Contribution ID: 110 Type: Oral Presentation

Impact of the 26m Al (p, γ) reaction to galactic 26 Al yield

Tuesday, 27 June 2017 11:25 (25 minutes)

Astrophysical observables that are directly linked to nuclear physics inputs provide critical and stringent constraints on nucleosynthetic models. As 26 Al was the first specific radioactivity observed in the Galaxy, its origin has fascinated the nuclear astrophysics community for nearly forty years. Despite extensive research, the precise origins of 26 Al remain elusive. At present, the sum of all putative stellar contributions generally overestimates the 26 Al mass in the interstellar medium. Among the many reactions that influence the yield of 26 Al, radiative proton capture on its isomer 26m Al is one of the least constrained by experimental data. To this end, we developed a 26 Al isomeric beam and performed proton elastic scattering to search for low-spin states in 27 Si. The experimental method and the preliminary results of this on-going study will be presented.

Presenter: KAHL, Daid

Session Classification: Session 2 (Chair: K. I. Hahn)