Peccei-Quinn Relaxion

arXiv:1709.10025, KSJ and Chang Sub Shin (IBS-CTPU)

Kwang Sik JEONG

Pusan National University

IBS Conference on Dark World

30 October 2017

Outline

- Cosmological Relaxation of the Higgs Mass
- PQ Relaxion
- Relaxation with Stronger SM Couplings
- Summary and Discussion

Cosmological Relaxation of the Higgs Mass

EW hierarchy problem

• Higgs mass: Sensitive to unknown UV physics

H-----H
$$\delta m_H^2 \sim \frac{M^2}{16\pi^2}$$
 (M: cutoff scale)

- Unnatural without new physics around TeV
 - SUSY, Extra dimensions, Strong EWSB, ...
- LHC experiments
 - No signals for new physics around TeV
 - New approach to EW hierarchy problem?

Cosmological relaxation of the Higgs mass

• Interplay between **Higgs** h and **Relaxion** ϕ

 $m_h^2 = m_h^2(\phi)$

Cosmological evolution of ϕ to select the Higgs mass

- ϕ slow-rolls while scanning m_h^2 from + M^2 to negative, and stops by barriers formed by EWSB Potential terms for relaxation

 $V = V_0(\phi) + m_h^2(\phi)h^2 + V_{br}(\phi, h)$

- Sliding: $V_0 = M^4 \left(-\frac{c_1}{F} \frac{\phi}{F} + c_2 \frac{\phi^2}{F^2} + \cdots \right)$
- Higgs mass-squared: $m_h^2(\phi) = M^2 \left(-k_0 + k_1 \frac{\phi}{F} + \cdots\right)$
- Barriers: $V_{br}(\phi, h) = -\mu_{br}^4(h) \cos\left(\frac{\phi}{f}\right)$ $c_1 \ge \frac{k_1}{16\pi^2}$
- M: cutoff scale of the SM
- $-\frac{M}{F} \ll 1$: explicit breaking of shift symmetry $\phi \rightarrow \phi + 2\pi f$

- Conditions for relaxation
 - 1) High enough barriers to stop ϕ

 $\partial_{\phi}V_0\sim\partial_{\phi}V_{br}$

at time when $\langle h \rangle \sim v = 246~{\rm GeV}$

$$\Rightarrow \frac{F}{f} \sim \left(\frac{M}{\mu_{br}(h=v)}\right)^4 \gg 1$$

- Conditions for relaxation
 - 2) Small Hubble scale during inflation

$$\frac{\sqrt{V_0}}{M_{Pl}} < H_i < \left(\partial_{\phi} V_0\right)^{1/3}$$

for relaxion evolution to be dominated by classical rolling

3) Large number of *e*-folds

$$N_e > \frac{H_i^2}{\partial_{\phi} V_0} F$$

to scan m_h^2 from M^2 to negative

- Important issues
 - How much can *M* be raised?
 - Constraints on inflation, H_i and N_e
 - Large excursion of relaxion, $\Delta \phi \sim F \gg f$

- Important issues
 - How much can *M* be raised?
 - Constraints on inflation, H_i and N_e
 - Large excursion of relaxion, $\Delta \phi \sim F \gg f$
 - → Clockwork mechanism

Choi, Im 2016 Kaplan, Rattazzi, 2016

Important issues

- How much can *M* be raised?
- Constraints on inflation, H_i and N_e

 \rightarrow crucially depend on V_{br}

- Large excursion of relaxion, $\Delta \phi \sim F \gg f$
 - → Clockwork mechanism

Choi, Im 2016 Kaplan, Rattazzi, 2016 • Source of *h*-dependent barriers for ϕ

$$V_{br}(\phi,h) = -\mu_{br}^4(h)\cos\left(\frac{\phi}{f}\right)$$

- QCD anomaly
 - Relaxion = QCD axion
 - $\mu_{br}^4 = y_u \Lambda_{QCD}^3 h$
 - Too large strong CP phase

Possible solutions:

Graham, Kaplan, Rajendran 2015

(1) slope of V_0 decreases after inflation: $M < 10^{4-6}$ GeV

(2) slope of V_{br} increases after inflation: $M < 10^7 \text{ GeV}$

Nelson, Prescod-Weinstein 2017

- Hidden QCD anomaly
 - Relaxion ≠ QCD axion
 - $\mu_{br}^4 = \Lambda_{hid}^2 h^2$ due to gauge symmetry
 - Coincidence problem

Graham, Kaplan, Rajendran 2015

- Higgs-independent barriers from closing Higgs loops
 - \Rightarrow Relaxation works for Λ_{hid} around EW scale: $M < 10^7$ GeV
- Possible solution: multiple relaxions for double-scanning

Espinosa, Grojean, Panico, Pomarol, Pujols, Servant 2015

Peccei-Quinn Relaxion

PQ Relaxion

- Scheme to avoid the coincidence and strong CP problem
- Relaxion ϕ + QCD axion a
- ϕ and a play their respective roles via QCD-induced potential
 - ϕ selects the Higgs mass
 - *a* selects the strong CP phase
- Barrier potential

$$V_{br}(a,\phi,h) = -\mu_{br}^4(h)\cos\left(\frac{a}{f_a} + \frac{\phi}{f}\right) + \Delta V_{br}(a,\phi)$$

$$\square$$

$$QCD: \mu_{br}^4 = y_u \Lambda_{QCD}^3 h = (0.1GeV)^4 \frac{h}{v} \text{ with } v = 246 \text{ GeV}$$

Hidden QCD-induced potential

$$\Delta V_{br} = \mu_a^4(\sigma) \cos\left(\frac{a}{f_a}\right) + \mu_\phi^4(\sigma) \cos\left(\frac{\phi}{f}\right)$$

• Dependence on the inflaton σ s.t.

$$\mu_a^4(\sigma_0) \ll \mu_{br}^4(h=v) \ll \mu_a^4(\sigma_{inf})$$

$$\mu_{\phi}^{4}\left(\sigma_{inf}\right) \ll \mu_{br}^{4}(h=v) \ll \mu_{\phi}^{4}(\sigma_{0})$$

• Main source of stabilization

	During inflation $\sigma \simeq \sigma_{inf} \gg M$	After inflation $\sigma = \sigma_0 \ll M$
ϕ	QCD: μ_{br}^4	hidden QCD: $\mu_{oldsymbol{\phi}}^4$
а	hidden QCD: μ_a^4	QCD: μ_{br}^4

- How to obtain $\Delta V_{br}(a, \phi)$?
 - a and ϕ couple to hidden QCD anomalies via

$$\sum_{i=a,\phi} y_i S_i Q_i Q_i^c$$

• Inflaton-dependent masses for S_a and S_{ϕ}

$$V = (M^{2} - \kappa_{a}\sigma^{2})|S_{a}|^{2} + |S_{a}|^{4} + (-M^{2} + \kappa_{\phi}\sigma^{2})|S_{\phi}|^{2} + |S_{\phi}|^{4}$$

- How to obtain $\Delta V_{br}(a, \phi)$?
 - Hidden quarks obtain masses from $\langle S_i \rangle$

$$- m_{Q_a}(\sigma_{inf}) \ge y_a M, \ m_{Q_a}(\sigma_0) \approx 0 \implies \Lambda_a(\sigma_{inf}) > \Lambda_a(\sigma_0)$$
$$- m_{Q_{\phi}}(\sigma_{inf}) \approx 0, \ m_{Q_{\phi}}(\sigma_0) \ge y_{\phi} M \implies \Lambda_{\phi}(\sigma_{inf}) < \Lambda_{\phi}(\sigma_0)$$

• Inflaton-dependent back-reaction potential

$$\mu_i^4(\sigma) = \min[m_{Q_i}(\sigma), \Lambda_i] \times \Lambda_i^3$$

- Alternative ways to get $\Delta V_{br}(a, \phi)$
 - Required dependence on *a*
 - Explicit PQ breaking by higher dim operators

$$\mu_a^4 = \epsilon f_a^3 \sigma$$
 with $\epsilon \ll 1$

for a scenario in which σ drops to zero after inflation.

- Required dependence on ϕ
 - Inflaton-dependent confining scale

$$\Lambda_{\phi}(\sigma_{inf}) \ll H_{i}, \ \Lambda_{QCD} < \Lambda_{\phi}(\sigma_{0})$$

Relaxation of the EW scale

During inflation

$$V_{br} = -y_u \Lambda_{QCD}^3 h \cos\left(\frac{a}{f_a} + \frac{\phi}{f}\right) + \Delta V_{br}(a)$$

- *h*-dependent barriers for ϕ from QCD \rightarrow Relaxation
- Potential for *a* from hidden QCD
- Requirement
 - *a* at the minimum after N_a *e*-folds:

$$N_a \sim \frac{H_i \Delta a}{\dot{a}} \ll N_e \Rightarrow \sqrt{\frac{f_a}{F}} M < \mu_a(\sigma_{inf})$$

for correct relaxation process

Relaxation of the EW scale

After inflation

$$V_{br} = -y_u \Lambda_{QCD}^3 h \cos\left(\frac{a}{f_a} + \frac{\phi}{f}\right) + \Delta V_{br}(\phi)$$

- *h*-independent barriers for ϕ from hidden QCD
- Potential for a from QCD \rightarrow PQ mechanism
- Requirement

(1) small shift of ϕ after inflation

$$\frac{F}{f} > \left(\frac{M}{v}\right)^2$$

Relaxation of the EW scale

- Requirement
 - ② Reheating temperature:

$$T_{reh} < \Lambda_{\phi}(\sigma_0)$$

- Constraint from a tadpole for S_{ϕ} by hidden QCD

$$\Lambda_{\phi}(\sigma_{inf}) < 1TeV \left(\frac{y_{\phi}}{10^{-2}}\right)^{-\frac{2}{3}} \left(\frac{\mu_{br}(v)}{0.1GeV}\right)^{\frac{2}{3}} \left(\frac{m_{Q_{\phi}(\sigma_{inf})}}{10^{9}GeV}\right)^{\frac{1}{3}}$$

note, $\Lambda_{\phi}(\sigma_{inf}) < \Lambda_{\phi}(\sigma_{0})$

- T_{reh} above EW scale is compatible with relaxation \rightarrow viable cosmology: baryogenesis, ...

- Relaxation conditions
 - Cutoff scale of the Higgs mass:

$$M < 3 \times 10^7 \text{GeV} \left(\frac{f}{10^6 GeV}\right)^{-\frac{1}{6}} \left(\frac{\mu_{br}(v)}{0.1 GeV}\right)^{\frac{2}{3}}$$

• Inflation:

$$H_i < 0.5 \text{MeV} \left(\frac{f}{10^6 GeV}\right)^{-\frac{1}{3}} \left(\frac{\mu_{br}(v)}{0.1 GeV}\right)^{\frac{4}{3}}$$
$$N_e > \left(\frac{F}{M_{Pl}}\right)^2$$

• Field excursion:

$$\frac{F}{f} \sim 6 \times 10^{21} \left(\frac{\mu_{br}(v)}{0.1 GeV}\right)^{-4} \left(\frac{M}{10^5 GeV}\right)^4$$

- Relaxion
 - Stabilized by hidden QCD after inflation
 - \Rightarrow Different properties from other models

c.f. Choi, Im 2016, Flacke et al 2017

Heavy mass

$$m_{\phi} = 10^2 \text{GeV} \left(\frac{\mu_{\phi}(\sigma_0)}{10^4 \text{GeV}}\right)^2 \left(\frac{f}{10^6 \text{GeV}}\right)^{-1}$$

- decays into SM gauge bosons and hidden sector particles

- Negligible mixing with the Higgs boson
 - mixing due to QCD-induced potential $\propto h \cos\left(\frac{a}{f_a} + \frac{\phi}{f}\right)$

- PQ mechanism: *a* fixed by QCD at
$$\frac{a}{f_a} + \frac{\phi}{f} \simeq 0$$

- QCD axion
 - Contributes to dark matter
 - QCD axion from misalignment:

$$\Omega_a h^2 \sim 0.12 \, \left(\frac{f_a}{10^{12} GeV}\right)^{\frac{6}{5}} \theta_{ini}^2$$

- Initial angle fixed by ΔV_{br}

Relaxation with Stronger SM Couplings

- Relaxation of the EW scale
 - Low scale inflation
 - Huge number of *e*-folds: fine-tuning of initial conditions
- Way to alleviate the constraints on inflation?
 - Stronger SM couplings during inflation:

$$\mu_{br}^4(\sigma_{inf}) \gg \mu_{br}^4(\sigma_0) = (0.1 GeV)^4$$

• Inflaton-dependent couplings:

 $\alpha_s(\sigma_{inf}, M) = \alpha_s(\sigma_0, M) + \Delta \alpha_s$ $y_i(\sigma_{inf}, M) = y_i(\sigma_0, M) + \Delta y$

Constraints

- 1) Higgs-dependent barriers for ϕ during inflation
 - quarks lighter than the QCD scale

$$\Delta y \le 2 \times 10^{-3} \frac{\Lambda_{QCD}(\sigma_{inf})}{\Lambda_{QCD}}$$

2) Higgs mass selected by relaxation: affected by $\Delta \alpha_s$ and Δy

$$\begin{split} m_h^2 &= \left(6\lambda_h - 6\sum y_i^2 + \frac{3}{4}g_Y^2 + \frac{9}{4}g_2^2 + \cdots \right) \frac{M^2}{16\pi^2} \\ &\Rightarrow \left| \Delta m_h^2 \right| \simeq \left| \frac{\Delta y}{y} - 0.1\Delta \alpha_s \right| \times \frac{3y_t^2 M^2}{4\pi^2} < v^2 \end{split}$$

Constraints

From 1) and 2)

• Relaxation works for

$$M \leq \frac{10 \ TeV}{\sqrt{\frac{|\Delta y|}{0.01} + \frac{|\Delta \alpha_s|}{0.1}}}$$

Constraints

From 1) and 2)

• Stronger QCD: $\Lambda_{QCD}(\sigma_{inf}) < 100 \times \Lambda_{QCD}$ for $\Delta \alpha_s \sim 0.1$

- Relaxation with stronger SM during inflation
 - Relaxation conditions:

$$\begin{split} H_i &< 0.2 GeV \, \left(\frac{f}{10^6 GeV}\right)^{-\frac{1}{3}} \left(\frac{\mu_{br}(\sigma_{inf},v)}{10 GeV}\right)^{\frac{4}{3}} \\ \frac{F}{f} &\sim 10^{10} \, \left(\frac{\mu_{br}(\sigma_{inf},v)}{10 GeV}\right)^{-4} \left(\frac{M}{10^4 GeV}\right)^4 \\ N_e &> 20 \, \left(\frac{F/f}{10^{13}}\right)^2 \left(\frac{f}{10^6 GeV}\right)^2 \end{split}$$

for $M \leq 10 \text{ TeV}$

Summary and Discussion

Relaxation of the Higgs mass

- New approach to the EW hierarchy problem without new physics around TeV
- Viable parameter region determined mainly by the barrier potential
- EW scale \ll cutoff scale of the Higgs mass $\ll M_{Pl}$
 - \rightarrow What new physics?

- Peccei-Quinn Relaxion
 - Both relaxation and PQ mechanism via QCD
 - No strong CP and coincidence problem
 - Cutoff scale $\leq 10^7~{\rm GeV}$
 - Reheating temperature above EW scale
 - Relaxion with heavy mass and negligible mixing with Higgs
 - QCD axion as dark matter
 - Relaxing the constraints on inflation by stronger SM
 - Cutoff scale $\leq 10~\text{TeV}$

Thank you!