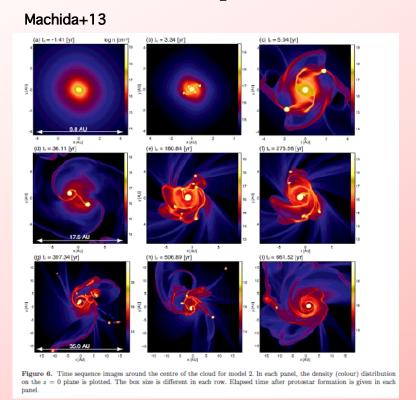
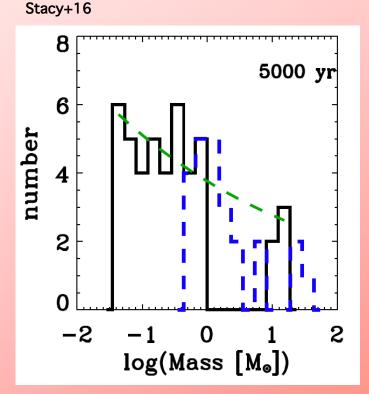
Blocking Metal Accretion onto Population III Stars by Stellar Wind

Shuta J. Tanaka

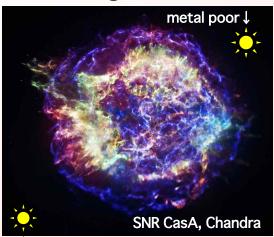

with


Gen Chiaki, Nozomu Tominaga, & Hajime Susa Konan University, Japan

Introduction

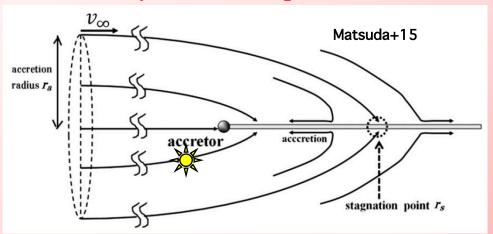
Low-mass Population III Stars

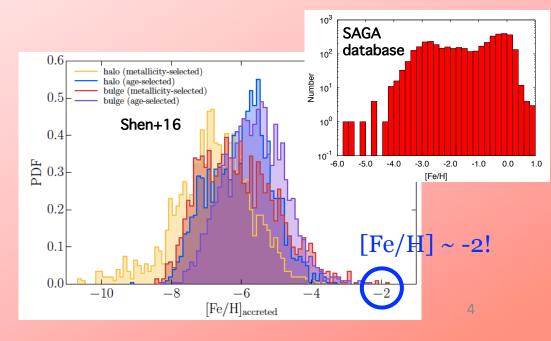
- Study the initial mass function (IMF) of PopIII stars.
- Top-heavy PopIII IMF has been predicted, while some might have < 1 M₀
- Low-mass PopIII stars < 0.8M_☉ are still in Main-sequence phase.



Can we find low-mass PopIII stars as metal free star in our Galaxy?

Origin of Metal Poor Stars

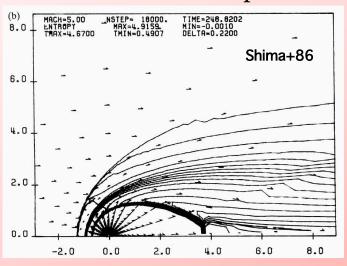

1. Second generation stars?



† metal poor

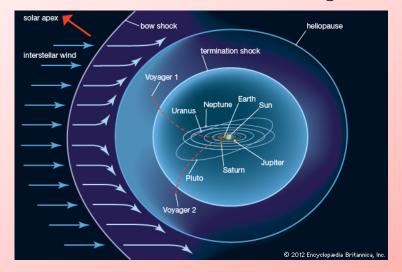
- Forget about scenario 1
 (second generation
 hypothesis) in this study.
- Study of scenario 2 predicts
 [Fe/H] ~ -2 in an extreme case.

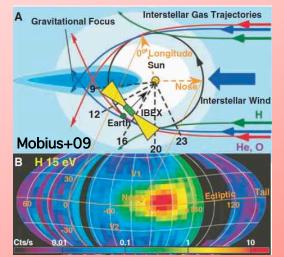

2. Chemically enriched PopIII stars?



Accretion or Wind?

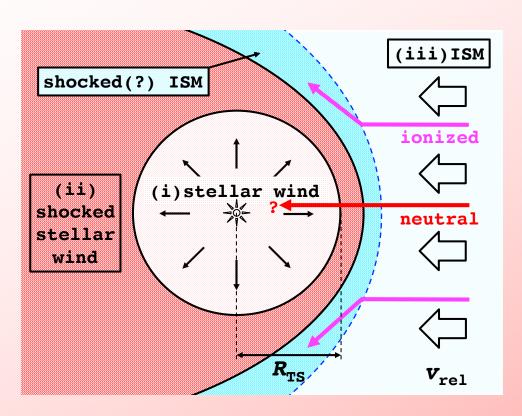
Bondi-Hoyle-Lyttleton accretion




Formation of astrosphere

VS.

Case of our Sun: interstellar particles are picked up by the solar wind!!



Can interstellar heavy elements accrete onto low-mass PopIII stars against their wind?

Model

Stellar Wind & ISM

The parameters of stellar wind are set to the Solar values.

(i) Thermal driven supersonic flow

$$n_{\rm sw}(r) = n_{\rm sw\star} \left(\frac{r}{R_{\star}}\right)^{-2}$$
$$v_{\rm sw}(r) = v_{\rm sw\star},$$

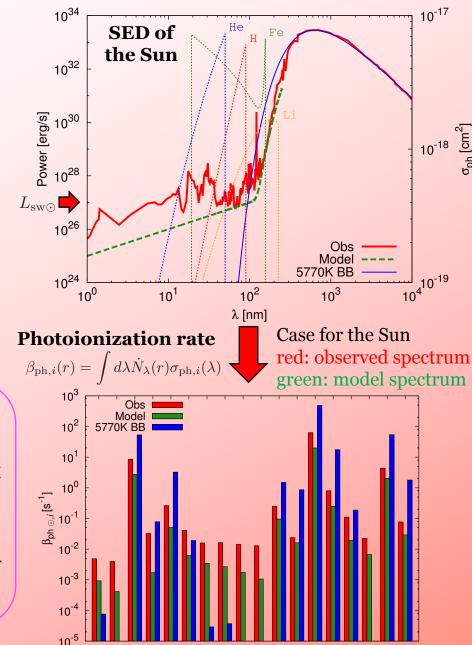
(iii) Bondi-Hoyle-Lyttleton accretion flow

$$n_{\rm HL}(r,\theta,\xi) = \frac{n_{\rm ISM}\xi^2}{r\sin\theta(2\xi - r\sin\theta)},$$
$$v_{\rm HL,r}(r,\theta,\xi) = -\sqrt{v_{\rm rel}^2 + \frac{2GM_{\star}}{r} - \frac{\xi^2 v_{\rm rel}^2}{r^2}},$$

Neutrals in the ISM behave different from ionized ones!!

Stellar Radiation

Photoionization by stellar radiation.


Absorbed black body + EUV emission.

Lines from heavy elements Related with the wind (?)

Assumption:

PopIII stars have unabsorbed blackbody spectrum & also have the EUV component of the similar power to the Sun.

$$\pi J_{\lambda \star} = \pi B_{\lambda} (T_{\text{eff}}) + \frac{L_{\text{EUV}}}{4\pi R_{\star}^2}$$

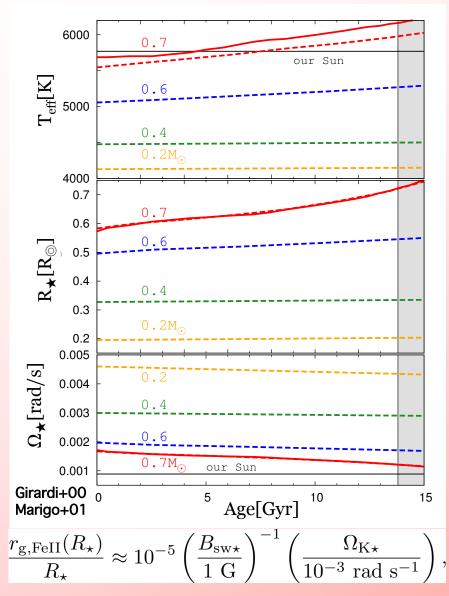
H He Li Be B C N O F Ne Na Mg Al Si S

Rate Equation


Ionization of interstellar neutrals

$$v(r)\frac{dn_i(r)}{dr} = -\beta_{\text{ph},i}(r)n_i(r) + \alpha_{\text{rec},i}n_{\text{e}}n_i(r)$$

Recombination processes can be neglected.


$$v(r) = -\sqrt{v_{\rm rel}^2 + \frac{2GM_{\star}}{r}}$$

Motion of neutrals in gravitation field

$$\frac{n_i(r)}{n_{\text{ISM},i}} = \exp\left[-\frac{\sqrt{2}\beta_{\text{ph}\star,i}}{\Omega_{\text{K}\star}} \left(\sqrt{\frac{v_{\text{rel}}^2}{v_{\text{esc}\star}^2} + \frac{R_\star}{r}} - \frac{v_{\text{rel}}}{v_{\text{esc}\star}}\right)\right]$$

Stellar Model

Important parameters of low-mass PopIII stars

Effective temperature

 Photoionization of neutrals by blackbody

Stellar radius

 Photoionization of neutrals by EUV component

Kepler frequency @ stellar surface

Rate equation

Magnetic field

Trapping photoionized neutrals

Results

Formation of Magnetosphere

Pressure balance between accretion and wind flows.

$$n_{\mathrm{sw}\star}v_{\mathrm{sw}\star}^2\left(\frac{R_{\star}}{R_{\mathrm{TS}}}\right)^2 \approx n_{\mathrm{ISM}}\left(v_{\mathrm{rel}}^2 + v_{\mathrm{esc}\star}^2 \frac{R_{\star}}{R_{\mathrm{TS}}}\right).$$

For $(R_{\star} <) \xi_{\rm BHL} < R_{\rm TS}$ c.f., Talbot&Newman77

$$\xi_{
m BHL} = rac{2GM_{\star}}{v_{
m rel}^2}$$

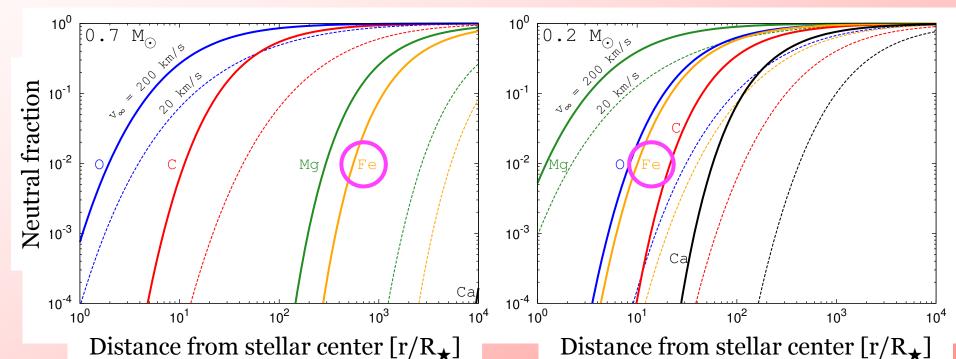
$$= R_{\star} rac{v_{
m esc}^2}{v_{
m rel}^2}$$

$$n_{\text{crit}} \equiv \frac{n_{\text{sw}\star}}{2} \frac{v_{\text{sw}\star}^2 v_{\text{rel}}^2}{v_{\text{esc}\star}^4}$$

$$\approx 10^4 \text{ cm}^{-3} \left(\frac{n_{\text{sw}\star}}{7.0 \times 10^5 \text{ cm}^{-3}}\right) \left(\frac{v_{\text{sw}\star}}{400 \text{ km s}^{-1}}\right)^2 \left(\frac{v_{\text{rel}}}{200 \text{ km s}^{-1}}\right)^2 \left(\frac{v_{\text{esc}\star}}{680 \text{ km s}^{-1}}\right)^{-4}$$

Solar wind value

o.7 M_• PopIII star


Volume fraction of $n_{\text{ISM}} > n_{\text{crit}}$ is very small even at Gal. disk.

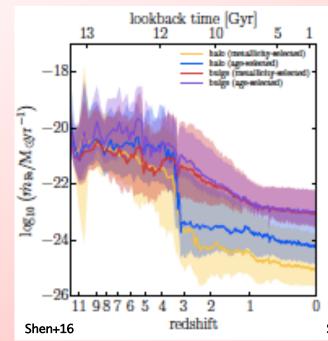
=> Magnetosphere is sustained!!

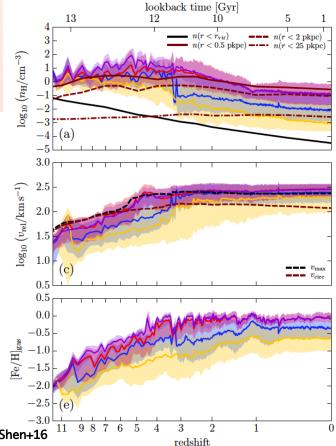
Survival Probability

Neutral fraction at given radius.

$$\frac{n_i(r)}{n_{\text{ISM},i}} = \exp\left[-\frac{\sqrt{2}\beta_{\text{ph}\star,i}}{\Omega_{\text{K}\star}} \left(\sqrt{\frac{v_{\text{rel}}^2}{v_{\text{esc}\star}^2} + \frac{R_\star}{r}} - \frac{v_{\text{rel}}}{v_{\text{esc}\star}}\right)\right]$$

Iron hardly attains stellar surface


Discussion & Conclusions


Accretion from $n > n_{\text{crit}}$

Density probability distribution P(n, t) and metallicity distribution Z(n, t)

$$M_{Z,\text{acc}} = \int dt \int_{n_{\text{crit}}(t)}^{\infty} dn P(n,t) Z(n,t) \dot{M}_{\text{BHL}}(n,t).$$

Accretion @ high-z is dominant because $\dot{M}_{BHL} \propto (v_{rel})^{-3}$

Shen+16 set $n_{\text{crit}} = 0$, i.e., no wind and n < 10^2 cc^{-1} always! (difficult to resolve n > 10^2 cc^{-1} numerically.)

Johnson & Khochfar11 estimated that the probability of encounter of a star and a cloud at high-z is less than 0.1.

[Fe/H]~-6 for one

[Fe/H]~-6 for one encounter.

15

Conclusions & Further Studies

Conclusions

- [Fe/H] is reduced by photoionization ([Fe/H] < -14 even for extreme case).
- Currently observed metal poor stars are not low-mass PopIII stars.
- Low-mass PopIII stars will be found as metal free stars or current observations have already constrained PopIII IMF.

Further Studies

- Metal accretion in dust phase
 - Dusts may enrich low-mass PopIII stars (however, Johnson2015)
- Stellar wind from low-mass PopIII stars
 - Magnetic field and cooling function may be very different from the Sun.
- Bondi-Hoyle-Lyttleton accretion with stellar wind
 - n_{crit} given in this paper may be over-simplified because we consider 1D trajectory.