keV threshold
 - Good detection efficiencies for e and \(\gamma \) events
- Electron accelerator near by the detector
 - 1 MW power with continuous beam
 - e-beam energy: 20 MeV -> 100 MeV upgradable.
Energy and angular distribution

- GEANT 4 simulation: $e^- + $ tungsten \rightarrow gamma +X
- \sim 10 photons/1 e^- for $E_\gamma > 1$ MeV
A’ and Dark matter detection

- We are searching for $m_{A'} < 1$ MeV
 - A' detection with Compton-like process

$$\sigma \sim \alpha^2 \epsilon^2$$

- X-section is dominant in ~ 1 MeV

- Dark matter detection

 - Electron recoil
 - Nuclear recoil
Back-of-envelope estimation for A' search

1 MeV-mass A' with 1 MW and 20 MeV e-beam

• Sensitivity for 1 year running:

$$N_{A'} \times \sigma_{\text{comp}} \times N_e \sim \epsilon^4 \rightarrow \epsilon < 1.8 \times 10^{-8} \text{ @ 90% C.L.}$$

N_e: number of electron in fiducial mass (100 ton) of LS.

Energy spectra in Borexino

1: Raw spectrum

4: Fiducial Cut
Beam line consideration

- e-beam size: < 1 mm\(^2\)
- Tungsten target: \(\sim 1 \text{ cm} \times 1 \text{ cm} \times 20 \text{ cm long}\)
- Beam shield with iron: \(1 \text{ m} \times 1 \text{ m} \times \sim 2 \text{ m}\)
- Concrete: \(\sim 1 \text{ m thick}\)
- Beam window and target can be melted with 1 MW beam power:
 \(1 \text{ MW}/1 \text{ mm}^2\)

- Defocusing e-beam on beam window and target: > 10 cm\(^2\)
- Target with cooling: \(10 \text{ cm} \times 10 \text{ cm} \times 20 \text{ cm}\)
 - \(1 \text{ MW/mm}^2 \rightarrow 100 \text{ W/mm}^2\)
High power electron accelerator near by large detector would provide an unique program for CUP in future.

- Dark photon mass below 1 MeV is difficult region in over ground experiment.
- Low mass dark matter search

Before starting this experiment at underground, we need to check whole system at over ground
- accelerator
- target system
- beam dump, background and radiation safety