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Parity

 Parity:

  1  for a scalar           
1  for a pseudoscalar

P

P

η
η

=
 = −

  1  for a vector          
1  for an axial vector

P

P

η
η

=
 = −

 The Lagrangian is strictly speaking not invariant under parity, but the 
space-time integration domain in the action also changes according to 
the parity transformation

 the equations of motion are invariant

The photon field transforms as a vector (clear from                )  
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Parity: scalar field

 Transformation of scalar fields

 a one-body state of momentum p

 we obtain the following property

:    is a linear operator in the Hilbert space 
and does not act on c-number quantities
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Parity: Dirac wave function

 Transformation of Dirac wave function (x)

 Lorentz transformation

 and         are connected by a linear relation  

 is also a solution of the Dirac equation  

 compare it with the original equation

 parity

intrinsic parity
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Parity: Dirac field

the negative sign in the right-handed side means that the intrinsic parity of the 
antifermion is opposite in sign to tht of the corresponding fermion

 In analogy with the classical wave function, the Dirac field operators 
transforms according to

 the Dirac field is expressed as
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Parity: Dirac field bilinear

 for any Dirac field bilinear 

 the one-fermion state transforms as

 the free Dirac Lagrangian is invariant under P
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Charge conjugation

 C: a unitary operator that reverses the signs of charges of particles 
including electric charge, lepton number, flavor number, ...

 charge conjugation = field conjugation for physical particles

 a complex scalar field 

 a one-particle state of momentum p
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Charge conjugation

 electromagnetic field

 The photon is odd under charge conjugation

 the current density for a boson field

 Similarly the electromagnetic field must transform as
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Charge conjugation

 Dirac field: proportional to its complex conjugate like a boson field

 One can derive

 more convenient to use the following form
( ) ( )* *

0 0( )
T TT Tψ ψ γ γ ψ= =

 The Lagrangian is invariant under charge conjugation

transpose and an additional 
(-) sign for fermion exchange

Because of the complex 
conjugate, the charge 
conjugation operator C 

depends on the 
representation of the 

matrix

scalar, invariant 
under transpose in 
the spinor space



*
0 0
*

0 0 1

T T T

T T

C C
C C

µ µγ γ γ γ

γ γ

=

=
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Charge conjugation

 require                      to satisfy

in arbitrary -matrix 
representation

 in the standard representation of , we choose 

 Then one finds

 Note that in the Weyl representation (Peskin & Schroeder)
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C, P, and T

is invariant under C, P, and T separately

 charge conjugation for Dirac field bilinear

 transformation properties
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C, P, and T

is invariant under C, P, and T separately

 CP: 
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CPT theorem

 CP: 
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Yukawa matrix

 The third generation was introduced before the discovery of the 
charm quark by Kobayashi and Maskawa (1972)

( ) ( ) ( ),  ,  
2 2 2

d u e
ij ij ij

d u eij ij ij

y v y v y v
m m m= = =

 The Yukawa or mass matrices are arbitrary 33 complex matrices

 No flavor changing coupling for f
ij ijy δ=

 The mass matrices must be diagonalized to describe the physical 
process  

 In general, the Yukawa couplings are non-diagonal in the generation 
basis (flavor basis)

f
ij ijy δ≠



,  
u d

diag diag
u c d s

t b

m m
M m M m

m m

   
   = =   
   
   
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Diagonalization of mass matrix

 The Yukawa matrices can be diagonalized by bi-unitary transformations

 The mass matrices for quarks are diagonalized as

 Kinetic terms are not changed by field redefinitions by the unitary 
rotation in the generation basis

 The quark fields are transforms as (field redefinitions)

1

diag 2

3

f

f f

f

y
y y

y

 
 

=  
 
 

, : unitary matricesf f
L RV V

( , , )f
i ij j L R RV Q U Dψ ψ ψ→ =

(') (')
, ,

(') (') (') (')
, , , ,

(') (')
, ,

,  
L R L R

L R L R L R L R

L R L R

u d
u c d s

t b

   
   

= =   
   
   
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Neutral current

 The coupling to neutral gauge bosons , Z, g are not modified by the 
field redefinitions

 The FCNC is forbidden at the tree level

 In the SM, all up (or down)-type quarks have the same charges Y and T3

 This simply forbids the FCNC which might be generated by the field 
redefinitions because the couplings to neutral gauge bosons depend on Y 
and T3

 the couplings to the Higgs boson are aligned to the mass matrix so that 
there is no FCNC related to the Higgs boson in the SM

 The FCNC process to any gauge boson would be a good signal for 
probing new physics
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CKM matrix

 The couplings to the W bosons are modified as

 The CKM matrix is the generalization of the Cabibbo rotation 

weak eigenstates mass eigenstates

 The CKM matrix is a 33 complex matrix and unitary by definition

 The mixing of down-type quarks ~ a (historical) convention

 in the lepton case, the mixing occurs in the up-type components 
(neutrinos) 

†
CKM CKM 1V V =
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Weak phase

 To generate CP violation, we need a complex phase in the Lagrangian

 To be hermitian, all couplings except for the CKM matrix are real

 If the CKM matrix is real, no CP violation 

 If CP violation exists in the framework of the SM, the CKM matrix must 
be complex

 Because the phase in the CKM matrix is originated from weak 
interactions, the CKM phase is called as a “weak phase”

 In the BSM, another phase may exist in the new couplings or new 
vacuum 
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3 generation is required for CP violation

 An arbitrary NN complex matrix has 2N2 parameters

 Unitary conditions (VV=1) remove N2 degree of freedoms  

 Each quark field can change its phase without modifying other terms 

2
21,  0 ( ) 2ij ji ij jk

j j
NV V V V i N Nk C∗ ∗ ⇒= += ≠ =∑ ∑

 For a real matrix, N directions have NC2 independent (relative) angles

2
( 1)  an les

2
gN

N NC −
=

 The remaining parameters are complex phases

2 ( 1)  =  phases
2

( 1)
2

NN NNN +−
−

ji
j j jq q e qφ′→ = qR should have an opposite 

phase to qL to make the 
mass term invariant.

N(up-type quarks)+N(down-type quarks)=2N rephasing possible
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3 generation is required for CP violation

 Among 2N phases, one phase which is called as “overall phase” is not 
independent

 Therefore (2N-1) phases can be removed by rephasing quark fields

 The number of phases which cannot be removed is N(N+1)/2-(2N-1)=

( 1) (2 1) (
2

1)( 2)
2

N NN N N+
−

−
−

−
=

 For CP violation, 3N ≥

 Rephasing example in N=3
the rephasing phase of u quark is multiplied to the first row and 
can make Vud real

Similarly c quark  Vcd, t quark  Vtd, s quark  Vus, b quark  Vub
but rephasing d quark cannot be applied because all elements of the 
first column are real

 In N=3, 3 mixing angles and 1 (weak) phase (the only phase in the SM 
Langrangian that is necessary for CP violation)
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Parametrization of CKM matrix

 The orginal CKM matrix in Kobayashi and Maskawa’s paper

 The standard CKM matrix which is adopted by PDG

sin ,  cosij ij ij ijs cθ θ= =
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Neutrino and PMNS matrix

 If neutrions are massive, we can construct the Pontecorvo-Maki-
Nakagata-Saki (PMNS) matrix similar to the CKM matrix

 In the case of Majorana neutrinos, there are two more Majorana phases

 Because of an additional mass term         , we cannot redefine the 
phase of neutrino fields  

 In the case of Dirac neutrinos, the PMNS matrix are exactly the same as 
the CKM matrix
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Dirac vs Majorana

 the conventions with respec to charge conjugation and helicity projection

( ) ( )† †*
2 0 2 0

c T Ti i Cψ γ ψ γ ψ γ γ ψ= = − =

 notation

( ) ( ) ( )* *
2 5 5 2

1 11 1
2 2

c
L i iψ γ γ ψ γ γ ψ= − = +

the charge conjugate of the left-handed 
field acts as a right-handed field

 Dirac mass term

 Majorana mass term

Majorana fields must not be 
charged
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Questions

1. Show that there is no CP violation for N=3 if any two of the quarks are 
mass degenerate.

2. Explain why there is no CKM-like matrix in the lepton sector of the SM.

3. It is observed that neutrinos oscillate. Can the charged leptons also 
oscillate?
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Wolfenstein parametrization

 More popular parametrization is Wolfenstein parametrization

 VCKM in nature there is hirarchical 1323121

Cabibbo rotation

2

2

CKM

1        
2

1
2

V

λ λ

λλ

 
− 

 
 

= − − 
 
 
 
 

1,  0 ( )ij ji ij jk
j j

V V V V i k∗ ∗= = ≠∑ ∑
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Wolfenstein parametrization

 More popular parametrization is Wolfenstein parametrization

 VCKM in nature there is hirarchical 1323121

Cabibbo rotation

2

2

CKM

1        
2

1
2

V

λ λ

λλ

 
− 

 
 

= − − 
 
 
 
 

2~ 0.06 ( )cbV O λ=

2

2
2

CKM

2

1        
2

1
2

1

V A

A

λ λ

λλ λ

λ

 
− 

 
 

= − − 
 

− 
 
 

1,  0 ( )ij ji ij jk
j j

V V V V i k∗ ∗= = ≠∑ ∑
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Wolfenstein parametrization

 More popular parametrization is Wolfenstein parametrization

 VCKM in nature there is hirarchical 1323121

Cabibbo rotation

2

2

CKM

1        
2

1
2

V

λ λ

λλ

 
− 

 
 

= − − 
 
 
 
 

2~ 0.06 ( )cbV O λ=

2

2
2

CKM

2

1        
2

1
2

1

V A

A

λ λ

λλ λ

λ

 
− 

 
 

= − − 
 

− 
 
 

1,  0 ( )ij ji ij jk
j j

V V V V i k∗ ∗= = ≠∑ ∑

2
3

2
2

CKM

3 2

1 ( )
2

1
2

(1 ) 1

A i

V A

A i A

λ λ λ ρ η

λλ λ

λ ρ η λ

 
− − 

 
 

= − − 
 

− − − 
 
 

2
3

2
2

CKM

2

1 ( )
2

1
2

1

A i

V A

A

λ λ λ ρ η

λλ λ

λ

 
− − 

 
 

= − − 
 

− 
 
 
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Wolfenstein parametrization

 ub tdV VOnly and 
 are complex

 In the W decays, suppressing the common factor and phase space factor

 The top quark is omitted and the number of lepton is 3

 The unitarity condition for the CKM matrixc

Experimentally,
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Wolfenstein parametrization beyond LO

 In the standard parametrization, we define

 The higher order terms are obtained as
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Unitarity check
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Hierarchy in Unitary relations
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Hierarchy in Unitary relations
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Hierarchy in Unitary relations

The CKM triangle
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Unitarity triangle

3[( ) ( 1) (1 )] 0A i iλ ρ η ρ η+ + − + − − =

 Resize the sides by *
cd cbV V

*

*arg cd cb

td tb

V V
V V

β
 

= − 
 

*

*arg td tb

ud ub

V V
V V

α
 

= − 
 

*

*arg ud ub

cd cb

V V
V V

γ
 

= − 
 
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Jarlskog invariant

 basis-independent quantity that identifies CP violation = Jarlskog invariant

( ) ( )

* 2*
*

* *
12 13 13 12 212 3 13 23 13

2
12 23 13 12 23 1

23

3

1 1(area)= (base) (height) (scale factor)= Im
2 2

1 1Im Im ( )
2 2
1 sin
2

ud ub
cd cb

cd cb

i i
ud ub cd cb

V V V V
V V

V V V V c c s e c s s e s c

c c c s s s

s cδ δ

δ

−

  × × − ×  
   

= − = +

=

* *

,

Im    (no sum in , , , )ij kl il kj ikn jlm
n m

V V V V J i j k l  =  ∑ 

2 6 2
12 23 13 12 23 13 sin ~     (in the SM)J c c c s s s Aδ λ η=
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Determination of CKM matrix elements



24

Determination of CKM matrix elements



25

Determination of CKM matrix elements
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The Unitarity Triangle
* *

* *1 0ud ub td tb

cd cb cd cb

V V V V
V V V V

+ + =
*

*arg cd cb

td tb

V V
V V

β
 

= − 
 

*

*arg td tb

ud ub

V V
V V

α
 

= − 
 

*

*arg ud ub

cd cb

V V
V V

γ
 

= − 
 
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Unitarity Triangle analysis in the SM
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The Unitarity Triangle : Tree vs Loop
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The Unitarity Triangle : Tree vs Loop
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The Unitarity Triangle : CP vs CP

Unitarity triangle
from

“CP conserving observables”

Unitarity triangle
from

“CP violating observables”
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The Unitarity Triangle: 2001 vs 2014

Summer 2001 Winter 2014

well with the CKM picture at O(10%) level
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4th generation and CKM matrix
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CKM vs PMNS: flavor problems

 Why are the CKM elements so hierarchical and diagonal?

 Why is the PMNS matrix so different from the CKM matrix?
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