A New DM (in)Direct Search Strategy

K. Kong, G. Mohlabeng, JCP, arXiv:1411.6632 H. Alhazmi, K. Kong, G. Mohlabeng, JCP, arXiv: 1611.09866 D. Kim, JCP, S. Shin, arXiv:1612.06867 G. Giudice, D. Kim, JCP, S. Shin, to appear soon

Jong-Chul Park CNU 중남대학교

IBS Conference on Dark World

November 01 (2017)

Typical DM Search Strategies

Typical DM Direct Searches

(Mainly) focusing on "*Non*-relativistic" weakly interacting massive particles
 (WIMPs) searches

- ✓ **No solid observation** of WIMP signals
- ✓ A wide parameter respace already excluded

DM Search Schemes (Scattering)

DM Search Schemes (Scattering)

v _{DM} Scattering	non-relativistic (<< c)	relativistic (~c)
elastic	Direct detection	Boosted DM (BDM)
inelastic	inelastic DM (iDM)	

"Relativistic" DM (BDM)

✤ Need for alternative approaches

- $\checkmark \chi_0$: heavier DM, dominant relic, no direct coupling to SM
- *χ*₁: lighter DM, subdominant relic, direct coupling to SM,
 can be relativistic at the current universe (non-relativistic as a relic!!)
- ✓ Overall relic determined by <u>"Assisted Freeze-out</u>" mechanism [Belanger, JCP (2011)]

A $U(1)' \otimes U(1)''$ model proposed

Detection of BDM

↔ Flux of boosted χ_1 near the earth

 $\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \quad \text{from DM number density}$ $\text{Setting } \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1} \text{ and assuming the NFW DM halo profile,}$ one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim O(10\text{-}100 \text{ GeV})$.

 $Low flux \rightarrow No sensitivity$ in conventional DM direct detection experiments

→ Large volume (neutrino) detectors

motivated: Super-/Hyper-K, DUNE, ...

Detection of BDM

↔ Flux of boosted χ_1 near the earth

 $\mathcal{F}_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}}{m_0^2} \quad \text{from DM number density}$ $\texttt{Setting } \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3 \text{s}^{-1} \text{ and assuming the NFW DM halo profile,}$ one can obtain $\mathcal{F}_{\chi_1} \sim 10^{-7} \text{cm}^{-2} \text{s}^{-1}$ for χ_0 of weak-scale mass, $m_0 \sim O(10\text{-}100 \text{ GeV})$.

 $Low flux \rightarrow No sensitivity$ in conventional DM direct detection experiments

→ Large volume (neutrino) detectors
motivated: Super-/Hyper-K, DUNE, ...

Sources

- ✓ GC: Agashe et al (2014); Necib et al (2016); Alhazmi, Kong, Mohlabeng, JCP (2016)
- ✓ Sun: Berger et al (2014); Kong, Mohlabeng, JCP (2014); Alhazmi, Kong, Mohlabeng, JCP (2016)
- ✓ Dwarf galaxies: Necib et al (2016)

Detection of BDM

Large volume v detectors detect energetic charged particles

from v-matter collisions, e.g. $\nu_e n \rightarrow e^- p$

★ Boosted DM: energetic e's/p's resulting from $\chi_1 e/p \rightarrow \chi_1 e/p$

***** Energetic $e's/p's \rightarrow$ Cherenkov light / charged particle track

Experimental Reach (GC)

H. Alhazmi, KC Kong, G. Mohlabeng & JCP (2016) * Total number of signal events: $N_{\text{sig}}^{\text{GC}} = \Delta T N_{\text{target}} \Phi_{\text{GC}}^{\theta_C} \sigma_{Be^- \to Be}$ 2σ Significance 2σ Significance -33-33SK. 28.6yr SK. 26.6yr $\mathrm{Log}_{10}(\frac{\sigma_0}{m_A^2}/\mathrm{cm}^2/\mathrm{GeV}^2)$ $\log_{10}(\frac{\sigma_0}{m_A^2}/{
m cm^2/GeV^2})$ -34 HK. 10yr HK. 3yr DUEN DUEN **DUNE 10, 10yr** DUNE 10, 3yr DUNE 40, 10vr DUNE 40, 3yr -36 -37-37HK HK -38-2 -1-1Log10(EMax/GeV) Log₁₀(E_{Max}/GeV) $Log_{10}(m_B/GeV)$ 3 year construction+3 year running 5 year construction+10 year running VS

(In)direct dark matter detection?

Katarzyna Frankiewicz

DPF meeting, 2017/08/01

SK

DM Search Schemes (Scattering)

v _{DM} Scattering	non-relativistic (<< c)	relativistic (~c)
elastic	Direct detection	Boosted DM (BDM)
inelastic	inelastic DM (iDM)	

DM Search Schemes (Scattering)

v _{DM} Scattering	non-relativistic (<< c)	relativistic (~c)
elastic	Direct detection	Boosted DM (BDM)
inelastic	inelastic DM (iDM)	inelastic BDM (iBDM)

iBDM: DM "Colliders"

Follow-ups in collaborations with experimentalists (DUNE, HK, SHiP, ...)

Benchmark Model

$$\mathcal{L}_{\text{int}} \equiv -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu + g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu + h. c.$$

- Vector portal (kinetic mixing) [Holdom (1986)]
- ✤ Fermionic DM
 - ✓ χ_2 : a heavier (unstable) dark-sector state
 - ✓ Flavor-conserving → elastic scattering
 - ✓ Flavor-changing → inelastic scattering

[Tucker-Smith, Weiner (2001); Kim, Seo, Shin (2012)]

- Diagonal coupling may be highly suppressed, even vanishing.
- ✤ Scalar DM also possible

Exp.	e-scattering	p-scattering			
Energy for primary scattering	Peaking towards smaller momentum transfer				
Threshold energy	Small	Large for Cherenkov Small for LArTPC			
Form factor suppression	N/A	Yes			
Deep inelastic scattering	N/A	Yes			
Energy for secondary process	(Typically) highly boosted	(Typically) less boosted			
Object identification	Highly collimated (in preferred mass spectra) Recoil electron + single object-like e^+e^- pair (assuming $\theta_{res} \sim 3^\circ$)	Reasonably separated (in preferred mass spectra) Recoil proton + well- separated e^+e^- pair			

Exp.	e-scattering	p-scattering			
Energy for primary scattering	Peaking towards smaller momentum transfer				
Threshold energy	Small	Large for Cherenkov Small for LArTPC			
Form factor suppression	N/A	Yes			
Deep inelastic scattering	N/A	Yes			
Energy for secondary process	(Typically) highly boosted	(Typically) less boosted			
Object identification	Highly collimated (in preferred mass spectra) Recoil electron + single object-like e^+e^- pair (assuming $\theta_{res} \sim 3^\circ$)	Reasonably separated (in preferred mass spectra) Recoil proton + well- separated e^+e^- pair			

Amplifying BDM Flux

• Flux of boosted χ_1

Elastic scattering off nucleus in the context of quark-philic scenarios, e.g. gauged baryon number/Higgs portal models [Cherry, Frandsen, Shoemaker (2015)]

Electron Scattering?

Conventional DM direct detection experiments: *e*-recoil (ER) events are rejected

(mostly, $E \sim keV - sub-MeV$)

- ✤ Boosted MeV-range DM
 - ✓ Energetic ER expected (efficient E transfer) \rightarrow E ~ MeV sub-GeV
 - ✓ May leave an appreciable track

(stopping power of *e* of E~O(10 MeV) @ LXe: ~4 MeV/cm [Aprile, Doke (2009)])

✓ *e*-scattering cross section can be larger than *p*/*N*-scattering (depending on parameter choice)

e-scattering will be excellent in search for MeV-range (boosted) DM particles!

Benchmark Model

$$\mathcal{L}_{\text{int}} \equiv -\frac{\epsilon}{2} F_{\mu\nu} X^{\mu\nu} + g_{11} \bar{\chi}_1 \gamma^\mu \chi_1 X_\mu + g_{12} \bar{\chi}_2 \gamma^\mu \chi_1 X_\mu + h. c.$$

- Vector portal (kinetic mixing) [Holdom (1986)]
- ✤ Fermionic DM
 - ✓ χ_2 : a heavier (unstable) dark-sector state
 - ✓ Flavor-conserving → elastic scattering
 - ✓ Flavor-changing → inelastic scattering

[Tucker-Smith, Weiner (2001); Kim, Seo, Shin (2012)]

- Diagonal coupling may be highly suppressed, even vanishing.
- ✤ Scalar DM also possible

Expected Signatures

: ER \rightarrow ordinary but energetic elastic scattering

: ER + e^+e^- pair (from the decay of on-shell *X*)

: ER + e^+e^- pair (from the decay of off-shell $X \leftarrow$ threebody decay of χ_2) \rightarrow secondary signal may be displaced.

Benchmark Detectors

Expected DM Signal Patterns

◆ DEAP-3600: a displaced vertex ≥ 6.5 cm identifiable only with S1 (scintillation) through a maximum likelihood fitter

Benchmark Analysis: E-Spectrum

FIG. 2: Expected energy spectra of the primary (upper-left panel) and secondary (upper-right panel) e^- and/or e^+ for four reference points whose details are tabulated in the lower panel. g_{12} is set to be unity and all mass quantities are in MeV.

Quite energetic ER & secondary signals

$$\ell_{2,\text{lab}} = \frac{c\gamma_2}{\Gamma_2} \sim 16.2 \text{ cm} \times \left(\frac{10^{-3}}{\epsilon}\right)^2 \times \left(\frac{1}{g_{12}}\right)^2 \\ \times \left(\frac{m_X}{30 \text{ MeV}}\right)^4 \times \left(\frac{10 \text{ MeV}}{\delta m}\right)^5 \times \frac{\gamma_2}{10}$$

Three-body decay of $\chi_2 \rightarrow \text{long-lived } \chi_2 \rightarrow \text{a sizable vertex}$

Two-body decay of χ₂
→ no displaced vertex < resolution

Analysis: Detection Prospects

prelimina	ry	refl		ref	2	re	f3	ref	4
Expecte	d flux	610		43	3	0.9	98	0.2	4
Experiments	Run time	multi	single	multi	single	multi	single	multi	single
VENON1T	1yr	2000	17	220	5.1	0.37	0.37	0.27	0.27
AENONTI	$5 \ yr$	390	3.3	43	1.0	0.075	0.075	0.054	0.054
DEAP-3600	1 yr	450	6.9	55	2.1	575	0.16	1	0.11
	$5 \mathrm{yr}$	91	1.4	11	0.42	: বন্দ	0.031	-	0.022
LZ	$1 \mathrm{yr}$	180	3.0	25	0.91	0.067	0.067	0.048	0.048
	5 yr	36	0.59	5.0	0.18	0.013	0.013	0.0096	0.0096

[Required fluxes of χ_1 in unit of 10⁻³ cm⁻² sec⁻¹]

- ✓ Multi: primary & secondary events / Single: only primary event within the fiducial volume
- Requiring 3 signal events with 3 e's under the zero background assumption
- DEAP-3600 has no sensitivity to ref3 & ref4: no displaced vertices in ref3 & ref4
 - ← It is challenging to identify 3 final state particles only with S1.

It may have sensitivity to identify just BDM even for ref3 & ref4 (not iBDM).

Model-independent Reach

- Non-trivial to find appropriate parameterizations for providing model-independent reaches due to many parameters involved in the model
- * Number of signal events N_{sig} is

$$N_{\rm sig} = \sigma \cdot \mathcal{F} \cdot A \cdot t_{\rm exp} \cdot N_e$$

- ✓ σ : scattering cross section between χ_1 (BDM) and electron (target)
- ✓ \mathcal{F} : flux of incoming (boosted) χ_1
- ✓ *A*: acceptance
- ✓ t_{exp} : exposure time

- Controllable!
- ✓ N_e : total number of target electrons

Model-independent Reach: Displaced Vertex

- Acceptance determined by the distance between the primary & the secondary vertices
 - → (relatively) conservative limit to require two correlated vertices in the fiducial

Model-independent Reach: Displaced Vertex

- Acceptance determined by the distance between the primary & the secondary vertices
 - → (relatively) conservative limit to require two correlated vertices in the fiducial

Model-independent Reach: Prompt Decay

- ♦ No (measurable) displaced vertex \rightarrow Acceptance \approx 1
 - : relevant to signals with overlaid vertices or elastic scattering signals

Parameter Space: Invisible X Decay

Parameter Space: Visible X Decay

Conclusion

v _{DM} Scattering	non-relativistic (<< c)	relativistic (~c)
elastic	Direct detection	Boosted DM (BDMP
inelastic	inelastic DM (iDM)	inelastic BDM (iBDM)

- ➤ Direct detection of lighter BDM → Indirect detection of heavier DM
- Small flux → Large volume required (e.g. SK/HK, DUNE, ...)
- > Conventional DM direct detection Exps. have sensitivities to MeV-range DM.
- Provide alternative avenue to probe dark photon parameter space.

