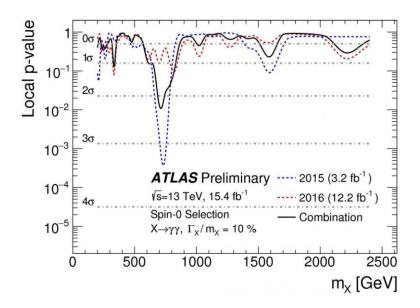
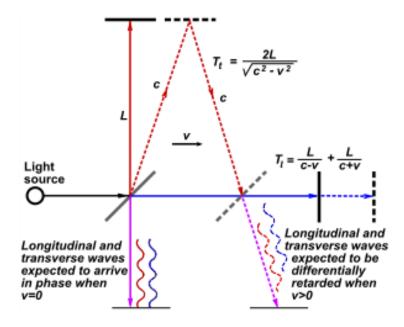

Implications of decoupling new physics


Tevong You

SMEXITImplications of decoupling new physics

Last year may have been disappointing for some of us...



• Direct searches for NP still **negative**

• But null results may still lead to deeper understanding

 No new physics at the TeV scale could be our "Michelson-Morley" moment

- **Soft** exit from the SM: New physics around the corner
 - Usual SUSY/compositeness/extra-dimensions... just a bit more fine-tuned
 - Neutral naturalness/Twin Higgs... hidden naturalising sector
- Hard exit from the SM: New physics decoupled
 - Accept fine-tuning (c.f. cosmological constant), SUSY/compositeness/extradimensions resolve other problems at heavier scales
 - Anthropic landscape
 - Cosmological relaxation
- Phenomenological framework: **SM EFT**

Outline

- Part I: SM EFT
 - A phenomenological framework for decoupled new physics
- Part 2: The Universal One-Loop Effective Action
 - A new way of matching decoupled new physics to EFTs at one-loop
- Part 3: Cosmological Relaxation
 - A new approach to decoupling new physics without fine-tuning

References

SM EFT:

-Dimension-6 operator analysis of the CLIC sensitivity to new physics **John Ellis, Philipp Roloff, Veronica Sanz** and **TY** [arXiv:1701.04804]

-Sensitivities of Prospective Future e+e- Colliders to Decoupled New Physics, **John Ellis** and **TY JHEP** 03 (2016 089 [arXiv:1510.04561]

-Comparing EFT and Exact One-Loop Analyses of Non-Degenerate Stops, Aleksandra Drozd, John Ellis, Jeremie Quevillon and TY JHEP 06 (2015) 028 [arXiv:1504.02409]

-The Effective Standard Model after LHC Run I, John Ellis, Veronica Sanz and TY JHEP 29 (2015) 007 [arXiv:1410.7703]

UOLEA:

-Mixed Heavy-Light Matching in the Universal One-Loop Effective Action, Sebastian A.R. Ellis, Jeremie Quevillon, TY, and Zhengkang Zhang PLB accepted [arXiv:1604.02445]

-The Universal One-Loop Effective Action,
Aleksandra Drozd, John Ellis, Jeremie Quevillon and TY,
JHEP 03 (2016) 180 [arXiv:1512.03003]

Cosmological Relaxation:

-A Dynamical Weak Scale From Inflation,TY[arXiv:1701.09167]

• Part I: SM EFT

• Part 2: The Universal One-Loop Effective Action

• Part 3: Cosmological Relaxation

Why SM EFT?

Assuming a SM Higgs and decoupled new physics at higher energies, the SM EFT is the next phenomenological framework

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\sim G_F E^2 \Rightarrow \Lambda \sim \text{TeV}$$

1982-2011 SM without Higgs

$$\frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} + \sum_{i=1}^{N} \frac{1}{2} \times \sum_{i=1}^{N} \frac{g^2 E^2}{m_W^2} \Rightarrow \Lambda \sim \text{TeV}$$

2012-now SM + higher-dimension operators?

$$\Rightarrow \Lambda \lesssim M_P$$
?

Why SM EFT?

Assuming a SM Higgs and decoupled new physics at higher energies, the SM EFT is the next phenomenological framework

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\sim G_{\rm F}E^2 \Rightarrow \Lambda \sim {\rm TeV}$$

1982–2011 SM without Higgs

$$\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \times \frac{g^2 E^2}{m_W^2} \Rightarrow \Lambda \sim \text{TeV}$$

2012-now SM + higher-dimension operators?

$$\Rightarrow \Lambda \leq M_P$$
?

Beyond the Standard Model?

- A priori many ways to break electroweak symmetry!
- But tension between simplicity and naturalness

• 2HDM

• Technicolor

• Higgs + SUSY

- NMSSM
- Composite 2HDM

Simplicity

Fundamental ScalarComposite Higgs(SM Higgs)

• Extra
Dimensions

Naturalness

Walking Technicolor

• Little Higgs

EFT for weak bosons

- 1980s-2012: Discovery of weak bosons -> Non-linear effective Lagrangian for spontaneously-broken global symmetry (breaking mechanism unknown!)
- **Global** symmetry-breaking pattern gives low-energy effective theory regardless of UV mechanism responsible for it

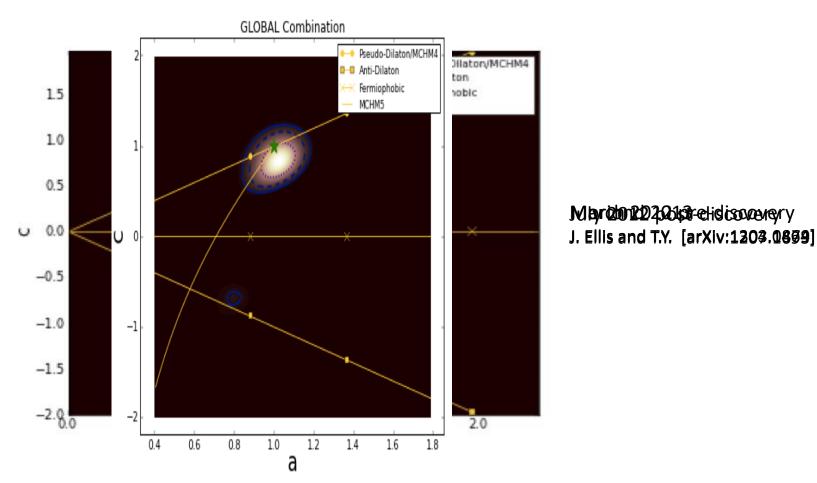
$$SU(2) \times SU(2) \rightarrow SU(2)_V \qquad (\rho \equiv M_W/M_Z \cos \theta_w \sim 1)$$

$$\mathcal{L} = \frac{v^2}{4} \text{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma - m_i \bar{\psi}_L^i \Sigma \psi_R^i + \text{h.c.}$$

$$\Sigma = \exp\left(i\frac{\sigma^a \pi^a}{v}\right)$$

EFT for weak bosons + scalar

• 2012: Non-linear electroweak Lagrangian + general couplings to singlet scalar


$$\mathcal{L} = \frac{v^2}{4} \text{Tr} D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \left(1 + 2 \frac{\mathbf{a}}{v} + \frac{\mathbf{b}}{v^2} + \dots \right) - m_i \bar{\psi}_L^i \Sigma \left(1 + \frac{\mathbf{c}}{v} + \dots \right) \psi_R^i + \text{h.c.}$$

$$+ \frac{1}{2} (\partial_{\mu} h)^2 + \frac{1}{2} m_h^2 h^2 + \frac{\mathbf{d}_3}{6} \left(\frac{3 m_h^2}{v} \right) h^3 + \frac{\mathbf{d}_4}{24} \left(\frac{3 m_h^2}{v^2} \right) h^4 + \dots ,$$

$$\Sigma = \exp\left(i\frac{\sigma^a \pi^a}{v}\right)$$

Fit experimental data to couplings

Could have had very different coupling patterns than SM!

Why SM EFT?

Assuming a SM Higgs and decoupled new physics at higher energies, the SM EFT is the next phenomenological framework

The TeV Scale

What effective theory captures everything we know experimentally about weak interactions?

1933–1982 4-fermion interactions

$$\sim G_F E^2 \Rightarrow \Lambda \sim \text{TeV}$$

1982-2011 SM without Higgs

$$\frac{1}{2} \sum_{i=1}^{N} \frac{1}{2} + \sum_{i=1}^{N} \frac{1}{2} \times \sum_{i=1}^{N} \frac{g^2 E^2}{m_W^2} \Rightarrow \Lambda \sim \text{TeV}$$

2012-now SM + higher-dimension operators?

$$\Rightarrow \Lambda \lesssim M_P$$
?

Dimension-6 Operators

	$SU(3)_c$	$SU(2)_L$	$U(1)_Y$
Q_L	3	2	$\frac{1}{6}$
$egin{array}{c} Q_L \ q_R^u \end{array}$	3	1	$\frac{2}{3}$
q_R^d	3	1	$-\frac{1}{3}$
L_L	1	2	$-\frac{1}{2}$
l_R	1	1	-1
ϕ	1	2	$\frac{1}{2}$

$$\mathcal{L}_{ ext{SM}} = \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y$$

$$\mathcal{L}_{SM} = \mathcal{L}_m + \mathcal{L}_g + \mathcal{L}_h + \mathcal{L}_y$$

$$\mathcal{L}_m = \bar{Q}_L i \gamma^\mu D^L_\mu Q_L + \bar{q}_R i \gamma^\mu D^R_\mu q_R + \bar{L}_L i \gamma^\mu D^L_\mu L_L + \bar{l}_R i \gamma^\mu D^R_\mu l_R$$

$$\mathcal{L}_G = -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} W^a_{\mu\nu} W^{a\mu\nu}$$

$$\mathcal{L}_H = (D^L_\mu \phi)^\dagger (D^{L\mu} \phi) - V(\phi)$$

$$\mathcal{L}_Y = y_d \bar{Q}_L \phi q_R^d + y_u \bar{Q}_L \phi^c q_R^u + y_L \bar{L}_L \phi l_R + \text{h.c.}$$

- First classified systematically by Buchmuller and Wyler (Nucl. Phys. B 268 (1986) 621)
- 59 dim-6 CP-even operators in a non-redundant basis, assuming minimal flavor structure (Gradkowski et al [arXiv:1008.4884])

$$\mathcal{O}_{H} = \frac{1}{2} (\partial^{\mu} |H|^{2})^{2}$$

$$\mathcal{O}_{T} = \frac{1}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H \right)^{2}$$

$$\mathcal{O}_{6} = \lambda |H|^{6}$$

$$\mathcal{O}_{W} = \frac{ig}{2} \left(H^{\dagger} \sigma^{a} \overset{\leftrightarrow}{D}^{\mu} H \right) D^{\nu} W^{a}_{\mu\nu}$$

$$\mathcal{O}_{B} = \frac{ig'}{2} \left(H^{\dagger} \overset{\leftrightarrow}{D}^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$$

$$\mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu}$$

$$\mathcal{O}_{GG} = g_s^2 |H|^2 G_{\mu\nu}^A G^{A\mu\nu}$$

$$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger} \sigma^a (D^{\nu}H) W_{\mu\nu}^a$$

$$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger} (D^{\nu}H) B_{\mu\nu}$$

$$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu}^{a\nu} W_{\nu\rho}^b W^{c\rho\mu}$$

Basis adopted from Pomarol and Riva 1308.1426

(SILH basis Giudice et al. hep-ph/0703164)

$$\begin{array}{|c|c|c|c|} \hline \mathcal{O}_{y_u} = y_u |H|^2 \bar{Q}_L \widetilde{H} u_R + \text{h.c.} & \mathcal{O}_{y_d} = y_d |H|^2 \bar{Q}_L H d_R + \text{h.c.} & \mathcal{O}_{y_e} = y_e |H|^2 \bar{L}_L H e_R + \text{h.c.} \\ \hline \mathcal{O}_R^u = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H) (\bar{u}_R \gamma^\mu u_R) & \mathcal{O}_R^d = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H) (\bar{d}_R \gamma^\mu d_R) & \mathcal{O}_R^e = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H) (\bar{e}_R \gamma^\mu e_R) \\ \hline \mathcal{O}_L^q = (iH^\dagger \overset{\leftrightarrow}{D}_\mu H) (\bar{Q}_L \gamma^\mu Q_L) & \mathcal{O}_L^{(3)\, q} = (iH^\dagger \sigma^a \overset{\leftrightarrow}{D}_\mu H) (\bar{Q}_L \sigma^a \gamma^\mu Q_L) \\ \hline \mathcal{O}_{LL}^{(3)\, ql} = (\bar{Q}_L \sigma^a \gamma_\mu Q_L) (\bar{L}_L \sigma^a \gamma^\mu L_L) & \mathcal{O}_{LL}^{(3)\, l} = (\bar{L}_L \sigma^a \gamma^\mu L_L) (\bar{L}_L \sigma^a \gamma_\mu L_L) \\ \hline \end{array}$$

Modifications of EWPO from dim-6 Operators

• (Pseudo-)Observables

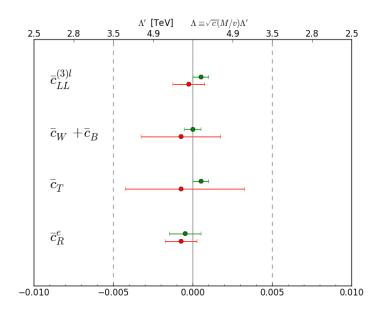
$$T_{\xi} = T_{had} + 3T_{\ell}^{2} + 3T_{\ell}^{2} \qquad R_{\ell} = \frac{\Gamma_{had}}{\Gamma_{\ell}^{2}} \qquad \delta_{had} = 12\pi \frac{\Gamma_{e} \Gamma_{had}}{\Omega_{e}^{2} \Gamma_{e}^{2}} \qquad A_{fB}^{f} = \frac{2}{4} A_{e} A_{f} \qquad M_{W} = c_{W} M_{E}$$

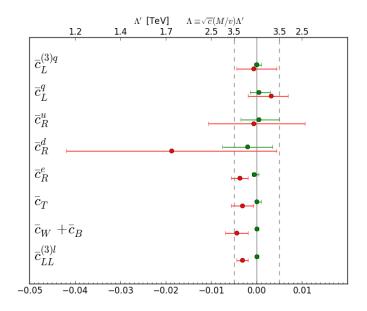
$$R_{q} = \frac{\Gamma_{q}}{T_{had}}$$

Depends on

$$\Gamma_{f}^{L} = \frac{52G_{F}M_{E}^{2}\hat{M}_{E}}{G_{m}}\left[\left(g_{L}^{f}\right)^{2} + \left(g_{R}^{f}\right)^{2}\right] \qquad A_{f} = \frac{\left(g_{L}^{f}\right)^{2} - \left(g_{R}^{f}\right)^{2}}{\left(g_{L}^{f}\right)^{2} + \left(g_{R}^{f}\right)^{2}}$$

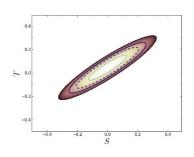
$$g^{f} = T_{3}^{2} - Q_{f}S_{w}^{2} \qquad S_{w}^{2} = \frac{1}{2} - \frac{1}{2}\sqrt{1 - \frac{4\pi\alpha}{52G_{L}M_{E}^{2}}}$$


 Dim-6 operators can modify observables directly through Zff couplings contributions or indirectly through redefinitions of input observables


$$m_{\tilde{t}}^{2} = (m_{\tilde{t}}^{2})^{\circ} (1 + \Pi_{\tilde{t}\tilde{t}})$$
 $G_{\tilde{t}} = G_{\tilde{t}}^{\circ} (1 - \Pi_{uu}^{\circ})$ $\propto (m_{\tilde{t}}) = \alpha^{\circ}(m_{\tilde{t}}) (1 + \Pi_{\tilde{t}\tilde{t}})$

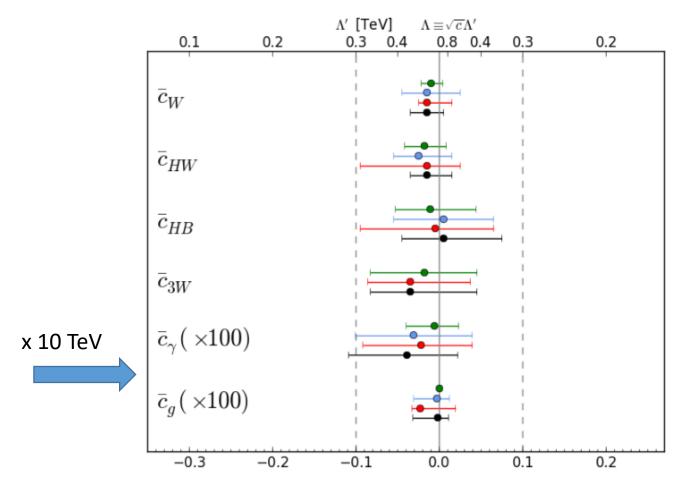
SM EFT Present Constraints

Marginalized constraints on a complete non-redundant basis of dim-6 operators affecting EWPTs

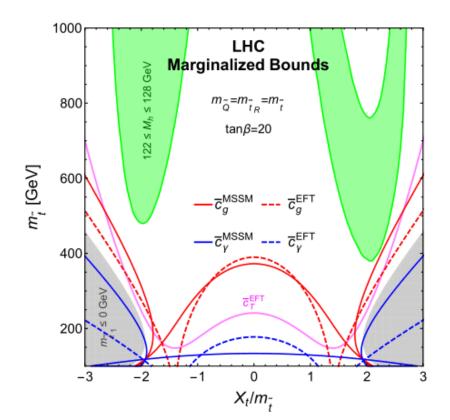

Ellis, Sanz and T.Y. 1410.7703

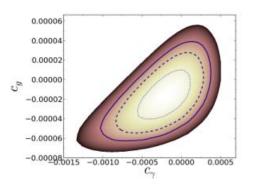
S,T parameter corresponds to (c_W+c_B) , c_T subset

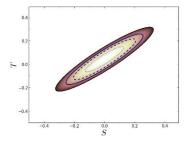
$$S = \frac{4\sin^2\theta_W}{\alpha(m_Z)}(\bar{c}_W + \bar{c}_B) \approx 119(\bar{c}_W + \bar{c}_B)$$
$$T = \frac{1}{\alpha(m_Z)}\bar{c}_T \approx 129\bar{c}_T.$$


Higgs constraints on dim-6 operators

Operators affect Higgs signal strength measurements, differential distributions

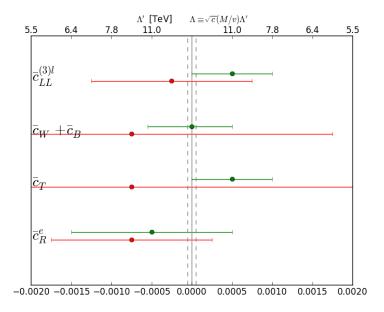

SM EFT Present Constraints


 Constraints from LHC triple-gauge coupling measurements and Higgs physics

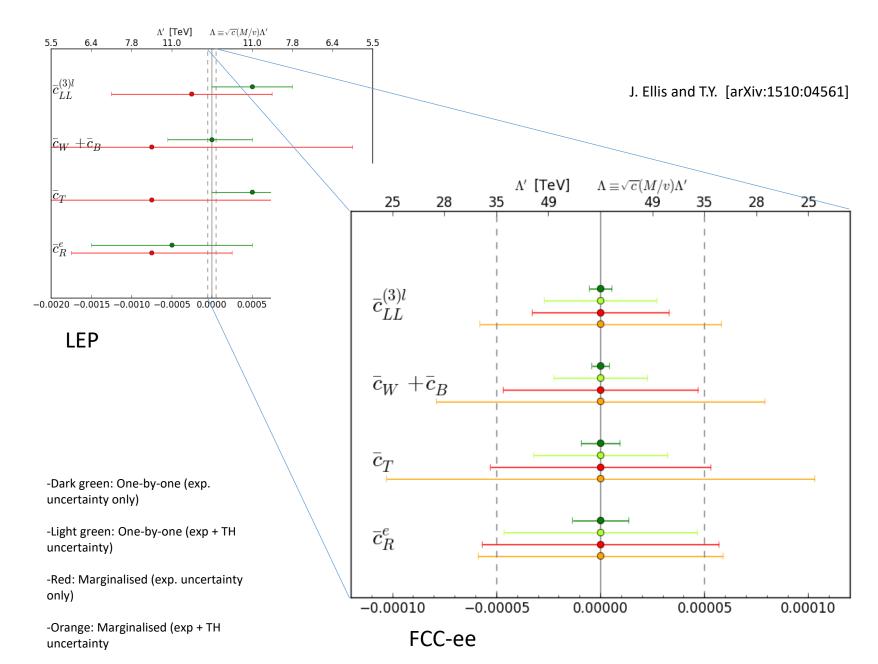


Translating EFT Constraints to MSSM Stops

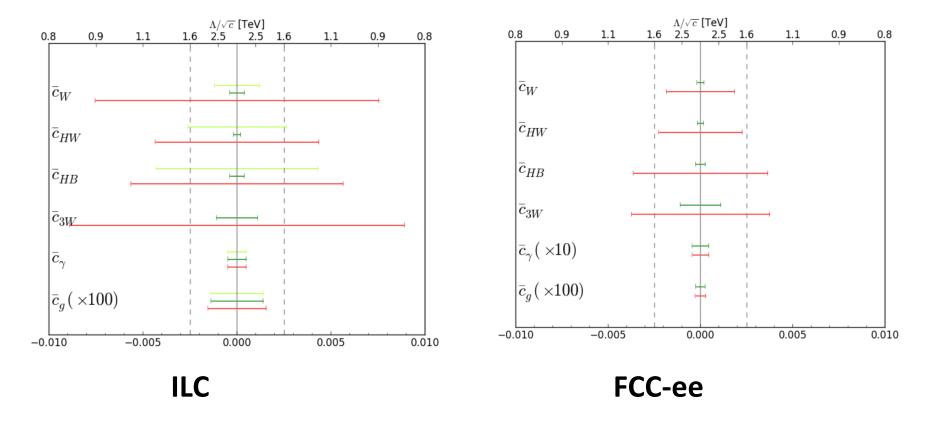
Coeff.	Experimental constraints		95 % CL limit	
\bar{c}_g	LHC	marginalized	$[-4.5, 2.2] \times 10^{-5}$	$\sim 410 \; \mathrm{GeV}$
		individual	$[-3.0, 2.5] \times 10^{-5}$	$\sim 390 \text{ GeV}$
\bar{c}_{γ}	LHC	marginalized	$[-6.5, 2.7] \times 10^{-4}$	$\sim 215 \text{ GeV}$
		individual	$[-4.0, 2.3] \times 10^{-4}$	$\sim 230~{\rm GeV}$
\bar{c}_T	LEP	marginalized	$[-10, 10] \times 10^{-4}$	$\sim 290~{\rm GeV}$
		individual	$[-5, 5] \times 10^{-4}$	$\sim 380~{\rm GeV}$
$\bar{c}_W + \bar{c}_B$	LEP	marginalized	$[-7,7] \times 10^{-4}$	$\sim 185 \; \mathrm{GeV}$
		individual	$[-5, 5] \times 10^{-4}$	$\sim 195 \; \mathrm{GeV}$


Drozd, Ellis, Quevillon and T.Y. 1504.02409

FCC-ee EWPT Constraints


LEP

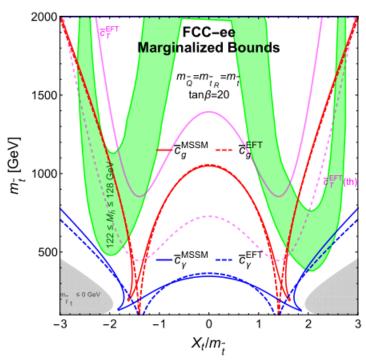
FCC-ee EWPT Constraints



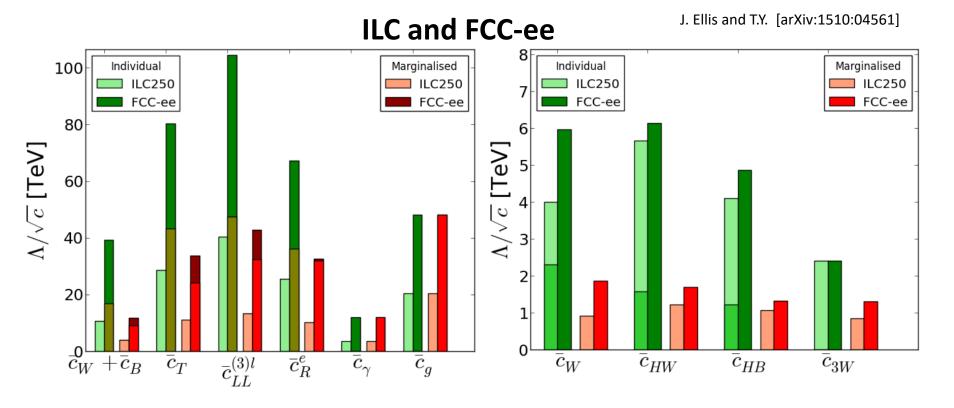
LEP

FCC-ee EWPT Constraints

Future Higgs Constraints


• Similar precision to current EWPT

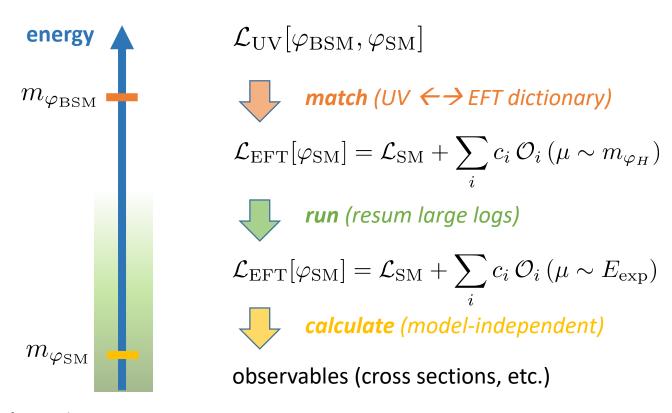
Future Constraints to MSSM Stops


Coeff.	Experimental constraints		95 % CL limit	$\begin{array}{c c} \operatorname{deg.} & m_{\tilde{t}_1} \\ X_t = 0 & X_t = m_{\tilde{t}}/2 \end{array}$	
$ar{c}_g$	$\rm ILC^{1150fb^{-1}}_{250\rm GeV}$	marginalized	$[-7.7, 7.7] \times 10^{-6}$	$\sim 675 \text{ GeV}$	$\sim 520 \text{ GeV}$
		individual	$[-7.5, 7.5] \times 10^{-6}$	$\sim 680~{\rm GeV}$	$\sim 545~{\rm GeV}$
	FCC-ee	marginalized	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 \text{ GeV}$	$\sim 920~{\rm GeV}$
		individual	$[-3.0, 3.0] \times 10^{-6}$	$\sim 1065 \text{ GeV}$	$\sim 915 \text{ GeV}$
$ar{c}_{\gamma}$	$ILC_{250GeV}^{1150fb^{-1}}$	marginalized	$[-3.4, 3.4] \times 10^{-4}$	$\sim 200 \text{ GeV}$	$\sim 40 \; \mathrm{GeV}$
		individual	$[-3.3, 3.3] \times 10^{-4}$	$\sim 200 \text{ GeV}$	$\sim 35 \mathrm{GeV}$
	FCC-ee	marginalized	$[-6.4, 6.4] \times 10^{-5}$	$\sim 385 \text{ GeV}$	$\sim 250 \text{ GeV}$
		individual	$[-6.3, 6.3] \times 10^{-5}$	$\sim 390 \text{ GeV}$	$\sim 260~{\rm GeV}$
$ar{c}_T$	$ILC_{250GeV}^{1150fb^{-1}}$	marginalized	$[-3,3] \times 10^{-4}$	$\sim 480~{\rm GeV}$	$\sim 285~{\rm GeV}$
		individual	$[-7,7] \times 10^{-5}$	$\sim 930~{\rm GeV}$	$\sim 780~{\rm GeV}$
	FCC-ee	marginalized	$[-3,3] \times 10^{-5}$	$\sim 1410 \; \mathrm{GeV}$	$\sim 1285 \text{ GeV}$
		individual	$[-0.9, 0.9] \times 10^{-5}$	$\sim 2555~{\rm GeV}$	$\sim 2460~{\rm GeV}$
$\bar{c}_W + \bar{c}_B$	$ILC_{250GeV}^{1150fb^{-1}}$	marginalized	$[-2,2] \times 10^{-4}$	$\sim 230~{\rm GeV}$	$\sim 170 \text{ GeV}$
		individual	$[-6, 6] \times 10^{-5}$	$\sim 340~{\rm GeV}$	$\sim 470 \; \mathrm{GeV}$
	FCC-ee	marginalized	$[-2,2] \times 10^{-5}$	$\sim 545 \text{ GeV}$	$\sim 960 \text{ GeV}$
		individual	$[-0.8, 0.8] \times 10^{-5}$	$\sim 830~{\rm GeV}$	$\sim 1590~{\rm GeV}$

Drozd, Ellis, Quevillon and T.Y. 1504.02409

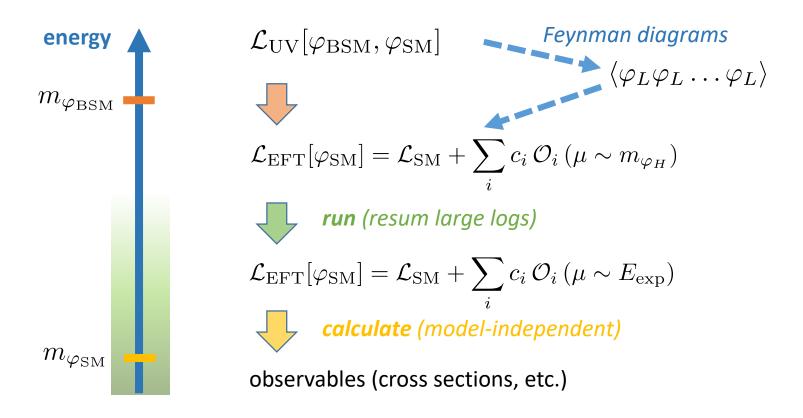
Future e+e- Constraints

- Future precision sensitive to TeV scale, even for loop-induced operators
- One-loop matching simplified by a Universal One-Loop Effective Action

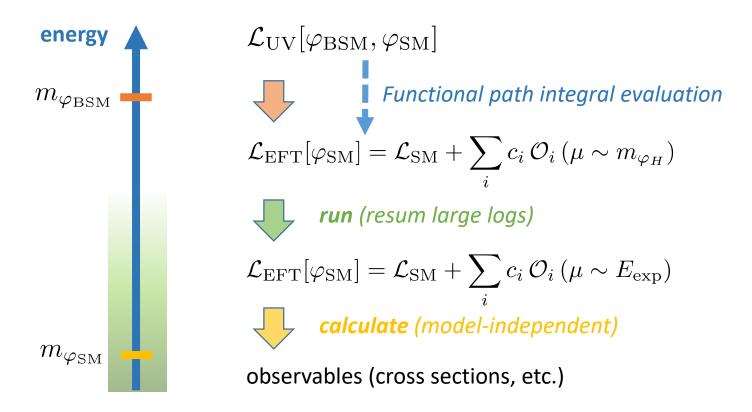

-Henning, Lu & Murayama [arXiv:1412.1837]
-A. Drozd, J. Ellis, J. Quevillon and TY [arXiv:1512.03003]

• Part I: SM EFT

• Part 2: The Universal One-Loop Effective Action

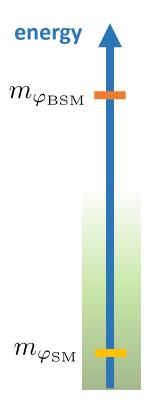

• Part 3: Cosmological Relaxation

Matching UV theory onto an EFT Lagrangian:



Slide from Z. Zhang

• Standard approach is to use Feynman diagrams



- Functional method more elegant and direct way of matching
- But many ways of doing this:

Functional method more elegant and direct way of matching

But many ways of doing this:

$$\mathcal{L}_{ ext{UV}}[arphi_{ ext{BSM}}]$$

e.g. Schwinger proper time, Covariant **Derivative Expansion** methods, Various $\mathcal{L}_{ ext{UV}}[arphi_{ ext{BSM}}]$ log expansions, heavy-light subtraction procedures, integration by regions, **covariant diagrams**, etc.

$$\mathcal{L}_{\mathrm{EFT}}[\varphi_{\mathrm{SM}}] = \mathcal{L}_{\mathrm{SM}} + \sum_{i} c_{i} \mathcal{O}_{i} (\mu \sim m_{\varphi_{H}})$$

run (resum large logs)

$$\mathcal{L}_{\text{EFT}}[\varphi_{\text{SM}}] = \mathcal{L}_{\text{SM}} + \sum_{i} c_{i} \, \mathcal{O}_{i} \, (\mu \sim E_{\text{exp}})$$

calculate (model-independent)

observables (cross sections, etc.)

- Gaillard-Cheyette ('86, '88) method of doing Covariant Derivative Expansion reviewed/revived in **HLM** (Henning, Lu, Murayama, 1412.1837)
- Evaluate the path integral of the action in the usual way:
 - Expand action around minimum
 - Write Gaussian integral as determinant
 - Write determinant as trace of log in exponent
- This is common to all functional methods

$$= \int [D\Psi]^{c}$$

$$= \int [\underline{D\eta}] e^{i\left(S[\phi,\Phi_{c}] + \frac{1}{2} \frac{\delta^{2}S}{\delta\Phi^{2}}\Big|_{\Phi=\Phi_{c}} \eta^{2} + \mathcal{O}(\eta^{3})\right)}$$

$$\approx e^{iS[\phi,\Phi_c]} \left[\det \left(-\frac{\delta^2 S}{\delta \Phi^2} \Big|_{\Phi=\Phi_c} \right) \right]^{-\frac{1}{2}}$$
$$\approx e^{iS[\phi,\Phi_c] - \frac{1}{2} \operatorname{Tr} \ln \left(-\frac{\delta^2 S}{\delta \Phi} \Big|_{\Phi=\Phi_c} \right)},$$

- Gaillard-Cheyette also do *momentum shift* before expanding logarithm (see later slide)
- Also, different methods used for expanding log

For a UV Lagrangian of the form

$$\mu = iD\mu$$

$$\mathcal{L}_{\mathrm{UV}} = \mathcal{L}_{\mathrm{SM}} + (\Phi^{\dagger} \overline{F(x)} + \mathrm{h.c.}) + \Phi^{\dagger} (P^2 - M^2 - \overline{U(x)}) \Phi + \mathcal{O}(\Phi^3) \,,$$

$$\begin{split} e^{iS_{\text{eff}}[\phi]} &= \int [D\Phi] e^{iS[\phi,\Phi]} \\ &= \int [D\eta] e^{i\left(S[\phi,\Phi_c] + \frac{1}{2} \frac{\delta^2 S}{\delta \Phi^2} \Big|_{\Phi = \Phi_c} \eta^2 + \mathcal{O}(\eta^3)\right)} \\ &\approx e^{iS[\phi,\Phi_c]} \left[\det \left(-\frac{\delta^2 S}{\delta \Phi^2} \Big|_{\Phi = \Phi_c} \right) \right]^{-\frac{1}{2}} \\ &\approx e^{iS[\phi,\Phi_c] - \frac{1}{2} \text{Tr} \ln \left(-\frac{\delta^2 S}{\delta \Phi} \Big|_{\Phi = \Phi_c} \right)}, \end{split}$$

$$S = \int_{[D\Phi]} e^{iS[\phi,\Phi]} = \int_{[D\eta]} e^{i\left(S[\phi,\Phi_c]+rac{1}{2}rac{\delta^2S}{\delta\Phi^2}ig|_{\Phi=\Phi_c}\eta^2+\mathcal{O}(\eta^3)
ight)} = \int_{[D\eta]} e^{i\left(S[\phi,\Phi_c]+rac{1}{2}rac{\delta^2S}{\delta\Phi^2}ig|_{\Phi=\Phi_c}\eta^2+\mathcal{O}(\eta^3)
ight)} = ic_s \operatorname{Tr} \ln\left(-P^2+M^2+U
ight) = ic_s \int_{\Phi=\Phi_c} d^4x \int_{\Phi=\Phi_c}$$

Model-

dependent

light fields

For a UV Lagrangian of the form

$$P_{\mu} \equiv iD_{\mu}$$

$$\mathcal{L}_{\text{UV}} = \mathcal{L}_{\text{SM}} + \boxed{\Phi^{\dagger}} F(x) + \text{h.c.}) + \boxed{\Phi^{\dagger}} (P^2 - M^2 - U(x)) + \mathcal{O}(\Phi^3),$$

Heavy fields can be boson or fermion

$$e^{iS_{\text{eff}}[\phi]} = \int [D\Phi] e^{iS[\phi,\Phi]}$$

$$= \int [D\eta] e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c} \eta^2 + \mathcal{O}(\eta^3)\right)}$$

$$\approx e^{iS[\phi,\Phi_c]} \left[\det\left(-\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\right)\right]^{-\frac{1}{2}}$$

$$\approx e^{iS[\phi,\Phi_c] - \frac{1}{2}\text{Tr}\ln\left(-\frac{\delta^2 S}{\delta\Phi}\Big|_{\Phi=\Phi_c}\right)},$$

$$\int_{-\infty}^{\infty} |D\eta|^{2} dt \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |(S[\phi,\Phi_{c}] + \frac{1}{2} \frac{\delta^{2}S}{\delta\Phi^{2}}|_{\Phi=\Phi_{c}} \eta^{2} + \mathcal{O}(\eta^{3})}) = \int_{-\infty}^{\infty} |D\eta|^{2} dt \int_{-\infty}^{\infty} |(S[\phi,\Phi_{c}] + \frac{1}{2} \frac{\delta^{2}S}{\delta\Phi^{2}}|_{\Phi=\Phi_{c}} \eta^{2} + \mathcal{O}(\eta^{3})}) = i \frac{|C_{s}|}{|C_{s}|} \int_{-\infty}^{\infty} d^{4}x \int_{-\infty}^{\infty} \frac{d^{4}q}{(2\pi)^{4}} dt \ln(-(P_{\mu} - q_{\mu})^{2} + M^{2} + U)$$

For a UV Lagrangian of the form

$$P_{\mu} \equiv iD_{\mu}$$

$$\mathcal{L}_{\text{UV}} = \mathcal{L}_{\text{SM}} + \boxed{\Phi^{\dagger}} F(x) + \text{h.c.}) + \boxed{\Phi^{\dagger}} (P^2 - M^2 - U(x)) + \mathcal{O}(\Phi^3),$$

Heavy fields can be boson or fermion

$$e^{iS_{\text{eff}}[\phi]} = \int [D\Phi] e^{iS[\phi,\Phi]}$$

$$= \int [D\eta] e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c} \eta^2 + \mathcal{O}(\eta^3)\right)}$$

$$\approx e^{iS[\phi,\Phi_c]} \left[\det\left(-\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\right)\right]^{-\frac{1}{2}}$$

$$\approx e^{iS[\phi,\Phi_c] - \frac{1}{2}\text{Tr}\ln\left(-\frac{\delta^2 S}{\delta\Phi}\Big|_{\Phi=\Phi_c}\right)},$$

$$= \int [D\eta]e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\eta^2 + \mathcal{O}(\eta^3)\right)}$$

$$= \int [D\eta]e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\eta^2 + \mathcal{O}(\eta^3)\right)}$$

$$\approx e^{iS[\phi,\Phi_c]} \left[\det\left(-\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\right)\right]^{-\frac{1}{2}}$$

$$= i\frac{C_s}{\int} d^4x \int \frac{d^4q}{(2\pi)^4} \operatorname{tr} \ln\left(-(P_\mu - q_\mu)^2 + M^2 + U\right)$$

• Gaillard-Cheyette also do momentum shift by inserting

$$\mathcal{L}_{\text{1-loop}}^{\text{eff}} = ic_s \int \frac{d^4q}{(2\pi)^4} \text{tr} \ln \left[e^{P_{\mu}\partial/\partial q_{\mu}} (-(P_{\mu} - q_{\mu})^2 + M^2 + U) e^{-P_{\mu}\partial/\partial q_{\mu}} \right]$$
$$= ic_s \int \frac{d^4q}{(2\pi)^4} \text{tr} \ln \left[-\left(\tilde{G}_{\nu\mu} \partial/\partial q_{\mu} + q_{\mu} \right)^2 + M^2 + \tilde{U} \right]$$

So covariant derivatives are explicitly in commutators from beginning

$$\tilde{G}_{\nu\mu} \equiv \sum_{n=0}^{\infty} \frac{n+1}{(n+2)!} [P_{\alpha_1}, [...[P_{\alpha_n}, G'_{\nu\mu}]]] \frac{\partial^n}{\partial q_{\alpha_1} ... q_{\alpha_n}} \qquad \qquad \tilde{U} = \sum_{n=0}^{\infty} \frac{1}{n!} [P_{\alpha_1}, [...[P_{\alpha_n}, U]]] \frac{\partial^n}{\partial q_{\alpha_1} ... q_{\alpha_n}}$$

Functional methods: Gaillard-Cheyette CDE

For a UV Lagrangian of the form

$$P_{\mu} \equiv iD_{\mu}$$

$$\mathcal{L}_{UV} = \mathcal{L}_{SM} + (\Phi^{\dagger} F(x) + \text{h.c.}) + \Phi^{\dagger} (P^2 - M^2 - U(x)) \Phi + \mathcal{O}(\Phi^3),$$

$$\begin{split} e^{iS_{\text{eff}}[\phi]} &= \int [D\Phi] e^{iS[\phi,\Phi]} \\ &= \int [D\eta] e^{i\left(S[\phi,\Phi_c] + \frac{1}{2} \frac{\delta^2 S}{\delta \Phi^2} \Big|_{\Phi = \Phi_c} \eta^2 + \mathcal{O}(\eta^3)\right)} \\ &\approx e^{iS[\phi,\Phi_c]} \left[\det \left(-\frac{\delta^2 S}{\delta \Phi^2} \Big|_{\Phi = \Phi_c} \right) \right]^{-\frac{1}{2}} \\ &\approx e^{iS[\phi,\Phi_c] - \frac{1}{2} \text{Tr} \ln \left(-\frac{\delta^2 S}{\delta \Phi} \Big|_{\Phi = \Phi_c} \right)}, \end{split}$$

$$S_{1-\text{loop}}^{\text{eff}} = \int [D\Phi]e^{iS[\phi,\Phi_c]} ds = \int [D\eta]e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\eta^2 + \mathcal{O}(\eta^3)\right)} \\ = \int [D\eta]e^{i\left(S[\phi,\Phi_c] + \frac{1}{2}\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\eta^2 + \mathcal{O}(\eta^3)\right)} \\ \approx e^{iS[\phi,\Phi_c]} \left[\det\left(-\frac{\delta^2 S}{\delta\Phi^2}\Big|_{\Phi=\Phi_c}\right) \right]^{-\frac{1}{2}} \\ = ic_s \int d^4x \int \frac{d^4q}{(2\pi)^4} \text{tr ln}\left(-(P_\mu - q_\mu)^2 + M^2 + U\right) ds$$

• Gaillard-Cheyette also do momentum shift by inserting $e^{\pm P_{\mu}\partial/\partial q_{\mu}}$

$$e^{\pm P_{\mu}\partial/\partial q_{\mu}}$$

$$\mathcal{L}_{ ext{1-loop}}^{ ext{eff}}$$
 =

 $\mathcal{L}_{1\text{-loop}}^{\text{eff}}$ But simpler to avoid momentum shift! Instead, gather result into commutators after expansion evaluation.

$$e^{-P_{\mu}\partial/\partial q_{\mu}}]$$

Fuentes-Martin, Portoles, Ruiz-Femenia, 1607.02142; • So covariant de z. Zhang, 1610.00710.

ors from beginning

$$\tilde{G}_{\nu\mu} \equiv \sum_{n=0}^{\infty} \frac{n+1}{(n+2)!} [P_{\alpha_1}, [\dots [P_{\alpha_n}, G_{\nu\mu}]]] \frac{\partial^n}{\partial q_{\alpha_1} \dots q_{\alpha_n}} \qquad \qquad \psi = \sum_{n=0}^{\infty} \frac{n!}{n!} [P_{\alpha_1}, [\dots [P_{\alpha_n}, U]]] \frac{\partial^n}{\partial q_{\alpha_1} \dots q_{\alpha_n}}$$

Functional methods: Heavy-Light loops?

Linear coupling = tree-level; quadratic coupling = heavy-only one-loop

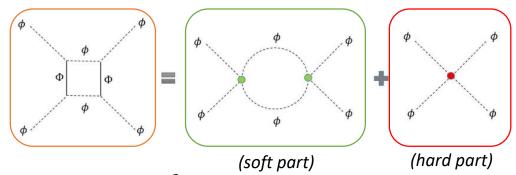
$$\mathcal{L}_{\text{UV}} = \mathcal{L}_{\text{SM}} + (\Phi^{\dagger} F(x) + \text{h.c.}) + \Phi^{\dagger} (P^2 - M^2 - U(x)) \Phi + \mathcal{O}(\Phi^3),$$

- What about loops involving both heavy and light fields?
- Naively not accounted for in functional method

See e.g. Bilenky & Santamaria, hep-ph/9310302; Del Aguila, Kunszt, Santiago, 1602.00126.

Solution: apply background field method to both heavy and light fields

$$\phi \to \phi_c + \phi'$$
 , $\Phi \to \Phi_c + \Phi'$


$$\mathcal{L}_{\text{quad}} = \frac{1}{2} \left(\Phi', \phi' \right) \begin{pmatrix} P^2 - M^2 - U_{\Phi\Phi} & -U_{\Phi\phi} \\ -U_{\phi\Phi} & P^2 - m^2 - U_{\phi\phi} \end{pmatrix} \begin{pmatrix} \Phi' \\ \phi' \end{pmatrix}$$

Functional methods: Heavy-Light loops?

Just apply background field method to both heavy and light fields?

$$\phi \to \phi_c + \phi'$$
 , $\Phi \to \Phi_c + \Phi'$

- ullet Actually, this gives the one-loop 1PI effective action and **not** $\mathcal{L}_{ ext{eff}}$
 - Feynman diagram intuition: Heavy-light loops in UV theory match onto both tree-level-generated EFT operators inserted at one-loop, and one-loopgenerated EFT operators inserted at tree-level

• The former is not part of $\mathcal{L}_{ ext{eff}}$, must be subtracted to keep only the latter

Functional methods: Heavy-Light subtractions

Various subtraction procedures proposed

See e.g.
Boggia, Gomez-Ambrosio, Passarino, 1603.03660;
Henning, Lu, Murayama, 1604.01019;
Ellis, Quevillon, TY, Zhang, 1604.02445;
Fuentes-Martin, Portoles, Ruiz-Femenia, 1607.02142.

- Simplification of evaluating CDE from these developments lead to a **Covariant Diagram** formulation (*z. Zhang, 1610.00710*)
- But **Universality** of CDE results means evaluation via all these different methods gives same model-independent expression

Universality
property also applies
to heavy-light case

Integration by regions method avoids subtraction, separates hard and soft part in integral, greatly simplifies heavy-light treatment

See e.g. Beneke & Smirnov, hep-ph/9711391; Jantzen, 1111.2589;

Henning, Lu, Murayama, 1412.1837; Drozd, J. Ellis, Quevillon, TY, 1512.03003; S.A.R. Ellis, Quevillon, TY, Z. Zhang; 1705.xxxxx

- No need to reinvent the wheel, every slide up to now can be ignored
- Universality of CDE expansion results first noticed in the **simplified** case of **degenerate mass** for heavy fields (Henning, Lu, Murayama, 1412.1837)
- The *general* **Universal One-Loop Effective Action** (UOLEA) subsequently derived without such assumption (Drozd, J. Ellis, Quevillon, TY, 1512.03003)
- Extra structures (heavy-light terms, "open" covariant derivatives, momentum-shifted-gamma matrices) in CDE expansion not included in initial UOLEA (S.A.R. Ellis, Quevillon, TY, Z. Zhang, 1604.02445)
- Universal heavy-light terms now done (S.A.R. Ellis, Quevillon, TY, Z. Zhang, 1705.xxxxx)
- A complete UOLEA, including all possible CDE structures, is in sight...

 Neglect these extra structures for now; derivation of universal results e.g. in Gaillard-Cheyette CDE starts from

$$\mathcal{L}_{\text{1-loop}}^{\text{eff}} = ic_s \int \frac{d^4q}{(2\pi)^4} \operatorname{tr} \ln[e^{P_{\mu}\partial/\partial q_{\mu}} (-(P_{\mu} - q_{\mu})^2 + M^2 + U)e^{-P_{\mu}\partial/\partial q_{\mu}}]$$
$$= ic_s \int \frac{d^4q}{(2\pi)^4} \operatorname{tr} \ln[-\tilde{G}_{\nu\mu}\partial/\partial q_{\mu} + q_{\mu})^2 + M^2 + \tilde{U}$$

$$\tilde{G}_{\nu\mu} \equiv \sum_{n=0}^{\infty} \frac{n+1}{(n+2)!} [P_{\alpha_1}, [...[P_{\alpha_n}, G'_{\nu\mu}]]] \frac{\partial^n}{\partial q_{\alpha_1} ... q_{\alpha_n}} \qquad \qquad \tilde{U} = \sum_{n=0}^{\infty} \frac{1}{n!} [P_{\alpha_1}, [...[P_{\alpha_n}, U]]] \frac{\partial^n}{\partial q_{\alpha_1} ... q_{\alpha_n}}$$

$$\tilde{U} = \sum_{n=0}^{\infty} \frac{1}{n!} [P_{\alpha_1}, [\dots[P_{\alpha_n}, U]]] \frac{\partial^n}{\partial q_{\alpha_1} \dots q_{\alpha_n}}$$

(much easier using Covariant Diagrams, see Z. Zhang talk)

$$= -i \frac{1}{6} \mathcal{I}[q^6]_i^6 \cdot 2^6 \operatorname{tr}(P^{\mu} P^{\nu} P^{\rho} P_{\mu} P_{\nu} P_{\rho})$$

 Whatever the method used to obtain it, the resulting UOLEA can be written as

$$\begin{split} \mathcal{L}_{\text{1-loop}}^{\text{eff}}[\phi] \supset -ic_s \Bigg\{ f_1^i + f_2^i U_{ii} + f_3^i G_{\mu\nu,ij}^{\prime 2} + f_4^{ij} U_{ij}^2 \\ &+ f_5^{ij} (P_{\mu} G_{\mu\nu,ij}^{\prime})^2 + f_6^{ij} (G_{\mu\nu,ij}^{\prime}) (G_{\nu\sigma,jk}^{\prime}) (G_{\sigma\mu,ki}^{\prime}) + f_7^{ij} [P_{\mu}, U_{ij}]^2 + f_8^{ijk} (U_{ij} U_{jk} U_{ki}) \\ &+ f_9^{ij} (U_{ij} G_{\mu\nu,jk}^{\prime} G_{\mu\nu,ki}^{\prime}) \\ &+ f_{10}^{ijkl} (U_{ij} U_{jk} U_{kl} U_{li}) + f_{11}^{ijk} U_{ij} [P_{\mu}, U_{jk}] [P_{\mu}, U_{ki}] \\ &+ f_{12,a}^{ij} [P_{\mu}, [P_{\nu}, U_{ij}]] [P_{\mu}, [P_{\nu}, U_{ji}]] + f_{12,b}^{ij} [P_{\mu}, [P_{\nu}, U_{ij}]] [P_{\nu}, [P_{\mu}, U_{ji}]] \\ &+ f_{13}^{ij} U_{ij} U_{jk} G_{\mu\nu,kl}^{\prime} G_{\mu\nu,li}^{\prime} + f_{14}^{ijk} [P_{\mu}, U_{ij}] [P_{\nu}, U_{jk}] G_{\nu\mu,ki}^{\prime} \\ &+ \left(f_{15a}^{ijk} U_{i,j} [P_{\mu}, U_{j,k}] - f_{15b}^{ijk} [P_{\mu}, U_{i,j}] U_{j,k} \right) [P_{\nu}, G_{\nu\mu,ki}^{\prime}] \\ &+ f_{16}^{ijklm} (U_{ij} U_{jk} U_{kl} U_{lm} U_{mi}) + f_{17}^{ijkl} U_{ij} U_{jk} [P_{\mu}, U_{kl}] [P_{\mu}, U_{li}] + f_{18}^{ijkl} U_{ij} [P_{\mu}, U_{jk}] U_{kl} [P_{\mu}, U_{li}] \\ &+ f_{19}^{ijklmn} (U_{ij} U_{jk} U_{kl} U_{lm} U_{mn} U_{ni}) \Bigg\} \, . \end{split}$$

Drozd, J. Ellis, Quevillon, TY, 1512.03003

 Whatever the method used to obtain it, the resulting UOLEA can be written as

$$\mathcal{L}_{1\text{-loop}}^{\text{eff}}[\phi] \supset -ic_s \left\{ f_1^i + f_2^i U_{ii} + f_3^i G_{\mu\nu,ij}^{'2} + f_4^{ij} U_{ij}^2 \right. \\ \left. + f_5^{ij} (P_\mu G_{\mu\nu,ij})^2 + f_6^{ij} (G_{\mu\nu,ij}') (G_{\nu\sigma,jk}') (G_{\sigma\mu,ki}') + f_7^{ij} [P_\mu, U_{ij}]^2 + f_8^{ijk} (U_{ij} U_{jk} U_{ki}) \right. \\ \left. + f_9^{ij} (U_{ij} G_{\mu\nu,jk}' G_{\mu\nu,ki}') \right. \\ \left. + f_{10}^{ijkl} (U_{ij} U_{jk} U_{kl} U_{li}) + f_{11}^{ijk} U_{ij} [P_\mu, U_{jk}] [P_\mu, U_{ki}] \right. \\ \left. + f_{12,a}^{ij} [P_\mu, [P_\nu, U_{ij}]] [P_\nu, [P_\nu, U_{ji}]] + f_{12,b}^{ij} [P_\mu, [P_\nu, U_{ij}]] [P_\nu, [P_\mu, U_{ji}]] \right. \\ \left. + f_{12,c}^{ijk} [P_\mu, [P_\mu, U_{ij}]] [P_\nu, [P_\nu, U_{ji}]] \right. \\ \left. + f_{13}^{ijk} U_{ij} U_{jk} G_{\mu\nu,kl}' G_{\mu\nu,kl}' + f_{14}^{ijk} [P_\mu, U_{ij}] [P_\nu, U_{jk}] G_{\nu\mu,ki}' \right. \\ \left. + \left. \left(f_{15a}^{ijkl} U_{i,j} [P_\mu, U_{j,k}] - f_{15b}^{ijk} [P_\mu, U_{i,j}] U_{j,k} \right) [P_\nu, G_{\nu\mu,ki}'] \right. \\ \left. + f_{16}^{ijklm} (U_{ij} U_{jk} U_{kl} U_{lm} U_{mi}) + f_{17}^{ijkl} U_{ij} U_{jk} [P_\mu, U_{kl}] [P_\mu, U_{kl}] + f_{18}^{ijkl} U_{ij} [P_\mu, U_{jk}] U_{kl} [P_\mu, U_{li}] \right. \\ \left. + f_{19}^{ijklmn} (U_{ij} U_{jk} U_{kl} U_{lm} U_{mn} U_{ni}) \right\}.$$

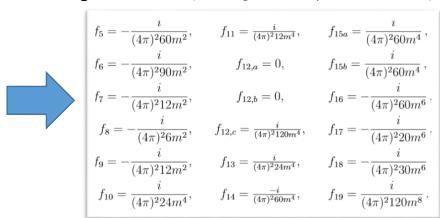
Drozd, J. Ellis, Quevillon, TY, 1512.03003

Universal
coefficients f
encapsulate
dependence on
combinations of
momentum
master integrals

• Universal coefficients in terms of standard master integrals:

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	$ig U_{ii}$
$f_3^i = 2\mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_4^{ij}=rac{1}{2}\mathcal{I}_{ij}^{11}$	$oxed{U_{ij}U_{ji}}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{\nu,i}G^{\prime\nu}_{\rho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$[P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk} = rac{1}{3}\mathcal{I}_{ijk}^{111}$	$oxed{U_{ij}U_{jk}U_{ki}}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{10}^{ijkl} = \frac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{ij}]][P^{\nu}, [P_{\nu}, U_{ji}]]$
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} \right)$	$U_{ij}U_{ji}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$+2\mathcal{I}[q^4]_{ij}^{42} + 2\mathcal{I}[q^4]_{ij}^{51}$	$\left[\begin{array}{ccc} G_{ij}G_{ji}G_i & G_{\mu\nu,i} \end{array} ight]$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = (\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42})$	$(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]$
$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}$
$f_{17}^{ijkl} = 2 \left(\mathcal{I}[q^2]_{ijkl}^{2112} \right)$	$U_{ij}U_{jk}[P^{\mu},U_{kl}][P_{\mu},U_{li}]$
$+\mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122}$	$\begin{bmatrix} O_{ij}O_{jk}[1] & O_{kl}[1] & O_{kl} \end{bmatrix}$
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112}$	$U_{ij}[P^{\mu},U_{ik}]U_{kl}[P_{\mu},U_{li}]$
$+\mathcal{I}[q^2]_{ijkl}^{1221} + \mathcal{I}[q^2]_{ijkl}^{1212}$	$\bigcup_{ij[1]} \{i, \bigcup_{jk} \bigcup_{kl[1]} \mu, \bigcup_{lij} \}$
$f_{19}^{ijklmn} = \frac{1}{6} \mathcal{I}_{ijklmn}^{111111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}$

$$\int \frac{d^d q}{(2\pi)^d} \frac{q^{\mu_1} \cdots q^{\mu_{2n_c}}}{(q^2 - M_i^2)^{n_i} (q^2 - M_j^2)^{n_j} \cdots (q^2)^{n_L}} \equiv g^{\mu_1 \cdots \mu_{2n_c}} \mathcal{I}[q^{2n_c}]_{ij\dots 0}^{n_i n_j \dots n_L}$$


Drozd, J. Ellis, Quevillon, TY, 1512.03003;

Simplified form by covariant diagram computation shown here from Z. Zhang, 1610.00710.

• Universal coefficients in terms of standard master integrals:

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	$ig U_{ii}$
$f_3^i = 2 \mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$f_4^{ij}=rac{1}{2}\mathcal{I}_{ij}^{11}$	$U_{ij}U_{ji}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{ u,i}G^{\prime\nu}_{\rho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$[P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk} = \frac{1}{3} \mathcal{I}_{ijk}^{111}$	$U_{ij}U_{jk}U_{ki}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{10}^{ijkl} = \frac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$\left[P^{\mu}, [P_{\mu}, U_{ij}]\right] \left[P^{\nu}, [P_{\nu}, U_{ji}]\right]$
$ f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + 2 \mathcal{I}[q^4]_{ij}^{42} + 2 \mathcal{I}[q^4]_{ij}^{51} \right) $	$U_{ij}U_{ji}G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = \P(\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42})$	$(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]$
$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}$
$f_{17}^{ijkl} = 2 \left(\mathcal{I}[q^2]_{ijkl}^{2112} \right)$	$[U, U, [D^{\mu}]U,][D, U,]$
$+\mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122}$	$U_{ij}U_{jk}[P^{\mu}, U_{kl}][P_{\mu}, U_{li}]$
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112}$	$U_{ij}[P^{\mu},U_{ik}]U_{kl}[P_{\mu},U_{li}]$
$+ \mathcal{I}[q^2]_{ijkl}^{1221} + \mathcal{I}[q^2]_{ijkl}^{1212}$	$O_{ij}[1^{\perp},O_{jk}]O_{kl}[1^{\mu},O_{li}]$
$f_{19}^{ijklmn} = \frac{1}{6} \mathcal{I}_{ijklmn}^{111111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}$

Degenerate limit (Henning, Lu, Murayama, 1412.1837)

Drozd, J. Ellis, Quevillon, TY, 1512.03003;

Simplified form by covariant diagram computation shown here from Z. Zhang, 1610.00710.

• **Heavy-light** extension also done:

(S.A.R. Ellis, Quevillon, TY, Z. Zhang, 1705.xxxxx)

$\mathcal{O}(U_H^4 P^2)$ terr	ns			
$f_{17}^{ijkl} = 2\left(\mathcal{I}[q^2]_{ijkl}^{2112} + \mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122}\right)$	$U_{Hij}U_{Hjk}[P^{\mu}, U_{Hkl}][P_{\mu}, U_{Hli}]$			
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112} + \mathcal{I}[q^2]_{ijkl}^{1221} + \mathcal{I}[q^2]_{ijkl}^{1212}$	$U_{Hij}[P^{\mu}, U_{Hjk}]U_{Hkl}[P_{\mu}, U_{Hli}]$			
$\mathcal{O}(U_H^2 U_{HL}^1 U_{LH}^1 P^2)$	terms			
$f_{17A}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk0}^{1122} + \mathcal{I}[q^2]_{ijk0}^{1221} + \mathcal{I}[q^2]_{ijk0}^{2121} \right)$	$U_{Hij}U_{HLji'}[P^{\mu},U_{LHi'k}][P_{\mu},U_{Hki}]$			
$J_{17A} = 2 \left(\mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} + \mathcal{L}[q]_{ijk0} \right)$	$+ U_{LHi'i}U_{Hij}[P^{\mu}, U_{Hjk}][P_{\mu}, U_{HLki'}]$			
$f_{17B}^{ijk} = 2\left(\mathcal{I}[q^2]_{ijk0}^{1122} + \mathcal{I}[q^2]_{ijk0}^{1212} + \mathcal{I}[q^2]_{ijk0}^{2112}\right)$	$U_{Hij}U_{Hjk}[P^{\mu}, U_{HLki'}][P_{\mu}, U_{LHi'i}]$			
$f_{17C}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk0}^{1122} + \mathcal{I}[q^2]_{ijk0}^{2121} + \mathcal{I}[q^2]_{ijk0}^{1221} ight)$	$U_{HLii'}U_{LHi'j}[P^{\mu},U_{Hjk}],[P_{\mu},U_{Hki}]$			
$f_{18A}^{ijk} = 2\left(\mathcal{I}[q^2]_{ijk0}^{1221} + \mathcal{I}[q^2]_{ijk0}^{2121} + \mathcal{I}[q^2]_{ijk0}^{1212} + \mathcal{I}[q^2]_{ijk0}^{2112}\right)$	$U_{Hij}[P^{\mu}, U_{HLji'}]U_{LHi'k}[P_{\mu}, U_{Hki}]$			
718A 2 (214 117k0 + 214 117k0 + 214 117k0)	$+U_{Hij}[P^{\mu}, U_{Hjk}]U_{HLki'}[P_{\mu}, U_{LHi'i}]$			
$\mathcal{O}(U_H^1U_L^1U_{HL}^1U_{LH}^1P^2)$	2) terms			
$f_{17D}^{ij} = 2\left(2\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222}\right)$	$U_{HLii'}U_{Li'j'}[P^{\mu},U_{LHj'j}][P_{\mu},U_{Hji}]$			
717D - (14 1190 + -14 1190)	$+U_{Li'j'}U_{LHj'i}[P^{\mu},U_{Hij}][P_{\mu},U_{HLji'}]$			
$f_{17E}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{213} \right)$	$U_{Hij}U_{HLji'}[P^{\mu},U_{Li'j'}][P_{\mu},U_{LHj'i}]$			
- 112 (1- 1130 1- 1130)	$+U_{LHi'i}U_{Hij}[P^{\mu},U_{HLjj'}][P_{\mu},U_{Lj'i'}]$			
$f_{18B}^{ij} = 2\left(\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222} + \mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{213}\right)$	$U_{HLii'}[P^{\mu}, U_{Li'j'}]U_{LHj'j}[P_{\mu}, U_{Hji}]$			
$f_{18C}^{ij} = 4 \left(\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{213} \right)$	$U_{Hij}[P^{\mu}, U_{HLji'}]U_{Li'j'}[P_{\mu}, U_{LHj'i}]$			
$\mathcal{O}(U_L^2 U_{HL}^1 U_{LH}^1 P^2)$ terms				
$f_{17F}^i = 2\left(2\mathcal{I}[q^2]_{i0}^{15} + \mathcal{I}[q^2]_{i0}^{24}\right)$	$U_{HLii'}U_{Li'j'}[P^{\mu}, U_{Lj'k'}][P_{\mu}, U_{LHk'i}]$			
	$+U_{Li'j'}U_{LHj'i}[P^{\mu},U_{HLik'}][P_{\mu},U_{Lk'i'}]$			
$f_{17G}^i = 2\left(2\mathcal{I}[q^2]_{i0}^{15} + \mathcal{I}[q^2]_{i0}^{24}\right)$	$U_{LHi'i}U_{HLij'}[P^{\mu}, U_{Lj'k'}][P_{\mu}, U_{Lk'i'}]$			
$f_{17H}^i = 6\mathcal{I}[q^2]_{i0}^{24}$	$U_{Li'j'}U_{Lj'k'}[P^{\mu}, U_{LHk'i}][P_{\mu}, U_{HLii'}]$			
$f_{18D}^i = 4 \left(\mathcal{I}[q^2]_{i0}^{15} + \mathcal{I}[q^2]_{i0}^{24} \right)$	$U_{HLii'}[P^{\mu}, U_{Li'j'}]U_{Lj'k'}[P_{\mu}, U_{LHk'i}]$			
162 (12 100 12 100)	$+U_{LHi'i}[P^{\mu}, U_{HLij'}]U_{Lj'k'}[P_{\mu}, U_{Lk'i}]$			
$\mathcal{O}(U_{HL}^2 U_{LH}^2 P^2)$ terms				
$f_{17I}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{213} + \mathcal{I}[q^2]_{ij0}^{123} \right)$	$U_{HLii'}U_{LHi'j}[P^{\mu}, U_{HLjj'}][P_{\mu}, U_{LHj'i}]$			
$f_{17J}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{222} + 2\mathcal{I}[q^2]_{ij0}^{123} \right)$	$U_{LHi'i}U_{HLij'}[P^{\mu},U_{LHj'j}][P_{\mu},U_{HLji'}]$			
$f_{18E}^{ij} = \mathcal{I}[q^2]_{ii0}^{114} + 2\mathcal{I}[q^2]_{ii0}^{123} + \mathcal{I}[q^2]_{ii0}^{222}$	$U_{HLii'}[P^{\mu}, U_{LHi'j}]U_{HLjj'}[P_{\mu}, U_{LHj'i}]$			
718E -17 113017 113017 1130	$+U_{LHi'i}[P^{\mu},U_{HLij'}]U_{LHj'j}[P_{\mu},U_{HLji'}]$			

$\mathcal{O}(U_H^3 P^2)$ terms			
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$ $U_{Hij}[P^{\mu}, U_{Hjk}][P_{\mu}, U_{Hki}]$			
$\mathcal{O}(U_H^1 U_{HL}^1 U_{LH}^1 P^2)$ terms			
$f_{11A}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{122} + \mathcal{I}[q^2]_{ij0}^{212} \right)$ $U_{Hij}[P^{\mu}, U_{HLji'}][P_{\mu}, U_{LHi'i}]$			
$ f_{11B}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{221} + \mathcal{I}[q^2]_{ij0}^{122} \right) U_{LHi'i}[P^{\mu}, U_{Hij}][P_{\mu}, U_{HLji'}] + U_{HLii'}[P^{\mu}, U_{LHi'j}][P_{\mu}, U_{Hji}] $			
$\mathcal{O}(U_L^1 U_{LL}^1 U_{LH}^1 P^2)$ terms			
$f_{11C}^{ij} = 4\mathcal{I}[q^2]_{i0}^{23} \qquad U_{Li'j'}[P^{\mu}, U_{LHj'i}][P_{\mu}, U_{HLii'}]$			
$f_{11D}^{ij} = 2 \left(\mathcal{I}[q^2]_{i0}^{14} + \mathcal{I}[q^2]_{i0}^{23} \right) U_{HLii'}[P^{\mu}, U_{Li'j'}][P_{\mu}, U_{LHj'i}] + U_{LHi'i}[P^{\mu}, U_{HLij'}][P_{\mu}, U_{Lj'i'}]$			

P-only terms		
$f_3^i = 2\mathcal{I}[q^4]_i^4$	$G'^{\mu\nu}_i G'_{\mu\nu_i}$	
$f_5^i = 16\mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu_i}][P_{\rho}, G'^{\rho\nu}_i]$	
$f_6^i = (32/3)\mathcal{I}[q^6]_i^6$	$G'^{\mu}_{\ \nu i}G'^{\nu}_{\ \rho i}G'^{\rho}_{\ \mu i}$	

$\mathcal{O}(U_H^2 P^4) ext{ terms}$		
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{Hij}]][P^{\nu}, [P_{\nu}, U_{Hji}]]$	
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + 2\mathcal{I}[q^4]_{ij}^{33} + 2\mathcal{I}[q^4]_{ij}^{51} \right)$	$U_{Hij}U_{Hji}G'^{\mu\nu}_{i}G'_{\mu\nu_{i}}$	
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{H_{ij}}][P^{\nu}, U_{H_{ji}}]G'_{\nu\mu_i}$	
$f_{15}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42} \right)$	$(U_{Hij}[P^{\mu}, U_{Hji}] - [P^{\mu}, U_{Hij}]U_{Hji})[P^{\nu}, G'_{\nu\mu_i}]$	
$\mathcal{O}(U_{HL}^1 U_{LH}^1 P^4)$ terms		
$f_{12A}^i = 8\mathcal{I}[q^4]_{i0}^{33}$	$[P^{\mu}, [P_{\mu}, U_{HLii'}]][P^{\nu}, [P_{\nu}, U_{LHi'i}]]$	
$f_{13A}^i = 2 \left(\mathcal{I}[q^4]_{i0}^{24} + 2 \mathcal{I}[q^4]_{i0}^{33} + 3 \mathcal{I}[q^4]_{i0}^{42} + 4 \mathcal{I}[q^4]_{i0}^{51} \right)$	$U_{HLii'}U_{LHi'i}G'^{\mu\nu}_{i}G'_{\mu\nu_{i}}$	
$f_{13B}^i = 2 \left(4 \mathcal{I}[q^4]_{i0}^{15} + 3 \mathcal{I}[q^4]_{i0}^{24} + 2 \mathcal{I}[q^4]_{i0}^{33} + \mathcal{I}[q^4]_{i0}^{42} \right)$	$U_{LH_{i'}i}U_{HL_{ii'}}G'^{\mu\nu}_{i'}G'_{\mu\nu_{i'}}$	
$f_{14A}^{i} = 4 \left(-\mathcal{I}[q^{4}]_{i0}^{24} - 2\mathcal{I}[q^{4}]_{i0}^{33} + \mathcal{I}[q^{4}]_{i0}^{42}\right)$	$[P^{\mu}, U_{HLii'}][P^{\nu}, U_{LHi'i}]G'_{\nu\mu_i}$	
$f_{14B}^{i} = 4 \left(\mathcal{I}[q^{4}]_{i0}^{24} - 2\mathcal{I}[q^{4}]_{i0}^{33} - \mathcal{I}[q^{4}]_{i0}^{42} \right)$	$[P^{\mu}, U_{LHi'i}][P^{\nu}, U_{HLii'}]G'_{\nu\mu_{i'}}$	
$f_{15A}^i = 2 \left(\mathcal{I}[q^4]_{i0}^{24} + 2 \mathcal{I}[q^4]_{i0}^{33} + \mathcal{I}[q^4]_{i0}^{42} \right)$	$ \begin{array}{l} (U_{HLii'}[P^{\mu},U_{LHi'i}] - [P^{\mu},U_{HLii'}]U_{LHi'i}) \left[P^{\nu},G'_{\nu\mu_{i}}\right] \\ + (U_{LHi'i}[P^{\mu},U_{HLii'}] - [P^{\mu},U_{LHi'i}]U_{HLii'}) \left[P^{\nu},G'_{\nu\mu_{i'}}\right] \end{array} $	

$\mathcal{O}(U_H^2 P^2)$ terms			
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22} \qquad [P^{\mu}, U_{Hij}][P_{\mu}, U_{Hji}]$			
$\mathcal{O}(U_{HL}^1 U_{LH}^1 P^2)$ terms			
$f_{7A}^{ij} = 2\mathcal{I}[q^2]_{i0}^{22}$	$[P^{\mu}, U_{HLii'}][P_{\mu}, U_{LHi'i}]$		

	$\mathcal{O}(U_H^1 P^4)$ terms		
	$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{Hij}G^{\prime\mu\nu}_{i}G^{\prime}_{\mu\nu_{i}}$	
L		υς τ μον τ	

	O(U) term	$O(U^3)$ terms		
$f_2^i = \mathcal{I}_i^1$	U_{Hii}	$f_8^{ijk} = \frac{1}{3}I_{ijk}^{111}$	$U_{Hij}U_{Hjk}U_{Hki}$	
	$O(U^2)$ terms	$f_{8A}^{ij} = I_{ij0}^{111}$	$U_{Hij}U_{HLji'}U_{LHi'i}$	
$f_4^{ij} = \frac{1}{2}I_{ij}^{11}$	$U_{Hij}U_{Hji}$	$f_{8B}^i = I_{i0}^{12}$	$U_{HLii'}U_{Li'j'}U_{LHj'i}$	
$f_{4A}^{ij} = I_{i0}^{11}$	$U_{HLii'}U_{LHi'i}$		$O(U^6)$ terms	
	$O(U^4)$ terms	$f_{19}^{ijklmn} = \frac{1}{6}I_{ijklmn}^{1111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{Hmn}U_{Hni}$	
$f_{10}^{ijkl} = \frac{1}{4}I_{ijkl}^{1111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hli}$	$f_{19A}^{ijklm} = I_{ijklm0}^{111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{HLmi'}U_{LHi'i}$	
$f_{10A}^{ijk} = I_{ijk0}^{1111}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{LHi'i}$	$f_{19B}^{ijkl} = I_{ijkl0}^{11112}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U_{Li'j'}U_{LHj'i}$	
$f_{10B}^{ij} = I_{ij0}^{112}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{LHj'i}$	$f_{19C}^{ijkl} = I_{ijkl0}^{11112}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{LHi'l}U_{HLlj'}U_{LHj'i}$	
$f_{10C}^{ij} = \frac{1}{2}I_{ij0}^{112}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{LHj'i}$	$f_{19D}^{ijk} = I_{ijk0}^{1113}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	
$f_{10D}^i = I_{i0}^{13}$	$U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	$f_{19E}^{ijkl} = \frac{1}{2}I_{ijkl0}^{11112}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{Hkl}U_{HLlj'}U_{LHj'i}$	
	$O(U^5)$ terms	$f_{19F}^{ijk} = I_{ijk0}^{1113}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{HLkj'}U_{Lj'k'}U_{LHk'i}$	
$f_{16}^{ijklm} = \frac{1}{5}I_{ijklm}^{11111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{Hmi}$	$f_{19G}^{ijk} = I_{ijk0}^{1113}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{LHj'k}U_{HLkk'}U_{LHk'i}$	
$f_{16A}^{ijkl} = I_{ijkl0}^{11111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U_{LHi'i}$	$f_{19H}^{ij} = I_{ij0}^{114}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$	
$f_{16B}^{ijk} = I_{ijk0}^{1112}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{Li'j'}U_{LHj'i}$	$f_{19I}^{ijk} = \frac{1}{3}I_{ijk0}^{1113}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{LHj'k}U_{HLkk'}U_{LHk'i}$	
$f_{16C}^{ijk} = I_{ijk0}^{1112}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{HLkj'}U_{LHj'i}$	$f_{19J}^{ij} = I_{ij0}^{114}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$	
$f_{16D}^{ij} = I_{ij0}^{113}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	$f_{19K}^{ij} = \frac{1}{2}I_{ij0}^{114}$	$U_{HLii'}U_{Li'j'}U_{LHj'j}U_{HLjk'}U_{Lk'l'}U_{LHl'i}$	
$f_{16E}^{ij} = I_{ij0}^{113}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k'}U_{LHk'i}$	$f_{19L}^i = I_{i0}^{15}$	$U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{Ll'm'}U_{LHm'i}$	
$f_{16F}^i = I_{i0}^{14}$	$U_{HLi\nu}U_{Li'i'}U_{Li'k'}U_{Lk'l'}U_{Lk'l'}U_{LHl'i}$			

 Write UV Lagrangian for heavy multiplet in appropriate form to extract U matrix, mass matrix, and covariant derivative:

$$\mathcal{L}_{\mathrm{UV}} = \mathcal{L}_{\mathrm{SM}} + (\Phi^{\dagger} F(x) + \mathrm{h.c.}) + \Phi^{\dagger} (P^2 - M^2 - U(x)) \Phi + \mathcal{O}(\Phi^3)$$
(R-parity)

$$\Phi = (\tilde{Q}, \tilde{t}_R^*), \qquad M^2 = \left(\begin{array}{cc} m_{\tilde{Q}}^2 & 0 \\ 0 & m_{\tilde{t}_R}^2 \end{array} \right) \qquad G'_{\mu\nu} = \left(\begin{array}{cc} W'^a_{\ \mu\nu} \tau^a + Y_{\tilde{Q}} B'_{\mu\nu} \mathbb{1} & 0 \\ 0 & -Y_{\tilde{t}_R} B'_{\mu\nu} \end{array} \right)$$

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{H}\tilde{H}^\dagger + \frac{1}{2}g_2^2s_\beta^2HH^\dagger - \frac{1}{2}(g_1^2Y_{\tilde{Q}}c_{2\beta} + \frac{1}{2}g_2^2)|H|^2 & h_tX_t\tilde{H} \\ h_tX_t\tilde{H}^\dagger & (h_t^2 - \frac{1}{2}g_1^2Y_{\tilde{t}_R}c_{2\beta})|H|^2 \end{pmatrix}$$

 Write UV Lagrangian for heavy multiplet in appropriate form to extract U matrix, mass matrix, and covariant derivative:

$$\mathcal{L}_{\mathrm{UV}} = \mathcal{L}_{\mathrm{SM}} + (\Phi^{\dagger} F(x) + \text{h.c.}) + \Phi^{\dagger} P^{2} - M^{2} - U(x) \Phi + \mathcal{O}(\Phi^{3})$$
(R-parity)

$$\Phi = (\tilde{Q}\,, \tilde{t}_R^*),$$

$$M^2 = \left(\begin{array}{cc} m_{\tilde{Q}}^2 & 0 \\ 0 & m_{\tilde{t}_R}^2 \end{array} \right)$$

$$\Phi = (\tilde{Q}, \tilde{t}_R^*) \qquad M^2 = \begin{pmatrix} m_{\tilde{Q}}^2 & 0 \\ 0 & m_{\tilde{t}_R}^2 \end{pmatrix} \qquad G'_{\mu\nu} = \begin{pmatrix} W'^a_{\ \mu\nu} \tau^a + Y_{\tilde{Q}} B'_{\mu\nu} \mathbb{1} & 0 \\ 0 & -Y_{\tilde{t}_R} B'_{\mu\nu} \end{pmatrix}$$

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{H}\tilde{H}^\dagger + \frac{1}{2}g_2^2s_\beta^2HH^\dagger - \frac{1}{2}(g_1^2Y_{\tilde{Q}}c_{2\beta} + \frac{1}{2}g_2^2)|H|^2 & h_tX_t\tilde{H} \\ h_tX_t\tilde{H}^\dagger & (h_t^2 - \frac{1}{2}g_1^2Y_{\tilde{t}_R}c_{2\beta})|H|^2 \end{pmatrix}$$

Pick the relevant operators by counting operator dimensions

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	U_{ii}
$f_3^i = 2 \mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_4^{ij} = rac{1}{2} \mathcal{I}_{ij}^{11}$	$U_{ij}U_{ji}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{ u,i}G^{\prime\nu}_{\rho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk} = rac{1}{3} \mathcal{I}_{ijk}^{111}$	$oxed{U_{ij}U_{jk}U_{ki}}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_{10}^{ijkl}=rac{1}{4}\mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{ij}]][P^{\nu}, [P_{\nu}, U_{ji}]]$
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + 2 \mathcal{I}[q^4]_{ij}^{42} + 2 \mathcal{I}[q^4]_{ij}^{51} \right)$	$U_{ij}U_{ji}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42} \right)$	$(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]$
$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}$
$f_{17}^{ijkl} = 2 \left(\mathcal{I}[q^2]_{ijkl}^{2112} \right)$	$U_{ij}U_{ik}[P^{\mu},U_{kl}][P_{\mu},U_{li}]$
$+ \mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122})$	$\left[\begin{smallmatrix}O_{ij}O_{jk}\left[F^{+},O_{kl} ight]\left[F_{\mu},O_{li} ight]\end{smallmatrix} ight]$
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112}$	$U_{ij}[P^{\mu},U_{jk}]U_{kl}[P_{\mu},U_{li}]$
$+ \mathcal{I}[q^2]_{ijkl}^{1221} + \mathcal{I}[q^2]_{ijkl}^{1212}$	$ \bigcup_{ij[1, \dots, \bigcup_{jk}]\bigcup_{kl[1, \mu, \bigcup_{li}]} } \bigcup_{ij[1, \dots, \bigcup_{jk}]\bigcup_{kl[1, \mu, \bigcup_{jk}]} } \bigcup_{ij[1, \dots, \bigcup_{jk}]\bigcup_{ij[1, \dots, \bigcup_{jk}]} } \bigcup_{ij[1, \dots, \bigcup_{jk}]} \bigcup_{ij[$
$f_{19}^{ijklmn} = \frac{1}{6} \mathcal{I}_{ijklmn}^{111111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}$

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{H}\tilde{H}^{\dagger} + \frac{1}{2}g_2^2s_\beta^2\tilde{H}H^{\dagger} - \frac{1}{2}(g_1^2Y_{\bar{Q}}c_{2\beta} + \frac{1}{2}g_2^2)\tilde{H}|^2 \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ (h_t^2 - \frac{1}{2}g_1^2Y_{\bar{t}_R}c_{2\beta})\tilde{H}|^2 \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde$$

	X_t^0	X_t^2	X_t^4	X_t^6
c_6	f_8	f_{10}	f_{16}	f_{19}
c_H	f_7	f_{11}	f_{17}, f_{18}	-
c_T	f_7	f_{11}	f_{17}, f_{18}	-
c_R	f_7	f_{11}	f_{17}	-
c_{GG}	f_9	f_{13}	-	-
c_{WW}	f_9	f_{13}, f_{14}	-	-
c_{BB}	f_9	f_{13}, f_{14}	-	-
c_{WB}	f_9	f_{13}, f_{14}	-	-
c_W	-	f_{15a}, f_{15b}	-	-
c_B	-	f_{15a}, f_{15b}	-	-
c_D	_	f_{12c}	-	-

• Example:
$$\left| \mathcal{O}_{GG} \right| = \left| g_s^2 \left| H \right|^2 G_{\mu\nu}^a G^{a,\mu\nu} \right|$$

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	$ig U_{ii}$
$f_3^i = 2 \mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^\prime$
$f_4^{ij} = rac{1}{2} \mathcal{I}_{ij}^{11}$	$igg U_{ij}U_{ji}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{\nu,i}G^{\prime\nu}_{\rho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk}=rac{1}{3}\mathcal{I}_{ijk}^{111}$	$U_{ij}U_{jk}U_{ki}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{10}^{ijkl} = \frac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{ij}]][P^{\nu}, [P_{\nu}, U_{ji}]]$
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + 2 \mathcal{I}[q^4]_{ii}^{42} + 2 \mathcal{I}[q^4]_{ii}^{51} \right)$	$U_{ij}U_{ji}G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} + \mathcal{I}[q^4]_{ij}^{42} \right)$	$ \frac{(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]}{(U_{ij}[P^{\mu}, U_{ji}] - [P^{\mu}, U_{ij}]U_{ji})[P^{\nu}, G'_{\nu\mu,i}]} $
$f_{16}^{ijklm} = \frac{1}{5} \mathcal{I}_{ijklm}^{11111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mi}$
$f_{17}^{ijkl} = 2 \left(\mathcal{I}[q^2]_{ijkl}^{2112} \right)$	$U_{ij}U_{jk}[P^{\mu},U_{kl}][P_{\mu},U_{li}]$
$+\mathcal{I}[q^2]_{ijkl}^{1212} + \mathcal{I}[q^2]_{ijkl}^{1122}$	$\bigcup_{ij} \bigcup_{j \in I} \prod_{i} \prod_{j \in I} \prod_{i} \prod_{j} \prod_{j} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod_{j} \prod_{i} \prod_{j} \prod$
$f_{18}^{ijkl} = \mathcal{I}[q^2]_{ijkl}^{2121} + \mathcal{I}[q^2]_{ijkl}^{2112}$	$U_{ij}[P^{\mu}, U_{ik}]U_{kl}[P_{\mu}, U_{li}]$
$+\mathcal{I}[q^2]_{ijkl}^{1221} + \mathcal{I}[q^2]_{ijkl}^{1212}$	$\bigcup_{i \in I} (i, \bigcup_{j \in I} k_i) \bigcup_{k \in I} (i, \bigcup_{j \in I} \mu_i, \bigcup_{k \in I} \mu_i)$
$f_{19}^{ijklmn} = \frac{1}{6} \mathcal{I}_{ijklmn}^{111111}$	$U_{ij}U_{jk}U_{kl}U_{lm}U_{mn}U_{ni}$

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{H}\tilde{H}^{\dagger} + \frac{1}{2}g_2^2s_\beta^2\tilde{H}H^{\dagger} - \frac{1}{2}(g_1^2Y_{\bar{Q}}c_{2\beta} + \frac{1}{2}g_2^2)\tilde{H}|^2 \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ (h_t^2 - \frac{1}{2}g_1^2Y_{\tilde{t}_R}c_{2\beta})\tilde{H}|^2 \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde$$

	X_t^0	X_t^2	X_t^4	X_t^6
c_6	f_8	f_{10}	f_{16}	f_{19}
c_H	f_7	f_{11}	f_{17}, f_{18}	-
c_T	f_7	f_{11}	f_{17}, f_{18}	-
c_R	f_7	f_{11}	f_{17}	-
c_{GG}	f_9	f_{13}	-	-
c_{WW}	f_9	f_{13}, f_{14}	-	-
c_{BB}	f_9	f_{13}, f_{14}	-	-
c_{WB}	f_9	f_{13}, f_{14}	-	-
c_W	-	f_{15a}, f_{15b}	-	-
c_B	-	f_{15a}, f_{15b}	-	-
c_D	-	f_{12c}	-	-

 f_{19}^{ijklmn}

• Example:
$$\mathcal{O}_{GG} = g_s^2 |H|^2 G_{\mu\nu}^a G^{a,\mu\nu}$$

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	U_{ii}
$f_3^i = 2 \mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$f_4^{ij} = rac{1}{2} \mathcal{I}_{ij}^{11}$	$U_{ij}U_{ji}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{ u,i}G^{\prime\nu}_{ ho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$[P^{\mu},U_{ij}][P_{\mu},U_{ji}]$
$f_8^{ijk}=rac{1}{3}\mathcal{I}_{ijk}^{111}$	$U_{ij}U_{jk}U_{ki}$
$f_9^i = 8\mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_{10}^{ijkl} = rac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu},U_{jk}][P_{\mu},U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{ij}]][P^{\nu}, [P_{\nu}, U_{ji}]]$
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} \right)$	$U_{ij}U_{ji}G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$+2\mathcal{I}[q^4]^{42}_{ij} + 2\mathcal{I}[q^4]^{51}_{ij})$	$\left[egin{array}{ccc} \sigma_{ij}\sigma_{ji}\sigma_{i} & \sigma_{\mu u,i} \end{array} ight]$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = (\mathcal{T}[a^4]^{33} + \mathcal{T}[a^4]^{42})$	$(U_{::}[P^{\mu}\ U_{::}] = [P^{\mu}\ U_{::}]U_{::})[P^{\nu}\ G'$
f_{16}^{ijklm}	

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{H}\tilde{H}^{\dagger} + \frac{1}{2}g_2^2s_\beta^2\tilde{H}H^{\dagger} - \frac{1}{2}(g_1^2Y_{\tilde{Q}}c_{2\beta} + \frac{1}{2}g_2^2)\tilde{H}|^2 \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ (h_t^2 - \frac{1}{2}g_1^2Y_{\tilde{t}_R}c_{2\beta})\tilde{H}|^2 \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde{H} \end{pmatrix} \begin{pmatrix} h_tX\tilde{H} \\ h_tX\tilde$$

	X_t^0	X_t^2	X_t^4	X_t^6
c_6	f_8	f_{10}	f_{16}	f_{19}
c_H	f_7	f_{11}	f_{17}, f_{18}	-
c_T	f_7	f_{11}	f_{17}, f_{18}	-
c_R	f_7	f_{11}	f_{17}	-
c_{GG}	f_9	f_{13}	-	-
c_{WW}	f_9	f_{13}, f_{14}	-	-
c_{BB}	f_9	f_{13}, f_{14}	-	

$$c_{GG} = \frac{1}{24} \left(\frac{h_t^2 - \frac{1}{6}g_1^2 c_{2\beta}}{m_{\tilde{Q}}^2} + \frac{h_t^2 + \frac{1}{3}g_1^2 c_{2\beta}}{m_{\tilde{t}_R}^2} - \frac{\bar{X}_t^2}{m_{\tilde{Q}}^2 m_{\tilde{t}_R}^2} \right)$$

 f_{19}^{ijklmn}

• Example:
$$\left| \mathcal{O}_{GG} \right| = \left| g_s^2 \left| H \right|^2 G_{\mu\nu}^a G^{a,\mu\nu} \right|$$

For full results see Drozd, J. Ellis, Quevillon, TY, 1512.03003.

Universal coefficient	Operator
$f_2^i = \mathcal{I}_i^1$	U_{ii}
$f_3^i = 2\mathcal{I}[q^4]_i^4$	$G_i^{\prime\mu\nu}G_{\mu\nu,i}^{\prime}$
$f_4^{ij} = \frac{1}{2} \mathcal{I}_{ij}^{11}$	$U_{ij}U_{ji}$
$f_5^i = 16 \mathcal{I}[q^6]_i^6$	$[P^{\mu}, G'_{\mu\nu,i}][P_{\rho}, G'^{\rho\nu}_i]$
$f_6^i = \frac{32}{3} \mathcal{I}[q^6]_i^6$	$G^{\prime\mu}_{ u,i}G^{\prime\rho}_{ ho,i}G^{\prime\rho}_{\mu,i}$
$f_7^{ij} = \mathcal{I}[q^2]_{ij}^{22}$	$[P^{\mu}, U_{ij}][P_{\mu}, U_{ji}]$
$f_8^{ijk} = \frac{1}{3} \mathcal{I}_{ijk}^{111}$	$U_{ij}U_{jk}U_{ki}$
$f_9^i = 8 \mathcal{I}[q^4]_i^5$	$U_{ii}G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$f_{10}^{ijkl} = \frac{1}{4} \mathcal{I}_{ijkl}^{1111}$	$U_{ij}U_{jk}U_{kl}U_{li}$
$f_{11}^{ijk} = 2 \left(\mathcal{I}[q^2]_{ijk}^{122} + \mathcal{I}[q^2]_{ijk}^{212} \right)$	$U_{ij}[P^{\mu}, U_{jk}][P_{\mu}, U_{ki}]$
$f_{12}^{ij} = 4\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, [P_{\mu}, U_{ij}]][P^{\nu}, [P_{\nu}, U_{ji}]]$
$f_{13}^{ij} = 4 \left(\mathcal{I}[q^4]_{ij}^{33} \right)$	$U_{ij}U_{ji}G_i^{\prime\mu u}G_{\mu u,i}^{\prime}$
$+2\mathcal{I}[q^4]^{42}_{ij} + 2\mathcal{I}[q^4]^{51}_{ij}$	$G_{ij}G_{ji}G_i$ $G_{\mu\nu,i}$
$f_{14}^{ij} = -8\mathcal{I}[q^4]_{ij}^{33}$	$[P^{\mu}, U_{ij}][P^{\nu}, U_{ji}]G'_{\nu\mu,i}$
$f_{15}^{ij} = (\mathcal{I}[a^4]^{33} + \mathcal{I}[a^4]^{42})$	$(II::[P^{\mu}]II::]=[P^{\mu}]II::]II::)[P^{\nu}]G^{\prime}$.]
eiiklm	

$$U = \begin{pmatrix} (h_t^2 + \frac{1}{2}g_2^2c_\beta^2)\tilde{\tilde{H}}\tilde{H}^{\dagger} + \frac{1}{2}g_2^2s_\beta^2\tilde{\tilde{H}}\tilde{H}^{\dagger} - \frac{1}{2}(g_1^2Y_{\tilde{Q}}c_{2\beta} + \frac{1}{2}g_2^2)\tilde{\tilde{H}}|^2 & h_tX\tilde{\tilde{H}} \\ h_tX\tilde{\tilde{H}} & (h_t^2 - \frac{1}{2}g_1^2Y_{\tilde{t}_R}c_{2\beta})\tilde{\tilde{H}}|^2 \end{pmatrix}$$

	X_t^0	X_t^2	X_t^4	X_t^6
c_6	f_8	f_{10}	f_{16}	f_{19}
c_H	f_7	f_{11}	f_{17}, f_{18}	-
c_T	f_7	f_{11}	f_{17}, f_{18}	-
c_R	f_7	f_{11}	f_{17}	-
c_{GG}	f_9	f_{13}	-	-
c_{WW}	f_9	f_{13}, f_{14}	-	-
c_{BB}	f_9	f_{13}, f_{14}	-	

$$c_{GG} = \frac{1}{24} \left(\frac{h_t^2 - \frac{1}{6}g_1^2 c_{2\beta}}{m_{\tilde{Q}}^2} + \frac{h_t^2 + \frac{1}{3}g_1^2 c_{2\beta}}{m_{\tilde{t}_R}^2} - \frac{\bar{X}_t^2}{m_{\tilde{Q}}^2 m_{\tilde{t}_R}^2} \right)$$

$$\Delta \mathcal{L} = \frac{1}{2} \left(\partial_{\mu} \Phi \right)^{2} - \frac{1}{2} m^{2} \Phi^{2} - \underline{A |H|^{2} \Phi} - \frac{1}{2} k |H|^{2} \Phi^{2} - \frac{1}{3!} \mu \Phi^{3} - \frac{1}{4!} \lambda_{\Phi} \Phi^{4}$$

• U matrix includes heavy-light contributions due to linear coupling

$$U = \begin{pmatrix} U_{\varphi} & (U_{u\varphi})_{1\times 2} \\ (U_{u\varphi})_{2\times 1} & (U_{u})_{2\times 2} \end{pmatrix}$$

Classify possible contributions by counting operator dimensions

$$\mathcal{U}_{p} = -\frac{S^{2} \mathcal{L}}{S \phi^{2}}\Big|_{\phi_{c}} = \kappa |H|^{2} + \mu \phi_{c} + \frac{1}{2} \lambda_{p} \phi_{c}^{2} \qquad \supset \mathcal{O}(H^{2}, 2^{2} H^{2}, H^{4}, 2^{2} H^{4}, H^{6})$$

$$\mathcal{U}_{Hp} = -\frac{S^{2} \mathcal{L}}{S H^{2} S \phi}\Big|_{\phi_{c}} = AH + \kappa H \phi_{c} \qquad \supset \mathcal{O}(H, H^{3}, H^{5}, H 2^{2} H^{2})$$

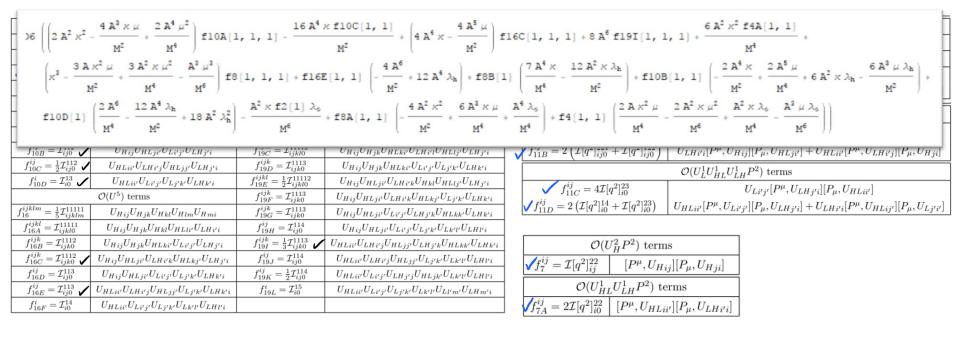
$$\mathcal{U}_{U_{0}} = -\frac{S^{2} \mathcal{L}}{S \overline{u}^{2} S \phi}\Big|_{\phi_{c}} = A \widetilde{H} + \kappa \widetilde{H}_{\phi_{c}} \qquad \supset \mathcal{O}(H, H^{3}, H^{5}, H 2^{2} H^{2})$$
See S.A.R. Ellis, Quevillon, TY, Z. Zhang, 1705.xxxxx

etc...

$$\mathcal{O}_{6} = |H|^{6} \mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} |H|^{2})^{2} \mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \vec{D}_{\mu} H)^{2} \mathcal{O}_{R} = |H|^{2} |D_{\mu} H|^{2}$$

• Classify possible contributions by counting operator dimensions

	$\mathcal{O}(U)$ term		$\mathcal{O}(U^3)$ terms
$f_2^i = \mathcal{I}_i^1$	U_{Hii}	$f_8^{ijk} = \frac{1}{3}\mathcal{I}_{ijk}^{111}$	
	$\mathcal{O}(U^2)$ terms	$f_{8A}^{ij} = \mathcal{I}_{ij0}^{111}$	$U_{Hij}U_{HLji'}U_{LHi'i}$
$f_4^{ij} = \frac{1}{2}\mathcal{I}_{ij}^{11}$	$U_{Hij}U_{Hji}$	$f_{8B}^i = \mathcal{I}_{i0}^{12}$	$U_{HLii'}U_{Li'j'}U_{LHj'i}$
$f_{4A}^{ij} = \mathcal{I}_{i0}^{11}$	$U_{HLii'}U_{LHi'i}$		$\mathcal{O}(U^6)$ terms
	$\mathcal{O}(U^4)$ terms	$f_{19}^{ijklmn} = \frac{1}{6}\mathcal{I}_{ijklmn}^{1111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{Hmn}U_{Hni}$
$f_{10}^{ijkl} = \frac{1}{4}\mathcal{I}_{ijkl}^{1111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hli}$	$f_{19A}^{ijklm} = \mathcal{I}_{ijklm0}^{111111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{HLmi'}U_{LHi'i}$
$f_{10A}^{ijk} = \mathcal{I}_{ijk0}^{1111} \checkmark$	$U_{Hij}U_{Hjk}U_{HLki'}U_{LHi'i}$	$f_{19B}^{ijkl} = \mathcal{I}_{ijkl0}^{11112}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U_{Li'j'}U_{LHj'i}$
$f_{10B}^{ij} = \mathcal{I}_{ij0}^{112} \checkmark$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{LHj'i}$	$f_{19C}^{ijkl} = \mathcal{I}_{ijkl0}^{11112}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{LHi'l}U_{HLlj'}U_{LHj'i}$
$f_{10C}^{ij} = \frac{1}{2}\mathcal{I}_{ij0}^{112} $	$U_{HL_{ii'}}U_{LH_{i'j}}U_{HL_{jj'}}U_{LH_{j'i}}$	$f_{19D}^{ijk} = \mathcal{I}_{ijk0}^{1113}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$
$f_{10D}^i = \mathcal{I}_{i0}^{13}$	$U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	$f_{19E}^{ijkl} = \frac{1}{2}\mathcal{I}_{ijkl0}^{11112}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{Hkl}U_{HLlj'}U_{LHj'i}$
	$O(U^5)$ terms	$f_{19F}^{ijk} = \mathcal{I}_{ijk0}^{1113}$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{HLkj'}U_{Lj'k'}U_{LHk'i}$
$f_{16}^{ijklm} = \frac{1}{5}\mathcal{I}_{ijklm}^{11111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{Hlm}U_{Hmi}$	$f_{19G}^{ijk} = \mathcal{I}_{ijk0}^{1113}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{LHj'k}U_{HLkk'}U_{LHk'i}$
$f_{16A}^{ijkl} = \mathcal{I}_{ijkl0}^{11111}$	$U_{Hij}U_{Hjk}U_{Hkl}U_{HLli'}U_{LHi'i}$	$f_{19H}^{ij} = \mathcal{I}_{ij0}^{114}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$
$f_{16B}^{ijk} = \mathcal{I}_{ijk0}^{1112}$	$U_{Hij}U_{Hjk}U_{HLki'}U_{Li'j'}U_{LHj'i}$	$f_{19I}^{ijk} = \frac{1}{3}\mathcal{I}_{ijk0}^{1113}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{LHj'k}U_{HLkk'}U_{LHk'i}$
$f_{16C}^{ijk} = \mathcal{I}_{ijk0}^{1112} \checkmark$	$U_{Hij}U_{HLji'}U_{LHi'k}U_{HLkj'}U_{LHj'i}$	$f_{19J}^{ij} = \mathcal{I}_{ij0}^{114}$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$
$f_{16D}^{ij} = \mathcal{I}_{ij0}^{113}$	$U_{Hij}U_{HLji'}U_{Li'j'}U_{Lj'k'}U_{LHk'i}$	$f_{19K}^{ij} = \frac{1}{2}\mathcal{I}_{ij0}^{114}$	$U_{HLii'}U_{Li'j'}U_{LHj'j}U_{HLjk'}U_{Lk'l'}U_{LHl'i} \\$
$f_{16E}^{ij} = \mathcal{I}_{ij0}^{113} \checkmark$	$U_{HLii'}U_{LHi'j}U_{HLjj'}U_{Lj'k'}U_{LHk'i}$	$f_{19L}^i = \mathcal{I}_{i0}^{15}$	$U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{Ll'm'}U_{LHm'i} \\$
$f_{16F}^i = \mathcal{I}_{i0}^{14}$	$U_{HLii'}U_{Li'j'}U_{Lj'k'}U_{Lk'l'}U_{LHl'i}$		


	$\mathcal{O}(U_{HL}^2U_{LH}^2P^2)$ to	erms
	$f_{17I}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{114} + \mathcal{I}[q^2]_{ij0}^{213} + \mathcal{I}[q^2]_{ij0}^{123} \right)$	$U_{HLii'}U_{LHi'j}[P^{\mu}, U_{HLjj'}][P_{\mu}, U_{LHj'i}]$
/	$f_{17J}^{ij} = 2\left(\mathcal{I}[q^2]_{ij0}^{222} + 2\mathcal{I}[q^2]_{ij0}^{123}\right)$	$U_{LHi'i}U_{HLij'}[P^{\mu}, U_{LHj'j}][P_{\mu}, U_{HLji'}]$
/	$f_{18E}^{ij} = \mathcal{I}[q^2]_{ij0}^{114} + 2\mathcal{I}[q^2]_{ij0}^{123} + \mathcal{I}[q^2]_{ij0}^{222}$	$ \begin{aligned} &U_{HLii'}[P^{\mu}, U_{LHi'j}] U_{HLjj'}[P_{\mu}, U_{LHj'i}] \\ &+ U_{LHi'i}[P^{\mu}, U_{HLij'}] U_{LHj'j}[P_{\mu}, U_{HLji'}] \end{aligned}$

	$\mathcal{O}(U_H^1 U_{HL}^1 U_{LH}^1 P^2)$ terms					
`	$f_{11A}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{122} + \mathcal{I}[q^2]_{ij0}^{212} \right) $ $f_{11B}^{ij} = 2 \left(\mathcal{I}[q^2]_{ij0}^{221} + \mathcal{I}[q^2]_{ij0}^{122} \right)$	$U_{Hij}[P^{\mu},U_{HLji'}][P_{\mu},U_{LHi'i}$				
V	$f_{11B}^{ij} = 2\left(\mathcal{I}[q^2]_{ij0}^{221} + \mathcal{I}[q^2]_{ij0}^{122}\right)$	$U_{LHi'i}[P^{\mu},U_{Hij}][P_{\mu},U_{HLji'}] + U_{HLii'}[P^{\mu},U_{LHi'j}][P_{\mu},U_{Hji}]$				
	$\mathcal{O}(U_L^1 U_{HL}^1 U_{LH}^1 P^2)$ terms					
	$f_{11C}^{ij} = 4\mathcal{I}[q^2]_{i0}^{23}$ $U_{Li'j'}[P^{\mu}, U_{LHj'i}][P_{\mu}, U_{HLii'}]$					
	$ \checkmark f_{11D}^{ij} = 2 \left(\mathcal{I}[q^2]_{i0}^{14} + \mathcal{I}[q^2]_{i0}^{23} \right) $	$U_{HLii'}[P^{\mu},U_{Li'j'}][P_{\mu},U_{LHj'i}] + U_{LHi'i}[P^{\mu},U_{HLij'}][P_{\mu},U_{Lj'i'}]$				

$\mathcal{O}(U_H^2 P^2)$ terms					
$\sqrt{f_7^{ij}} = \mathcal{I}[q^2]_{ij}^{22} \qquad [P^{\mu}, U_{Hij}][P_{\mu}, U_{Hji}]$					
$\mathcal{O}(U_{HL}^1 U_{LH}^1 P^2)$ terms					
$f_{7A}^{ij} = 2\mathcal{I}[q^2]_{i0}^{22} \left[P^{\mu}, U_{HLii'} \right] \left[P_{\mu}, U_{LHi'i} \right]$					

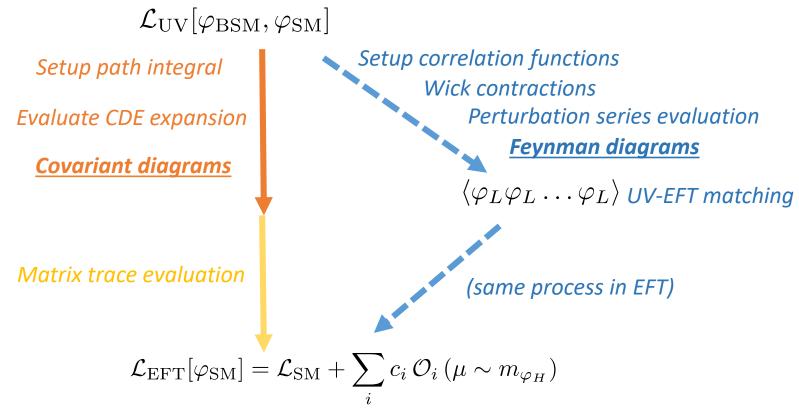
$$\mathcal{O}_{6} = |H|^{6} \mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} |H|^{2})^{2} \mathcal{O}_{T} = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D}_{\mu} H)^{2} \mathcal{O}_{R} = |H|^{2} |D_{\mu} H|^{2}$$

• Evaluate sum over each term to get full result for e.g. O6:

• Can (partially) automate evaluation of each term, e.g.

```
Sumf10A = NCExpand[Sum[f10A[1, 1, 1] * U$\psi\lambda[1 ** U$\psi\lambda[1] [[ip]] ** UH$\psi\lambda[ip]][[1]], {ip, 1, 2}] /. sub$\psi\colored{cf0r06}]

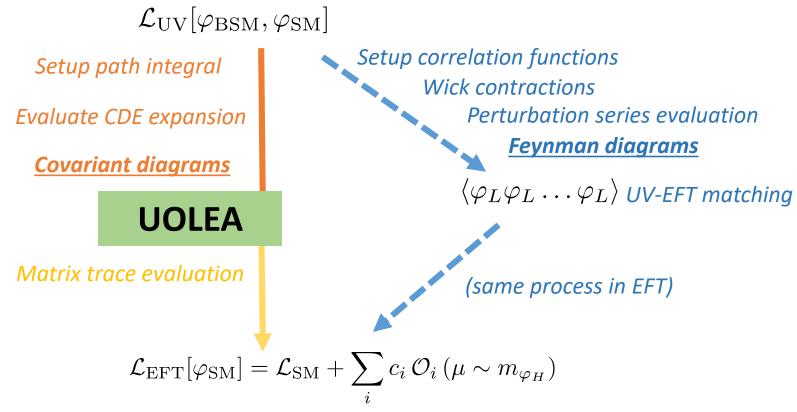
sumf10Adimcount = sumf10A /. subDimCounting


sumf10Adimcount = sumf10Adimcount /. autoremovenondim6step1 /. autoremovenondim6step2 /. autoremovenondim6step3

A^2 \times^2 f10A[1, 1, 1] HdagH ** HdagH ** Hdag ** H - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} \frac{1}{10A(1, 1, 1)} HdagH ** Hdag ** Hdag ** H - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} \frac{1}{10A(1, 1, 1)} HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Htdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag ** Ht - \frac{2 A^2 \times \mu}{10A(1, 1, 1)} HdagH ** HdagH ** Hdag **
```

- Substitute operator structure relations for desired basis, worked out by hand
 - This example trivial but in general most of the work involved is in this step
 - Possible automation: dictionary of operator relations, or work out algorithm

Take-home message


- When calculating Feynman diagrams we don't Wick contract and calculate symmetry factors by hand every time
- Similar redundancy in evaluating CDE from the beginning every time we use functional methods for one-loop matching

Standardise functional one-loop matching procedure...

Take-home message

- When calculating Feynman diagrams we don't Wick contract and calculate symmetry factors by hand every time
- Similar redundancy in evaluating CDE from the beginning every time we use functional methods for one-loop matching

Start directly from UOLEA!

• Part I: SM EFT

• Part 2: The Universal One-Loop Effective Action

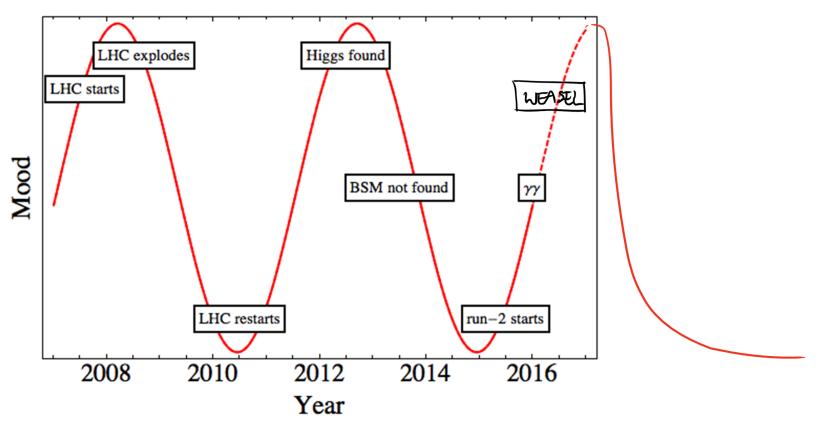
• Part 3: Cosmological Relaxation

Beyond the Standard Model?

• Hierarchy problem is a real problem: $(m_h)_{\text{tree}}^2 + (m_h)_{\text{radiative}}^2 = (m_h)_{\text{v}}^2$

$$\delta m_\phi^2 \propto m_{
m heavy}^2, \quad \delta m_\psi \propto m_\psi \log \left(rac{m_{
m heavy}}{\mu}
ight)$$

• Earliest example of an unnatural feature of a fundamental theory:


$$m_{inertial} = q_{gravity}$$

Classical electromagnetism fine-tuning:

$$(m_e c^2)_{
m obs} = (m_e c^2)_{
m bare} + \Delta E_{
m coulomb}, \qquad \Delta E_{
m coulomb} = rac{e^2}{4\pi\epsilon_0 r_e}$$

- Pions, cut-off also at natural scale
- Higgs? Expect new physics close to weak scale

Beyond the Standard Model?

http://resonaances.blogspot.com.es/2016/01/do-or-die-year.html

 Maybe Nature is trying to tell us we are missing something in the way we think about the hierarchy problem

Cosmological Relaxation

Natural solution with a high cut-off scale

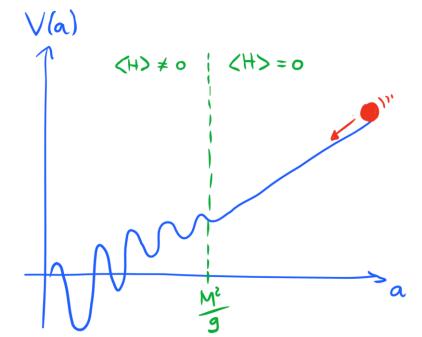
P. W. Graham, D. E. Kaplan and S. Rajendran, Phys. Rev. Lett. 115 (2015) 22, 221801 [arXiv:1507.07551]

- Originally proposed in the context of cosmological constant L. F. Abbott, Phys. Lett. B 150 (1985) 427
- Axion-like field a with shift symmetry and periodic potential, softly broken

$$\mathcal{L} = \frac{1}{32\pi^2} \frac{a}{f} \epsilon^{\mu\nu\rho\sigma} \mathrm{Tr} G_{\mu\nu} G_{\rho\sigma} \qquad V_{\cos}(a) = \Lambda_G^4 \cos(a/f)$$
 potential barrier height proportional to proportional to h>proportional to proportional to

- Effective Higgs mass scanned by slow-rolling a during inflation
- Bonus: Minimal SUSY-breaking mechanism

Minimal QCD relaxion model

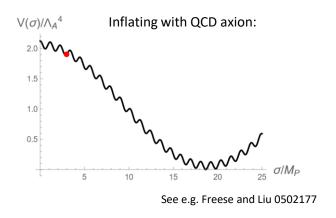

• e.g. G = colour SU(3)

$$V_{
m cos}(a) \simeq \Lambda_G^3 \langle h \rangle \cos(a/f)$$
 $V_{
m soft}(a) \simeq (ga-M^2)|h|^2 + gM^2a + \dots$

 Slow-roll scanning stops when barrier height slope = soft-breaking slope

$$\langle h \rangle \sim g M^2 f / \Lambda_G^3$$
 technically natural protected parameter

• Strong-CP problem, effective Θ -angle of O(1)


Cosmological Relaxation and Inflation

TY, arXiv:1701.09167

• Minimal relaxion setup, no v-dependence of periodic potential barrier

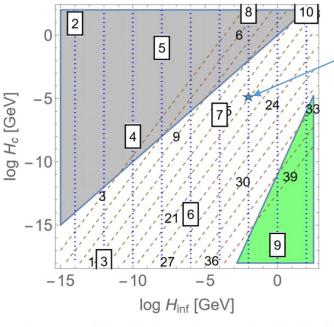
$$\mathcal{L} \supset \left(M^2 - g\phi\right)|h|^2 + gM^2\phi + ... + \Lambda_G^4 \cos\left(\frac{\phi}{f_\phi}\right) - \frac{\alpha_D}{f_D}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$$

• Backreaction of Higgs vacuum expectation ends inflation, e.g.

Inflating with electroweak dissipation:

$$\mathcal{L} \supset -\frac{\alpha}{f} \sigma F_{\mu\nu} \tilde{F}^{\mu\nu}$$
$$\ddot{\sigma} + 3H\dot{\sigma} + V_{\sigma}'(\sigma) = -I \frac{\alpha}{f} \left(\frac{H}{\xi}\right)^4 e^{2\pi\xi},$$
$$\xi \equiv \frac{\alpha}{2f} \frac{\dot{\sigma}}{H}$$

See e.g. Anber and Sorbo 0908.4089


- Decreasing Hubble falls below relaxion dissipation threshold
- This additional friction slows and traps the relaxion near the weak scale

Cosmological Relaxation and Inflation

$$\mathcal{L} \supset \left(M^2 - g\phi\right)|h|^2 + gM^2\phi + \dots + \Lambda_G^4 \cos\left(\frac{\phi}{f_\phi}\right) - \frac{\alpha_D}{f_D}\phi F_{\mu\nu}\tilde{F}^{\mu\nu},$$

e.g.

Parameter space

	M	g	H_I	H_c	N_e	Λ_G	f_{ϕ}	f_D/α_D
$\sim [\text{GeV}]$	10^{8}	10^{-11}	10^{-2}	10^{-5}	10^{18}	$10^{3.5}$	10^{9}	10^{15}

Table 1: An example of typical parameter values that satisfy all the constraints listed for our relaxion model. M is the effective theory cut-off, g parametrises the explicit shift-symmetry-breaking slope, H_I is the Hubble scale of inflation, H_c the critical Hubble threshold below which the relaxion is trapped, N_c the required e-foldings of inflation during relaxation, Λ_G the trapping barrier height of the relaxion's periodic potential with period $2\pi f_{\phi}$, and f_D the decay constant of the relaxion's axial gauge field coupling responsible for dissipation into dark gauge bosons.

Figure 2: Parameter space of the relaxion sector determined by the Hubble scale of inflation H_{inf} vs the critical Hubble threshold H_c at which the relaxion is trapped. The upper grey shaded region is excluded because the latter is restricted to $H_c \lesssim H_{inf}$, and the lower green shaded region is when H_c is too small so the relaxion is trapped after rolling past the weak scale. The vertical blue dotted lines labelled by white rectangles denote the log of the maximum cut-off M in GeV. The diagonal brown dashed lines are the log of the number of e-foldings, for the value of g and g that saturate the bounds in Eqs. 4.4 and 4.6.

Conclusion

- A SM-like Higgs boson and no direct signs of new physics may turn out to be a significant experimental null result
- Decoupled new physics motivates a SM EFT approach to phenomenology
- Future precision may probe even loop-induced operators at the TeV scale
- Universal approach to one-loop matching will become a standard calculational method
- A desert above the weak scale has interesting implications for naturalness and model-building
- Cosmological relaxation mechanism one possible avenue to explore

Backups