Flavor Physics II

Aug 7 2017, IBS, Korea

Outline

- Flavor Physics and the Standard Model
- Discrete Symmetry and CKM matrix
- Parity, Charge Conjugation and CPT theorem
- CKM matrix
- Renormalization and Muon g-2
- RG and Effective Field Theory
- CP Violation and BSM Flavor Physics

Parity

- Parity: $(t, \mathrm{x}) \xrightarrow{\mathrm{P}}(t,-\mathrm{x})$

$$
\begin{aligned}
& \phi(\mathrm{x}, t) \xrightarrow{\mathrm{P}} \phi^{\mathrm{P}}(\mathrm{x}, t)=\eta_{\mathrm{p}} \phi(-\mathrm{x}, t) \quad\left\{\begin{array}{l}
\eta_{\mathrm{p}}=1 \text { for a scalar } \\
\eta_{\mathrm{p}}=-1 \text { for a pseudoscalar }
\end{array}\right. \\
& \partial_{\mu} \phi(\mathrm{x}, t) \xrightarrow{\mathrm{P}} \partial_{\mu} \phi^{\mathrm{P}}(\mathrm{x}, t)=-\left(1-2 \delta_{\mu 0}\right) \eta_{\mathrm{p}} \partial_{\mu} \phi(-\mathrm{x}, t) \quad\left\{\begin{array}{l}
\eta_{\mathrm{p}}=1 \text { for a vector } \\
\eta_{\mathrm{p}}=-1 \text { for an axial vector }
\end{array}\right. \\
& A_{\mu}(\mathrm{x}, t) \xrightarrow{\mathrm{P}} A_{\mu}^{\mathrm{P}}(\mathrm{x}, t)=-\left(1-2 \delta_{\mu 0}\right) A_{\mu}(-\mathrm{x}, t)
\end{aligned}
$$

The photon field transforms as a vector (clear from $\partial_{\mu} \rightarrow \partial_{\mu}-\mathrm{i} A_{\mu}$)

- The Lagrangian is strictly speaking not invariant under parity, but the space-time integration domain in the action also changes according to the parity transformation
- the equations of motion are invariant

$$
S=\int \mathcal{L}\left(\phi, \partial_{\mu} \phi\right) d^{4} x
$$

 $$
\phi_{\boldsymbol{p}}^{(+)}(x)=C_{p} \mathrm{e}^{\mathrm{i}(\boldsymbol{p} \cdot \boldsymbol{x}-E t)}=C_{\boldsymbol{p}} \mathrm{e}^{-\mathrm{i} p \cdot x}
$$ $\phi_{-p}^{(-)}(x)=C_{p} \mathrm{e}^{\mathrm{i}(-\boldsymbol{p} \cdot \boldsymbol{x}+E t)}=C_{p} \mathrm{e}^{\mathrm{i} p \cdot x}$

- Transformation of scalar fields
$\mathcal{P} \dot{\phi}(t, x) \mathcal{P}^{-1}=\eta_{\mathrm{B}} \phi(t,-x) \quad: \mathcal{P}$ is a linear operator in the Hilbert space and does not act on c-number quantities

$$
\begin{aligned}
\mathcal{P} \phi(x) \mathcal{P}^{-1} & =\sum_{p} C_{p}\left[\mathcal{P} a_{\boldsymbol{p}} \mathcal{P}^{-1} \mathrm{e}^{-\mathrm{i}(E t-p \cdot x)}+\mathcal{P} b_{p}^{\dagger} \mathcal{P}^{-1} \mathrm{e}^{\mathrm{i}(E t-p \cdot x)}\right] \\
\eta_{\mathrm{B}} \phi(t,-\boldsymbol{x}) & =\eta_{\mathrm{B}} \sum_{p} C_{\boldsymbol{p}}\left[a_{p} \mathrm{e}^{-\mathrm{i}(E t+\boldsymbol{p} \cdot \boldsymbol{x})}+b_{p}^{\dagger} \mathrm{e}^{\mathrm{i}(E t+p \cdot x)}\right] \\
& =\eta_{\mathrm{B}} \sum_{p} C_{p}\left[a_{-\boldsymbol{p}} \mathrm{e}^{-\mathrm{i}(E t-p \cdot x)}+b_{-p}^{\dagger} \mathrm{e}^{\mathrm{i}(E t-p \cdot x)}\right]
\end{aligned}
$$

- we obtain the following property

$$
\begin{array}{ll}
\mathcal{P} a_{p} \mathcal{P}^{-1}=\eta_{\mathrm{B}} a_{-p} & \mathcal{P} a_{p}^{\dagger} \mathcal{P}^{-1}=\eta_{\mathrm{B}} a_{-p}^{\dagger} \\
\mathcal{P} b_{p} \mathcal{P}^{-1}=\eta_{\mathrm{B}} b_{-p} & \mathcal{P} b_{p}^{\dagger} \mathcal{P}^{-1}=\eta_{\mathrm{B}} b_{-p}^{\dagger}
\end{array}
$$

- a one-body state of momentum p

$$
\begin{aligned}
\mathcal{P}|\boldsymbol{p}\rangle & =\mathcal{P} a_{\boldsymbol{p}}^{\dagger}|0\rangle=\mathcal{P} a_{p}^{\dagger} \mathcal{P}^{-1} \mathcal{P}|0\rangle \\
& =\eta_{\mathrm{B}} a_{-p}^{\dagger}|0\rangle=\eta_{\mathrm{B}}|-\boldsymbol{p}\rangle
\end{aligned}
$$

Parity: Dirac wave function

- Transformation of Dirac wave function $\psi(\mathrm{x})$
- Lorentz transformation $x^{\mu} \rightarrow x^{\mu}=a^{\mu}{ }_{\nu} x^{\nu}$
- $\psi^{\prime}\left(x^{\prime}\right)$ and $\psi(x)$ are connected by a linear relation

$$
\psi_{a}^{\prime}\left(x^{\prime}\right)=S_{a b}(a) \psi_{b}(x)
$$

- $\psi^{\prime}\left(x^{\prime}\right)$ is also a solution of the Dirac equation

$$
\left(\mathrm{i} \gamma^{\mu} \partial_{\mu}^{\prime}-m\right) \psi^{\prime}\left(x^{\prime}\right)=0
$$

- compare it with the original equation

$$
\begin{aligned}
& (\mathrm{i} \not \partial-m) \psi(x)=0 \longmapsto\left(\mathrm{i} S \gamma^{\mu} S^{-1} \partial_{\mu}-m\right) \psi^{\prime}\left(x^{\prime}\right)=0 \\
& S \gamma^{\mu} S^{-1} \partial_{\mu}=\gamma^{\mu} \partial_{\mu}^{\prime} \quad \partial_{\mu}=a^{\nu}{ }_{\mu} \partial_{\nu}^{\prime} \\
& S^{-1}(a) \gamma^{\mu} S(a)=a^{\mu}{ }_{\nu} \gamma^{\nu} \\
& \text { rity } \mathcal{P}: x \rightarrow x^{\prime}=-x, \quad t \rightarrow t^{\prime}=t \quad a^{\mu}{ }_{\nu}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right) \\
& S(a)=\eta_{\mathrm{F}} \gamma_{0} \quad \eta_{\mathrm{F}}= \pm 1 \quad \text { intrinsic parity }
\end{aligned}
$$

Parity: Dirac field

$$
\begin{aligned}
& \gamma_{0} u(-\boldsymbol{p}, s)=u(\boldsymbol{p}, s) \\
& \gamma_{0} v(-\boldsymbol{p}, s)=-v(\boldsymbol{p}, s)
\end{aligned}
$$

- In analogy with the classical wave function, the Dirac field operators transforms according to

$$
\mathcal{P} \psi(x) \mathcal{P}^{-1}=\eta_{\mathrm{F}} \gamma_{0} \psi(t,-\boldsymbol{x})
$$

- the Dirac field is expressed as

$$
\psi(x)=\sum_{\boldsymbol{p}, s} C_{\boldsymbol{p}}\left[b(\boldsymbol{p}, s) u(\boldsymbol{p}, s) \mathrm{e}^{-\mathrm{i} p \cdot x}+d^{\dagger}(\boldsymbol{p}, s) v(\boldsymbol{p}, s) \mathrm{e}^{\mathrm{i} p \cdot x}\right]
$$

$$
\eta_{\mathrm{F}} \gamma_{0} \psi(t,-\boldsymbol{x})=\eta_{\mathrm{F}} \sum_{\boldsymbol{p}, s} C_{\boldsymbol{p}}\left[b(-\boldsymbol{p}, s) u(\boldsymbol{p}, s) \mathrm{e}^{-\mathrm{i} \boldsymbol{p} \cdot \boldsymbol{x}}-d^{\dagger}(-\boldsymbol{p}, s) v(\boldsymbol{p}, s) \mathrm{e}^{\mathrm{i} p \cdot x}\right]
$$

$$
\mathcal{P} b(\boldsymbol{p}, s) \mathcal{P}^{-1}=\eta_{\mathrm{F}} b(-\boldsymbol{p}, s), \quad \mathcal{P} b^{\dagger}(\boldsymbol{p}, s) \mathcal{P}^{-1}=\eta_{\mathrm{F}} b^{\dagger}(-\boldsymbol{p}, s)
$$

$$
\mathcal{P} d(\boldsymbol{p}, s) \mathcal{P}^{-1}=-\eta_{\mathrm{F}} d(-\boldsymbol{p}, s), \quad \mathcal{P} d^{\dagger}(\boldsymbol{p}, s) \mathcal{P}^{-1}=-\eta_{\mathrm{F}} d^{\dagger}(-\boldsymbol{p}, s)
$$

the negative sign in the right-handed side means that the intrinsic parity of the antifermion is opposite in sign to tht of the corresponding fermion

Parity: Dirac field bilinear

- the one-fermion state transforms as

$$
\begin{gathered}
b^{\dagger}(\boldsymbol{p}, s)|0\rangle \\
d^{\dagger}(\boldsymbol{p}, s)|0\rangle
\end{gathered} \quad \square \begin{gathered}
b^{\dagger}(-\boldsymbol{p}, s)|0\rangle \\
-d^{\dagger}(-\boldsymbol{p}, s)|0\rangle
\end{gathered}
$$

- for any Dirac field bilinear

$\mathcal{P} \bar{\psi}(x) \Gamma(x) \mathcal{P}^{-1}=\bar{\psi}(t,-\boldsymbol{x}) \gamma_{0} \Gamma \gamma_{0} \psi(t,-x)$						
	$\bar{\psi} \psi$	$i \bar{\psi} \gamma^{5} \psi$	$\bar{\psi} \gamma^{\mu} \psi$	$\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$	$\bar{\psi} \sigma^{\mu \nu} \psi$	∂_{μ}
P	+1	-1	$(-1)^{\mu}$	$-(-1)^{\mu}$	$(-1)^{\mu}(-1)^{\nu}$	$(-1)^{\mu}$
	$(-1)^{\mu} \equiv 1$ for $\mu=0$ and $(-1)^{\mu} \equiv-1$ for $\mu=1,2,3$					

- the free Dirac Lagrangian is invariant under P

$$
\mathcal{L}_{0}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi
$$

Charge conjugation

- C: a unitary operator that reverses the signs of charges of particles including electric charge, lepton number, flavor number, ...

$$
\mathcal{C}|\boldsymbol{p}, s, Q\rangle=\xi|\boldsymbol{p}, s,-Q\rangle
$$

ξ is a unimodular phase factor

- charge conjugation = field conjugation for physical particles
- a complex scalar field

$$
\mathcal{C} \phi(x) \mathcal{C}^{-1}=\xi_{\mathrm{B}} \phi^{\dagger}(x) \quad \mathcal{C}^{\dagger} \mathcal{C}=1, \quad\left|\xi_{\mathrm{B}}\right|^{2}=1
$$

$$
\begin{gathered}
\sum_{p} C_{p}\left[\mathcal{C} a_{p} \mathcal{C}^{-1} \mathrm{e}^{-\mathrm{i} p \cdot x}+\mathcal{C} b_{p}^{\dagger} \mathcal{C}^{-1} \mathrm{e}^{\mathrm{i} p \cdot x}\right]=\xi_{\mathrm{B}} \sum_{p} C_{p}\left[a_{p}^{\dagger} \mathrm{e}^{\mathrm{i} p \cdot x}+b_{p} \mathrm{e}^{-\mathrm{i} p \cdot x}\right] \\
\mathcal{C} a_{p} \mathcal{C}^{-1}=\xi_{\mathrm{B}} b_{p} \quad \mathcal{C} b_{p} \mathcal{C}^{-1}=\xi_{\mathrm{B}}^{*} a_{p}
\end{gathered}
$$

- a one-particle state of momentum p

$$
\mathcal{C} a_{p}^{\dagger}|0\rangle=\mathcal{C} a_{p}^{\dagger} \mathcal{C}^{-1} \mathcal{C}|0\rangle=\xi_{\mathrm{B}}^{*} b_{p}^{\dagger}|0\rangle \quad \mathcal{C} b_{p}^{\dagger}|0\rangle=\mathcal{C} b_{p}^{\dagger} \mathcal{C}^{-1} \mathcal{C}|0\rangle=\xi_{\mathrm{B}} a_{p}^{\dagger}|0\rangle
$$

Charge conjugation

- electromagnetic field
- the current density for a boson field

$$
\begin{aligned}
& j^{\mu}(x)=\mathrm{i}\left[\phi^{\dagger}(x) \partial^{\mu} \phi(x)-\left(\partial^{\mu} \phi^{\dagger}(x)\right) \phi(x)\right] \\
& \mathcal{C} j_{\mu}(x) \mathcal{C}^{-1}=\mathrm{i}\left[\phi \partial_{\mu} \phi^{\dagger}-\left(\partial_{\mu} \phi\right) \phi^{\dagger}\right]=-j_{\mu}(x)
\end{aligned}
$$

- Similarly the electromagnetic field must transform as

$$
\begin{aligned}
\mathcal{C} A_{\mu}(x) \mathcal{C}^{-1} & =-A_{\mu}(x) \\
\mathcal{C} a(\boldsymbol{k}, \lambda) \mathcal{C}^{-1} & =-a(\boldsymbol{k}, \lambda) \\
\mathcal{C}|\boldsymbol{k}, \lambda\rangle & =-|\boldsymbol{k}, \lambda\rangle
\end{aligned}
$$

- The photon is odd under charge conjugation

Charge conjugation

- Dirac field: proportional to its complex conjugate like a boson field

$$
\mathcal{C} \psi(x) \mathcal{C}^{-1}=\xi_{\mathrm{F}} B \psi^{*}(x), \quad\left|\xi_{\mathrm{F}}\right|=1
$$

B is a 4×4 unitary matrix on the spinor representation

- more convenient to use the following form

$$
\bar{\psi}^{T}=\left(\left(\psi^{*}\right)^{T} \gamma_{0}\right)^{T}=\left(\gamma_{0}\right)^{T} \psi^{*}
$$

$$
\mathcal{C} \psi(x) \mathcal{C}^{-1}=\xi_{\mathrm{F}} C \bar{\psi}^{\mathrm{T}}(x), \quad\left|\xi_{\mathrm{F}}\right|=1 \quad C^{\dagger} C=1
$$

- The Lagrangian is invariant under charge conjugation

$$
\begin{aligned}
& \mathcal{C} \mathcal{L}_{\mathrm{F}}(x) \mathcal{C}^{-1}=\mathcal{L}_{\mathrm{F}}(x) \\
& \mathcal{L}_{\mathrm{F}} \equiv \mathcal{L}_{1}+\mathcal{L}_{1}^{\dagger}=\frac{1}{2} \bar{\psi}\left[\mathrm{i} \gamma^{\mu} \vec{\partial}_{\mu}-m\right] \psi+\frac{1}{2} \bar{\psi}\left[-\mathrm{i} \gamma^{\mu} \overleftarrow{\partial}_{\mu}-m\right] \psi
\end{aligned}
$$

- One can derive

$$
\mathcal{C} \psi^{\dagger} \mathcal{C}^{-1}=\xi_{\mathrm{F}}^{*} \psi^{\mathrm{T}} \gamma_{0}^{*} C^{\dagger}
$$

$$
\mathcal{C} \mathcal{L}_{1} \mathcal{C}^{-1}=\frac{1}{2} \psi^{\mathrm{T}} \gamma_{0}^{*} C^{\dagger}\left(\mathrm{i} \gamma^{0} \gamma^{\mu} \partial_{\mu}-\gamma_{0} m\right) C \bar{\psi}^{\mathrm{T}}
$$

scalar, invariant

$$
=\frac{1}{2} \bar{\psi} C^{\mathrm{T}}\left(-\mathrm{i} \gamma^{\mu \mathrm{T}} \gamma^{0 \mathrm{~T}} \overleftarrow{\partial}_{\mu}+\gamma_{0}^{\mathrm{T}} m\right) C^{*} \gamma_{0} \psi
$$

Charge conjugation

- require $\mathcal{C} \mathcal{L}_{1} \mathcal{C}^{-1}=\mathcal{L}_{1}^{\dagger}$ to satisfy $\mathcal{C} \mathcal{L}_{\mathrm{F}}(x) \mathcal{C}^{-1}=\mathcal{L}_{\mathrm{F}}(x)$

$$
\begin{array}{ll}
C^{T} \gamma^{\mu T} \gamma_{0}{ }^{T} C^{*} \gamma_{0}=\gamma^{\mu} \\
C^{T} \gamma_{0}^{T} C^{*} \gamma_{0}=1
\end{array} \quad C^{\dagger} \gamma_{\mu} C=-\gamma_{\mu}^{\mathrm{T}} \quad \begin{aligned}
& \text { in arbitrary } \gamma \text {-matrix } \\
& \text { representation }
\end{aligned}
$$

- in the standard representation of γ, we choose

$$
\begin{array}{ll}
C=\mathrm{i} \gamma^{2} \gamma^{0} & C \bar{u}^{\mathrm{T}}(\boldsymbol{p}, s)=v(\boldsymbol{p}, s) \\
C \bar{v}^{\mathrm{T}}(\boldsymbol{p}, s)=u(\boldsymbol{p}, s)
\end{array}
$$

- Then one finds

$$
\left.\begin{array}{rl}
u(p, s) & =N\binom{\chi_{s}}{\frac{\sigma \cdot p}{E+m} \chi_{s}} \\
v(p, s) & =N^{\prime}\left(\frac{\sigma \cdot p}{E+m} \eta_{s}\right. \\
\eta_{s}
\end{array}\right) .
$$

$$
\begin{gathered}
\mathcal{C} \psi \mathcal{C}^{-1}=\sum_{\boldsymbol{p}, s} C_{\boldsymbol{p}}\left[\mathcal{C} b(\boldsymbol{p}, s) \mathcal{C}^{-1} u(\boldsymbol{p}, s) \mathrm{e}^{-\mathrm{i} p \cdot x}+\mathcal{C} d^{\dagger}(\boldsymbol{p}, s) \mathcal{C}^{-1} v(\boldsymbol{p}, s) \mathrm{e}^{\mathrm{i} p \cdot x}\right] \\
\xi_{\mathrm{F}} C \bar{\psi}^{\mathrm{T}}=\xi_{\mathrm{F}} \sum_{\boldsymbol{p}, s} C_{\boldsymbol{p}}\left[b^{\dagger}(\boldsymbol{p}, s) v(\boldsymbol{p}, s) \mathrm{e}^{\mathrm{i} p \cdot x}+d(\boldsymbol{p}, s) u(\boldsymbol{p}, s) \mathrm{e}^{-\mathrm{i} p \cdot \boldsymbol{x}}\right] \\
\mathcal{C} b(\boldsymbol{p}, s) \mathcal{C}^{-1}=\xi_{\mathrm{F}} d(\boldsymbol{p}, s) \quad \mathcal{C} d(\boldsymbol{p}, s) \mathcal{C}^{-1}=\xi_{\mathrm{F}}^{*} b(\boldsymbol{p}, s)
\end{gathered}
$$

- Note that in the Weyl representation (Peskin \& Schroeder)

$$
\begin{equation*}
C \psi(x) C=-i \gamma^{2} \psi^{*}(x)=-i \gamma^{2}\left(\psi^{\dagger}\right)^{T}=-i\left(\bar{\psi} \gamma^{0} \gamma^{2}\right)^{T} \tag{9}
\end{equation*}
$$

C, P, and T

- charge conjugation for Dirac field bilinear

$$
\begin{gathered}
\mathcal{C} \psi(x) \mathcal{C}^{-1}=\xi C \bar{\psi}^{\mathrm{T}}(x) \\
\mathcal{C} \bar{\psi}(x) \mathcal{C}^{-1}=-\xi^{*} \psi^{\mathrm{T}}(x) C^{\dagger} \\
\mathcal{C} \bar{\psi}_{1}(x) \Gamma \psi_{2}(x) \mathcal{C}^{-1}=\xi_{1}^{*} \xi_{2} \bar{\psi}_{2}(x) C \Gamma^{\mathrm{T}} C^{\dagger} \psi_{1}(x)
\end{gathered}
$$

- transformation properties

	$\bar{\psi} \psi$	$i \bar{\psi} \gamma^{5} \psi$	$\bar{\psi} \gamma^{\mu} \psi$	$\bar{\psi} \gamma^{\mu} \gamma^{5} \psi$	$\bar{\psi} \sigma^{\mu \nu} \psi$	∂_{μ}
P	+1	-1	$(-1)^{\mu}$	$-(-1)^{\mu}$	$(-1)^{\mu}(-1)^{\nu}$	$(-1)^{\mu}$
T	+1	-1	$(-1)^{\mu}$	$(-1)^{\mu}$	$-(-1)^{\mu}(-1)^{\nu}$	$-(-1)^{\mu}$
C	+1	+1	-1	+1	-1	+1
$C P T$	+1	+1	-1	-1	+1	-1

$$
(-1)^{\mu} \equiv 1 \text { for } \mu=0 \text { and }(-1)^{\mu} \equiv-1 \text { for } \mu=1,2,3
$$

$\mathcal{L}_{0}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi$ is invariant under C, P, and T separately

C, P, and T

Bilinear	\mathcal{P}	\mathcal{T}	\mathcal{C}	$\mathcal{C} \mathcal{P}$	$\mathcal{C} \mathcal{P} \mathcal{T}$
$\bar{\psi} \chi$	$\bar{\psi} \chi$	$\bar{\psi} \chi$	$\bar{\chi} \psi$	$\bar{\chi} \psi$	$\bar{\chi} \psi$
$\bar{\psi} \gamma_{5} \chi$	$\bar{\psi} \gamma_{5} \chi$	$\bar{\psi} \gamma_{5} \chi$	$\bar{\chi} \gamma_{5} \psi$	$-\bar{\chi} \gamma_{5} \psi$	$-\bar{\chi} \gamma_{5} \psi$
$\bar{\psi} P_{L, R} \chi$	$\bar{\psi} P_{R, L} \chi$	$\bar{\psi} P_{L, R} \chi$	$\bar{\chi} P_{L, R} \psi$	$\bar{\chi} P_{R, L} \psi$	$\bar{\chi} P_{R, L} \psi$
$\bar{\psi} \gamma^{\mu} \chi$	$\bar{\psi} \gamma_{\mu} \chi$	$\bar{\psi} \gamma_{\mu} \chi$	$-\bar{\chi} \gamma^{\mu} \psi$	$-\bar{\chi} \gamma_{\mu} \psi$	$-\bar{\chi} \gamma^{\mu} \psi$
$\bar{\psi} \gamma^{\mu} \gamma_{5} \chi$	$-\bar{\psi} \gamma_{\mu} \gamma_{5} \chi$	$\bar{\psi} \gamma_{\mu} \gamma_{5} \chi$	$\bar{\chi} \gamma^{\mu} \gamma_{5} \psi$	$-\bar{\chi} \gamma_{\mu} \gamma_{5} \psi$	$-\bar{\chi} \gamma^{\mu} \gamma_{5} \psi$
$\bar{\psi} \gamma^{\mu} P_{L, R} \chi$	$\bar{\psi} \gamma_{\mu} P_{R, L} \chi$	$\bar{\psi} \gamma_{\mu} P_{L, R} \chi$	$-\bar{\chi} \gamma^{\mu} P_{R, L} \psi$	$-\bar{\chi} \gamma_{\mu} P_{L, R} \psi$	$-\bar{\chi} \gamma^{\mu} P_{L, R} \psi$
$\bar{\psi} \sigma^{\mu \nu} \chi$	$\bar{\psi} \sigma_{\mu \nu} \chi$	$-\bar{\psi} \sigma_{\mu \nu} \chi$	$-\bar{\chi} \sigma^{\mu \nu} \psi$	$-\bar{\chi} \sigma_{\mu \nu} \psi$	$\bar{\chi} \sigma^{\mu \nu} \psi$

$$
\begin{gathered}
(-1)^{\mu} \equiv 1 \text { for } \mu=0 \text { and }(-1)^{\mu} \equiv-1 \text { for } \mu=1,2,3 \\
\mathcal{L}_{0}=\bar{\psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi \text { is invariant under } \mathrm{C}, \mathrm{P} \text {, and } \mathrm{T} \text { separately }
\end{gathered}
$$

- CP: $e_{L}^{-} \leftrightarrow e_{R}^{+}$

$$
\begin{gathered}
\mathcal{L} \propto V_{i j} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{\dagger}+V_{i j}^{*} \bar{D}_{j} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{i} W_{\mu} \\
\downarrow \mathrm{CP} \text { conjugation } \\
\mathcal{L}_{\mathrm{CP}} \propto V_{i j} \bar{D}_{j} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{i} W_{\mu}+V_{i j}^{*} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{\dagger} \\
\text { If } V_{i j}^{*}=V_{i j} \rightarrow L=L_{\mathrm{CP}}: \text { i.e. CP conservation }
\end{gathered}
$$

CPT theorem

CPT theorem:

$$
\begin{aligned}
(C P T)^{-1}(\bar{\Psi} \Psi) C P T & =+\bar{\Psi} \Psi, \\
(C P T)^{-1}\left(\bar{\Psi} i \gamma_{5} \Psi\right) C P T & =+\bar{\Psi} i \gamma_{5} \Psi, \\
(C P T)^{-1}\left(\bar{\Psi} \gamma^{\mu} \Psi\right) C P T & =-\bar{\Psi} \gamma^{\mu} \Psi, \\
(C P T)^{-1}\left(\bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi\right) C P T & =-\bar{\Psi} \gamma^{\mu} \gamma_{5} \Psi,
\end{aligned}
$$

General rule: a fermion bilinear with n vector indices is even (odd) under CPT if n is even (odd); this also applies to derivatives ∂_{μ}.

Thus any hermitian combination of fields and derivatives that is Lorentz invariant (has no uncontracted Lorentz indices) is even under CPT!

Lagrangian is formed from such terms, $\mathcal{L}(x) \rightarrow \mathcal{L}(-x)$ under CPT, and so the action $S=\int d^{4} x \mathcal{L}$ is invariant under CPT.

Lorentz invariance

Yukawa matrix

- The third generation was introduced before the discovery of the charm quark by Kobayashi and Maskawa (1972)
- The Yukawa or mass matrices are arbitrary 3×3 complex matrices

$$
\begin{gathered}
\mathcal{L}_{Y}^{S \mathrm{M}}=y_{i j}^{d} \overline{Q_{L i}} \phi d_{R j}+y_{i j}^{u} \overline{Q_{L i}} \tilde{\phi} u_{R j}+y_{i j}^{e} \overline{L_{L i}} \phi e_{R j} \\
\left(m_{d}\right)_{i j}=\frac{y_{i v}^{d} v}{\sqrt{2}},\left(m_{u}\right)_{i j}=\frac{y_{i v}^{u} v}{\sqrt{2}},\left(m_{e}\right)_{i j}=\frac{y_{i v}^{e} v}{\sqrt{2}}
\end{gathered}
$$

- No flavor changing coupling for $y_{i j}^{f}=\delta_{i j}$
- In general, the Yukawa couplings are non-diagonal in the generation basis (flavor basis)

$$
y_{i j}^{f} \neq \delta_{i j}
$$

- The mass matrices must be diagonalized to describe the physical process

Diagonalization of mass matrix

- The Yukawa matrices can be diagonalized by bi-unitary transformations

$$
y^{f}=V_{L}^{f} y_{\text {diag }}^{f} V_{R}^{f \dagger} \quad y_{\text {diag }}^{f}=\left(\begin{array}{lll}
y_{1}^{f} & & \\
& y_{2}^{f} & \\
& & y_{3}^{f}
\end{array}\right) \quad V_{L}^{f}, V_{R}^{f} \text { : unitary matrices }
$$

- The mass matrices for quarks are diagonalized as

$$
\begin{aligned}
& \bar{u}_{\frac{L}{}, M_{u} u_{R}}^{V_{L}^{u \dagger} V_{L}^{u}} \frac{\bar{d}_{R}^{V_{R}^{u \dagger} V_{R}^{u}}}{}+\frac{M_{d} \cdot d_{R}}{V_{L}^{d \dagger} V_{L}^{d}} \frac{V_{R}^{d \dagger} V_{R}^{d}}{} \quad \Longrightarrow \quad \bar{u}_{L}^{\prime} M_{u}^{\text {diag }} u_{R}^{\prime}+\bar{d}_{L}^{\prime} M_{d}^{\text {diag }} d_{R}^{\prime} \\
& u_{L, R}^{()}=\left(\begin{array}{l}
u_{L, R}^{()} \\
c_{L, R}^{()} \\
t_{L, R}^{()}
\end{array}\right), d_{L, R}^{()}=\left(\begin{array}{c}
d_{L, R}^{()} \\
s_{L, R}^{()} \\
b_{L, R}^{()}
\end{array}\right) \quad M_{u}^{\text {diag }}=\left(\begin{array}{lll}
m_{u} & & \\
& m_{c} & \\
& & m_{t}
\end{array}\right), M_{d}^{\text {diag }}=\left(\begin{array}{lll}
m_{d} & & \\
& m_{s} & \\
& & m_{b}
\end{array}\right)
\end{aligned}
$$

- The quark fields are transforms as (field redefinitions)

$$
\psi_{i} \rightarrow V_{i j}^{f} \psi_{j}\left(\psi=Q_{L}, U_{R}, D_{R}\right)
$$

- Kinetic terms are not changed by field redefinitions by the unitary rotation in the generation basis

$$
\mathcal{L}_{\text {kin }} \sim-i \bar{\psi}_{i} D \psi_{i}
$$

Neutral current

- The coupling to neutral gauge bosons $\gamma, Z, \mathrm{~g}$ are not modified by the field redefinitions

$$
\mathcal{L}_{\text {neutral }} \sim \bar{u}_{L}^{i} \delta_{i j} u_{L}^{j} \rightarrow \bar{u}_{L}^{k}\left(V_{L}^{u}\right)_{k i} \delta_{i j}\left(V_{L}^{u \dagger}\right)_{j l} u_{L}^{j}=\bar{u}_{L}^{i} \delta_{i j} u_{L}^{j}
$$

- The FCNC is forbidden at the tree level
- In the SM, all up (or down)-type quarks have the same charges Y and T_{3}
- This simply forbids the FCNC which might be generated by the field redefinitions because the couplings to neutral gauge bosons depend on Y and T_{3}
- the couplings to the Higgs boson are aligned to the mass matrix so that there is no FCNC related to the Higgs boson in the SM
- The FCNC process to any gauge boson would be a good signal for probing new physics

CKM matrix

- The couplings to the W bosons are modified as

$$
\begin{gathered}
\mathcal{L}_{W} \sim \bar{u}_{L}^{i} \delta_{i j} d_{L}^{j} \rightarrow \bar{u}_{L}^{k}\left(V_{L}^{u}\right)_{k i} \delta_{i j}\left(V_{L}^{d \dagger}\right)_{j l} d_{L}^{l}=\bar{u}_{L}^{i}\left(V_{\mathrm{CKM}}\right)_{i j} d_{L}^{j} \\
V_{\mathrm{CKM}}=V_{L}^{u} V_{L}^{d \dagger}
\end{gathered}
$$

- The CKM matrix is the generalization of the Cabibbo rotation

$$
\left(\begin{array}{c}
d^{\prime \prime} \\
s^{\prime \prime} \\
b^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right)
$$

weak eigenstates

- The CKM matrix is a 3×3 complex matrix and unitary by definition
- The mixing of down-type quarks \sim a (historical) convention
- in the lepton case, the mixing occurs in the up-type components (neutrinos)

Weak phase

- To generate CP violation, we need a complex phase in the Lagrangian
- To be hermitian, all couplings except for the CKM matrix are real
- If the CKM matrix is real, no CP violation

$$
\begin{gathered}
\mathcal{L} \propto V_{i j} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{\dagger}+V_{i j}^{*} \bar{D}_{j} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{i} W_{\mu} \\
\quad \begin{array}{|c|}
\text { CP conjugation }
\end{array} \\
\begin{array}{c}
\mathcal{L}_{\mathrm{CP}} \propto V_{i j} \bar{D}_{j} \gamma^{\mu}\left(1-\gamma_{5}\right) U_{i} W_{\mu}+V_{i j}^{*} \bar{U}_{i} \gamma^{\mu}\left(1-\gamma_{5}\right) D_{j} W_{\mu}^{\dagger} \\
\quad \text { If } V_{i j}^{*}=V_{i j} \rightarrow L=L_{\mathrm{CP}}: \text { i.e. CP conservation }
\end{array}
\end{gathered}
$$

- If CP violation exists in the framework of the SM, the CKM matrix must be complex
- Because the phase in the CKM matrix is originated from weak interactions, the CKM phase is called as a "weak phase"
- In the BSM, another phase may exist in the new couplings or new vacuum

3 generation is required for CP violation

- An arbitrary $\mathrm{N} \times \mathrm{N}$ complex matrix has $2 \mathrm{~N}^{2}$ parameters
- Unitary conditions $\left(\mathrm{V}^{\dagger}=1\right)$ remove N^{2} degree of freedoms

$$
\sum_{j} V_{i j} V_{j i}^{*}=1, \sum_{j} V_{i j} V_{j k}^{*}=0(i \neq k) \Rightarrow N+2_{N} C_{2}=N^{2}
$$

- For a real matrix, N directions have ${ }_{N} \mathrm{C}_{2}$ independent (relative) angles

$$
{ }_{N} C_{2}=\frac{N(N-1)}{2} \text { angles }
$$

- The remaining parameters are complex phases

$$
N^{2}-\frac{N(N-1)}{2}=\frac{N(N+1)}{2} \text { phases }
$$

- Each quark field can change its phase without modifying other terms

$$
q_{j} \rightarrow q_{j}^{\prime}=e^{i \phi \phi_{i}} q_{j}
$$

q_{R} should have an opposite phase to q_{L} to make the mass term invariant.

N (up-type quarks) +N (down-type quarks) $=2 \mathrm{~N}$ rephasing possible

$$
\mathcal{L}_{W} \rightarrow \mathcal{L}_{W} \sim \bar{u}_{L}^{i} e^{i\left(\delta_{i}-\delta_{j}\right)}\left(V_{\text {CKM }}\right)_{i j} d_{L}^{j}
$$

3 generation is required for CP violation

- Among 2 N phases, one phase which is called as "overall phase" is not independent
- Therefore ($2 \mathrm{~N}-1$) phases can be removed by rephasing quark fields
- The number of phases which cannot be removed is $\mathrm{N}(\mathrm{N}+1) / 2-(2 \mathrm{~N}-1)=$

$$
\frac{N(N+1)}{2}-(2 N-1)=\frac{(N-1)(N-2)}{2}
$$

n	$(n-1)(n-2)$
1	2
2	0
3	1
4	3

- For CP violation, $N \geq 3$
- In $N=3,3$ mixing angles and 1 (weak) phase (the only phase in the SM Langrangian that is necessary for CP violation)
- Rephasing example in $\mathrm{N}=3$

$$
\left(\begin{array}{ccc}
V_{\mathrm{ud}} & V_{\mathrm{us}} & V_{\mathrm{ub}} \\
V_{\mathrm{cd}} & V_{\mathrm{cs}} & V_{\mathrm{cb}} \\
V_{\mathrm{td}} & V_{\mathrm{ts}} & V_{\mathrm{tb}}
\end{array}\right)
$$

the rephasing phase of u quark is multiplied to the first row and can make Vud real $u_{L} \rightarrow e^{i \phi(t)} u_{L}$
Similarly c quark \rightarrow Vcd, t quark \rightarrow Vtd, s quark \rightarrow Vus, b quark \rightarrow Vub but rephasing d quark cannot be applied because all elements of the first column are real

Parametrization of CKM matrix

- The orginal CKM matrix in Kobayashi and Maskawa's paper

$$
\left(\begin{array}{lll}
\cos \theta_{1} & -\sin \theta_{1} \cos \theta_{3} & -\sin \theta_{1} \sin \theta_{3} \\
\sin \theta_{1} \cos \theta_{2} & \cos \theta_{1} \cos \theta_{2} \cos \theta_{3}-\sin \theta_{2} \sin \theta_{3} e^{i 8} & \cos \theta_{1} \cos \theta_{2} \sin \theta_{3}+\sin \theta_{2} \cos \theta_{3} e^{i \delta} \\
\sin \theta_{1} \sin \theta_{2} & \cos \theta_{1} \sin \theta_{2} \cos \theta_{3}+\cos \theta_{2} \sin \theta_{3} e^{i 8} & \cos \theta_{1} \sin \theta_{2} \sin \theta_{3}-\cos \theta_{2} \sin \theta_{3} e^{i \delta}
\end{array}\right) .
$$

- The standard CKM matrix which is adopted by PDG

$$
\begin{array}{rl}
V_{\mathrm{CKM}} & \equiv\left[\begin{array}{lll}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right]=R_{23}\left(I_{\delta_{D}} R_{13} I_{\delta_{D}}^{\dagger}\right) R_{12} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{array}\right]\left[\begin{array}{ccc}
c_{13} & 0 & s_{13} e^{-i \delta} \\
0 & 1 & 0 \\
-s_{13} e^{i \delta} & 0 & c_{13}
\end{array}\right]\left[\begin{array}{ccc}
c_{12} & s_{12} & 0 \\
-s_{12} & c_{12} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right] \\
I_{\delta_{D}}=\operatorname{diag}\left(1,1, e^{i \delta}\right) \\
s_{i j}=\sin \theta_{i j}, c_{i j}=\cos \theta_{i j} & 0 \leq \theta_{i j} \leq \pi / 2, \quad 0 \leq \delta \leq 2 \pi
\end{array}
$$

Neutrino and PMNS matrix

- If neutrions are massive, we can construct the Pontecorvo-Maki-Nakagata-Saki (PMNS) matrix similar to the CKM matrix

CKM matrix

$$
\left(\begin{array}{c}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)\left(\begin{array}{c}
d \\
s \\
b
\end{array}\right) \quad\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)\left(\begin{array}{c}
\nu_{1} \\
\nu_{2} \\
\nu_{3}
\end{array}\right)
$$

- In the case of Dirac neutrinos, the PMNS matrix are exactly the same as the CKM matrix
- In the case of Majorana neutrinos, there are two more Majorana phases

$$
U_{P M N S}=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{ccc}
e^{i \alpha_{1} / 2} & 0 & 0 \\
0 & e^{i \alpha_{2} / 2} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

- Because of an additional mass term $m \overline{\nu_{L}^{C}} \nu_{L}$, we cannot redefine the phase of neutrino fields

$$
\nu_{L} \rightarrow e^{i \phi} \nu_{L} \Rightarrow m \overline{\nu_{L}^{C}} \nu_{L} \rightarrow e^{i \phi^{2 \phi}} m \overline{\nu_{L}^{C}} \nu_{L}
$$

Dirac vs Majorana

- the conventions with respec to charge conjugation and helicity projection

$$
\begin{array}{rlrl}
\psi^{\mathrm{c}} & =C \gamma^{0} \psi^{*}=\mathrm{i} \gamma^{2} \psi^{*}, \quad \bar{\psi}^{\mathrm{c}}=\psi^{\mathrm{T}} C & C=\mathrm{i} \gamma^{2} \gamma^{0} & \left(\gamma^{k}\right)^{\dagger}=-\gamma^{k} \\
\psi_{\mathrm{L}} & =\frac{1}{2}\left(1-\gamma_{5}\right) \psi, \quad \psi_{\mathrm{R}}=\frac{1}{2}\left(1+\gamma_{5}\right) \psi & \overline{\psi^{c}}=\left(i \gamma_{2} \psi^{*}\right)^{\dagger} \gamma_{0}=-\mathrm{i} \psi^{T}\left(\gamma_{2}\right)^{\dagger} \gamma_{0}=\psi^{T} C
\end{array}
$$

- notation

$$
\psi_{\mathrm{L}}^{\mathrm{c}} \equiv\left(\psi_{\mathrm{L}}\right)^{\mathrm{c}}=\frac{1}{2}\left(1+\gamma_{5}\right) \psi^{\mathrm{c}}=\left(\psi^{\mathrm{c}}\right)_{\mathrm{R}}
$$

$$
\left(\psi_{L}\right)^{c}=i \gamma_{2} \frac{1}{2}\left(1-\gamma_{5}\right) \psi^{*}=\frac{1}{2}\left(1+\gamma_{5}\right) i \gamma_{2} \psi^{*}
$$

the charge conjugate of the left-handed field acts as a right-handed field

- Dirac mass term

$$
\mathscr{L}_{\mathrm{D}}=D\left(\psi_{\mathrm{L}} \psi_{\mathrm{R}}+\psi_{\mathrm{R}} \psi_{\mathrm{L}}\right)=D \Psi \psi
$$

- Majorana mass term

$$
\begin{gathered}
\mathscr{L}_{\mathrm{MA}}=A\left(\bar{\psi}_{\mathrm{L}}^{\mathrm{c}} \psi_{\mathrm{L}}+\psi_{\mathrm{L}} \psi_{\mathrm{L}}^{\mathrm{c}}\right)=A \bar{\chi} \chi
\end{gathered} \quad \Rightarrow \begin{aligned}
& \text { Majorana fields must not be } \\
& \text { charged }
\end{aligned}
$$

Questions

1. Show that there is no CP violation for $\mathrm{N}=3$ if any two of the quarks are mass degenerate.
2. Explain why there is no CKM-like matrix in the lepton sector of the SM.
3. It is observed that neutrinos oscillate. Can the charged leptons also oscillate?

Wolfenstein parametrization

- More popular parametrization is Wolfenstein parametrization
- $\mathrm{V}_{\text {CKM }}$ in nature there is hirarchical $\theta_{13} \ll \theta_{23} \ll \theta_{12} \ll 1$

$$
\lambda=\sin \theta_{c} \approx 0.22
$$

$$
\sum_{j} V_{i j} V_{j i}^{*}=1, \sum_{j} V_{i j} V_{j k}^{*}=0(i \neq k)
$$

$A, \rho, \eta \sim \mathcal{O}(1)$

Cabibbo rotation

$$
V_{\mathrm{CKM}}=\left(\begin{array}{cc}
1-\frac{\lambda^{2}}{2} & \lambda \\
-\lambda & 1-\frac{\lambda^{2}}{2}
\end{array}\right)
$$

Wolfenstein parametrization

- More popular parametrization is Wolfenstein parametrization
- $\mathrm{V}_{\text {CKM }}$ in nature there is hirarchical $\theta_{13} \ll \theta_{23} \ll \theta_{12} \ll 1$

$$
\lambda=\sin \theta_{c} \approx 0.22
$$

$$
\sum_{j} V_{i j} V_{j i}^{*}=1, \sum_{j} V_{i j} V_{j k}^{*}=0(i \neq k)
$$

$A, \rho, \eta \sim \mathcal{O}(1)$

Cabibbo rotation

$$
V_{\mathrm{CKM}}=\left(\begin{array}{cc}
1-\frac{\lambda^{2}}{2} & \lambda \\
-\lambda & 1-\frac{\lambda^{2}}{2}
\end{array}\right) \quad V_{c b} \sim 0.06=O\left(\lambda^{2}\right) \quad V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
& -A \lambda^{2} & 1
\end{array}\right)
$$

Wolfenstein parametrization

- More popular parametrization is Wolfenstein parametrization
- $\mathrm{V}_{\text {CKM }}$ in nature there is hirarchical $\theta_{13} \ll \theta_{23} \ll \theta_{12} \ll 1$

$$
\lambda=\sin \theta_{c} \approx 0.22
$$

$$
\sum_{j} V_{i j} V_{j i}^{*}=1, \sum_{j} V_{i j} V_{j k}^{*}=0(i \neq k)
$$

$A, \rho, \eta \sim \mathcal{O}(1)$

Cabibbo rotation

$$
\begin{gathered}
V_{\text {СКМ }}=\left(\begin{array}{cc}
1-\frac{\lambda^{2}}{2} & \lambda \\
-\lambda & 1-\frac{\lambda^{2}}{2}
\end{array}\right) \quad V_{c b} \sim 0.06=O\left(\lambda^{2}\right) \quad V_{\text {СКМ }}=\left(\begin{array}{cc}
1-\frac{\lambda^{2}}{2} & \lambda \\
-\lambda & 1-\frac{\lambda^{2}}{2} \\
& A \lambda^{2} \\
-A \lambda^{2} & 1
\end{array}\right) \\
V_{\text {СКМ }}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
-A \lambda^{2} & 1
\end{array}\right) \quad V_{\text {СКМ }}=\left(\begin{array}{ccc}
1-\frac{\lambda^{2}}{2} & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
\end{gathered}
$$

Wolfenstein parametrization

$$
V_{\mathrm{CKM}}=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} / 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)
$$

- In the W decays, suppressing the common factor and phase space factor

$$
\Gamma\left(W^{+} \rightarrow \ell^{+} \nu_{\ell}\right) \propto 1 \quad \Gamma\left(W^{+} \rightarrow u_{i} \overline{d_{j}}\right) \propto 3\left|V_{i j}\right|^{2} \quad(i=1,2 ; j=1,2,3)
$$

- The top quark is omitted and the number of lepton is 3
- The unitarity condition for the CKM matrixc

$$
\begin{aligned}
\left|V_{u d}\right|^{2}+\left|V_{u s}\right|^{2}+\left|V_{u b}\right|^{2} & =\left|V_{c d}\right|^{2}+\left|V_{c s}\right|^{2}+\left|V_{c b}\right|^{2}=1 \\
\Gamma(W \rightarrow \text { hadrons }) & \approx 2 \Gamma(W \rightarrow \text { leptons })
\end{aligned}
$$

Experimentally, $\Gamma(W \rightarrow$ hadrons $) / \Gamma(W \rightarrow$ leptons $)=2.09 \pm 0.01$

Wolfenstein parametrization beyond LO

- In the standard parametrization, we define $(\lambda, A, \varrho, \eta)$

$$
\begin{gathered}
s_{12}=\lambda, \quad s_{23}=A \lambda^{2}, \quad s_{13} e^{-i \delta}=A \lambda^{3}(\varrho-i \eta) \\
\varrho=\frac{s_{13}}{s_{12} s_{23}} \cos \delta, \quad \eta=\frac{s_{13}}{s_{12} s_{23}} \sin \delta
\end{gathered}
$$

- The higher order terms are obtained as

$$
\begin{gathered}
V_{u d}=1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}+\mathcal{O}\left(\lambda^{6}\right) \\
V_{u s}=\lambda+\mathcal{O}\left(\lambda^{7}\right) \\
V_{u b}=A \lambda^{3}(\varrho-i \eta) \\
V_{c d}=-\lambda+\frac{1}{2} A^{2} \lambda^{5}[1-2(\varrho+i \eta)]+\mathcal{O}\left(\lambda^{7}\right) \\
V_{c s}=1-\frac{1}{2} \lambda^{2}-\frac{1}{8} \lambda^{4}\left(1+4 A^{2}\right)+\mathcal{O}\left(\lambda^{6}\right) \\
V_{c b}=A \lambda^{2}+\mathcal{O}\left(\lambda^{8}\right) \\
V_{t d}=A \lambda^{3}\left[1-(\varrho+i \eta)\left(1-\frac{1}{2} \lambda^{2}\right)\right]+\mathcal{O}\left(\lambda^{7}\right) \\
V_{t s}=-A \lambda^{2}+\frac{1}{2} A(1-2 \varrho) \lambda^{4}-i \eta A \lambda^{4}+\mathcal{O}\left(\lambda^{6}\right) \\
V_{t b}=1-\frac{1}{2} A^{2} \lambda^{4}+\mathcal{O}\left(\lambda^{6}\right)
\end{gathered}
$$

Unitarity check

Hierarchy in Unitary relations

$$
\begin{aligned}
& \left(\begin{array}{c|c|c}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
\end{aligned}
$$

Hierarchy in Unitary relations

$$
\left(\begin{array}{c|c|c}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$$
\begin{aligned}
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0 \\
& \mathcal{O}\left(\lambda^{4}\right) \\
& \mathcal{O}\left(\lambda^{2}\right) \\
& \mathcal{O}\left(\lambda^{2}\right) \\
& \underbrace{\text { sb }}_{\mathrm{V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}} \mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}}^{*}
\end{aligned}
$$

Hierarchy in Unitary relations

$$
\left(\begin{array}{cc|c}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

$$
\begin{aligned}
& V_{u s} V_{u b}^{*}+V_{c s} V_{c b}^{*}+V_{t s} V_{t b}^{*}=0 \\
& \mathcal{O}\left(\lambda^{4}\right) \\
& \mathcal{O}\left(\lambda^{2}\right) \\
& \mathcal{O}\left(\lambda^{2}\right) \\
& \underbrace{\text { sb }}_{\mathrm{V}_{\mathrm{cs}} \mathrm{~V}_{\mathrm{cb}}^{*}} \mathrm{~V}_{\mathrm{ts}} \mathrm{~V}_{\mathrm{tb}}^{*} \mathrm{~V}_{\mathrm{us}} \mathrm{~V}_{\mathrm{ub}}^{*}
\end{aligned}
$$

The CKM triangle

Unitarity triangle

$$
\begin{aligned}
& V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+{ }_{\mathcal{O}\left(\lambda^{3}\right)}^{V_{d d} V_{t b}^{*}=0}{ }_{\mathcal{O}\left(\lambda^{3}\right)}^{V_{0}^{*}}=0 \\
& A \lambda^{3}[(\rho+i \eta)+(-1)+(1-\rho-i \eta)]=0
\end{aligned}
$$

- Resize the sides by $V_{c d} V_{c b}^{*}$

J arlskog invariant

$$
\begin{aligned}
& \text { (area) }=\left(\frac{1}{2}(\text { base }) \times(\text { height })\right) \times(\text { scale factor })=\frac{1}{2} \operatorname{Im}\left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}} V_{u b}^{*}\right) \times\left|V_{c d} V_{c b}^{*}\right|^{2} \\
& =\frac{1}{2} \operatorname{Im}\left(-V_{u d} V_{u b}^{*} V_{c d}^{*} V_{c b}\right)=\frac{1}{2} \operatorname{Im}\left(c_{12} c_{13} s_{13} e^{i \delta}\left(s_{12} c_{23}+c_{12} s_{23} s_{13} e^{-i \delta}\right) s_{23} c_{13}\right) \\
& \left.=\frac{1}{V_{c d} V_{c b}^{*}} \right\rvert\, \\
& c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta
\end{aligned}
$$

basis-independent quantity that identifies CP violation = Jarlskog invariant

$$
\begin{aligned}
& \operatorname{Im}\left[V_{i j} V_{k l} V_{i l}^{*} V_{k j}^{*}\right]=J \sum_{n, m} \epsilon_{i k n} \epsilon_{j l m} \quad \text { (no sum in } i, j, k, l \text {) } \\
& J=c_{12} c_{23} c_{13}^{2} s_{12} s_{23} s_{13} \sin \delta \sim \lambda^{6} A^{2} \eta \quad \text { (in the SM) }
\end{aligned}
$$

Determination of CKM matrix elements

Excellent determination (error $\sim 0.5 \%$)
Very good determination (error $\sim 0.1 \%$)
Good determination (error ~ 2%)
Sizable error (5-15 \%)
Not competitive with unitarity constraints

Once we assume unitarity, the CKM matrix can be completely determined using only exp. info from processes mediated by tree-level c.c. amplitudes

Determination of CKM matrix elements

The only CKM elements we cannot access via tree-level processes are $V_{t s} \& V_{t d}$ \downarrow

Loop-induced amplitudes:

Determination of CKM matrix elements

The Unitarity Triangle

$$
\begin{aligned}
& \boldsymbol{V}_{u d} \boldsymbol{V}_{u b}^{*}+\boldsymbol{V}_{c d} \boldsymbol{V}_{c b}^{*}+V_{t d} V_{t b}^{*}=0 \Rightarrow 1+\frac{V_{d d} V_{b b}^{*}}{V_{c d} V_{c b}^{*}}+\frac{V_{t d} V_{t b}^{*}}{V_{c d} V_{c b}^{*}}=0 \quad \beta=\arg \left(-\frac{V_{V} V_{b}^{*}}{V_{t d} V_{b d}^{*}}\right) \\
& A \lambda^{3}(\rho-i \eta) \quad-A \lambda^{3} \quad A \lambda^{3}(1-\rho-i \eta) \\
& \gamma=\arg \left(-\frac{V_{u d} V_{u b}^{*}}{V_{c d} V_{c b}^{*}}\right)
\end{aligned}
$$

- measure the lengths of the two sides: CP conserving quantities
- measure all three angles: CP violating quantities (angles = phases !)
- many observables \rightarrow overconstraint determination of triangle

Unitarity Triangle analysis in the SM

The Unitarity Triangle : Tree vs Loop

Unitarity triangle from "tree observables"

Unitarity triangle from
"loop observables"

The Unitarity Triangle : Tree vs Loop

The Unitarity Triangle : CP vs EP

The Unitarity Triangle: 2001 vs 2014

$4^{\text {th }}$ generation and CKM matrix

The 4×4 CKM matrix

CKM vs PMNS: flavor problems

CKM
PMNS

- Why are the CKM elements so hierarchical and diagonal?
- Why is the PMNS matrix so different from the CKM matrix?

