Interacting Dark Matter and Astrophysical Signatures

Yong TANG

University of Tokyo

University of Pittsburgh, Oct 19-21, 2017

based on Tang, 1603.00165, w/Ko, 1608.01083, 1609.02307, w/Ko & Nagata, 1706.05605

Contents

- Introduction & Motivation
 - Dark Matter evidence
 - Beyond CDM
- Interacting Dark Matter
 - U(1) Dark Photon
 - Residual Yang-Mills DM
 - Chiral Dark Radiation
- Summary

Evidence of Dark Matter

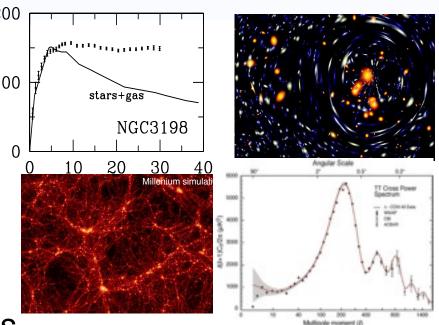
- Rotation Curves of Galaxies 100
- Gravitational Lensing
- Large Scale Structure
- CMB anisotropies, ...

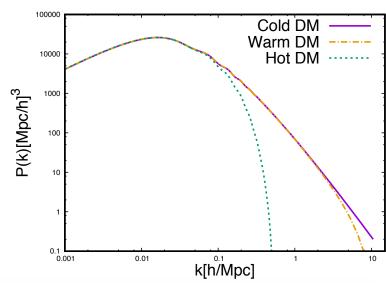
All confirmed evidence comes from gravitational interaction

CDM: negligible velocity, WIMP

WDM: keV sterile neutrino

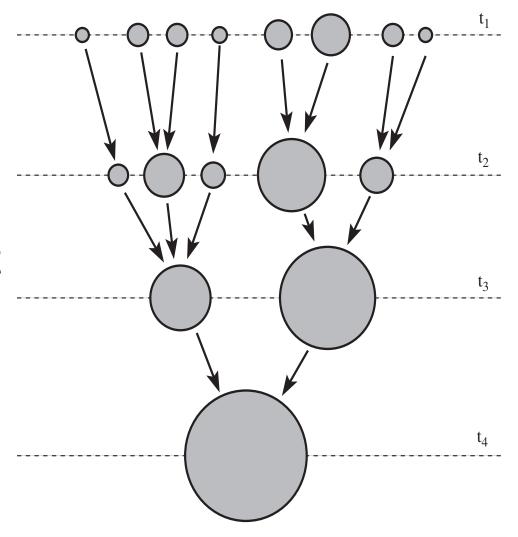
HDM: active neutrino





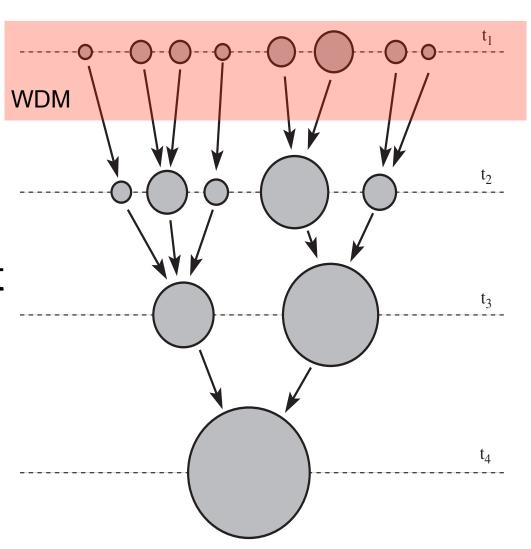
Merger History of Dark Halo

- Standard picture
- DM halos grow hierarchically
- Small scale structures form first
- Then merge into larger halos



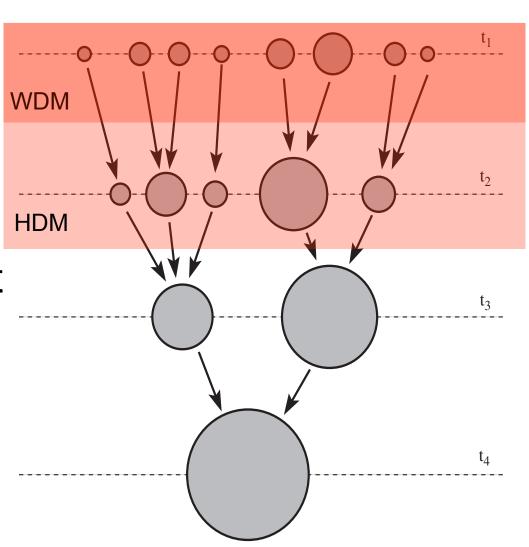
Merger History of Dark Halo

- Standard picture
- DM halos grow hierarchically
- Small scale structures form first
- Then merge into larger halos

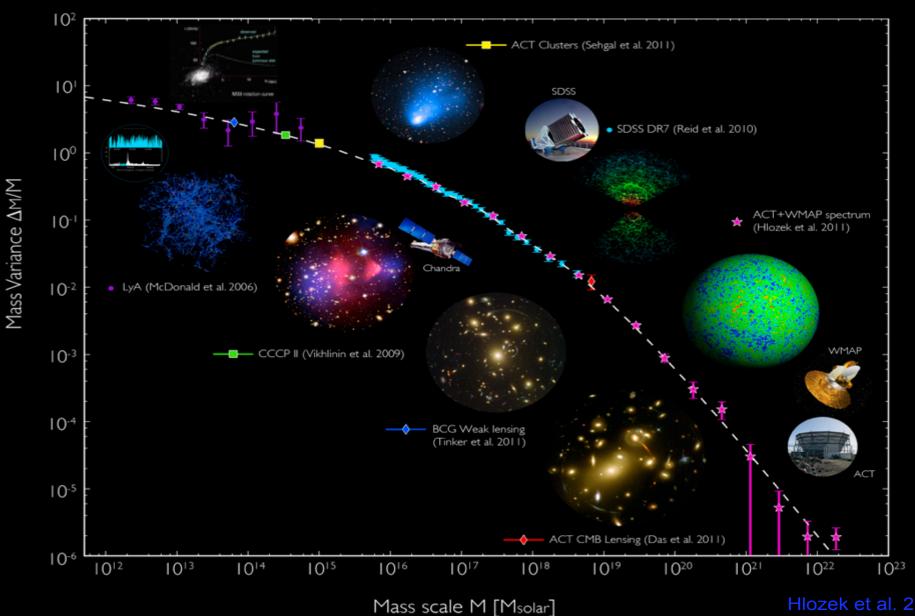


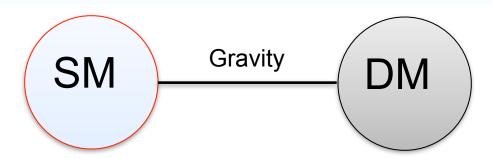
Merger History of Dark Halo

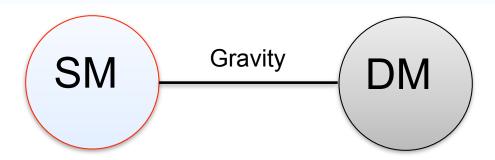
- Standard picture
- DM halos grow hierarchically
- Small scale structures form first
- Then merge into larger halos



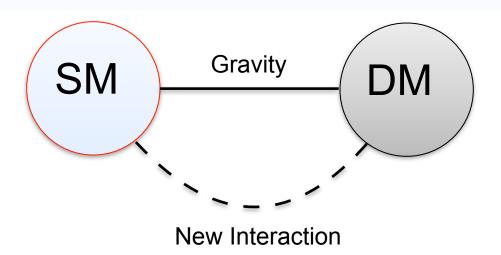
ACDM: successful on large scales

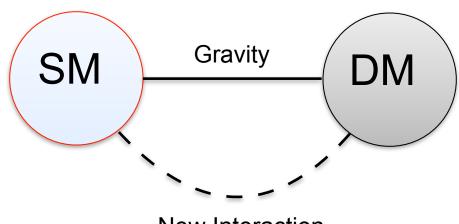






Ex: **YT**&Wu, 1708.05138, 1606. 04701 and refs therein

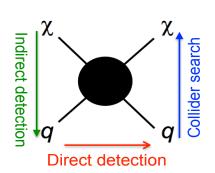




New Interaction

Weakly Interacting Massive Particle

- Mass around ~100GeV
- Coupling ~ 0.5
- Correct relic abundance Ω~0.3
- Searches for CDM
 - Collider qq > XXj
 - Direct Xq > Xq
 - Indirect XX > qq
- Theoretically interesting



- Supersymmetry
- Extra-dimension
- Sterile Neutrino
- Axion
- Wimpzilla
- Dark atom/pion/glueball
- Primordial black hole
- •

Beyond Collisionless DM

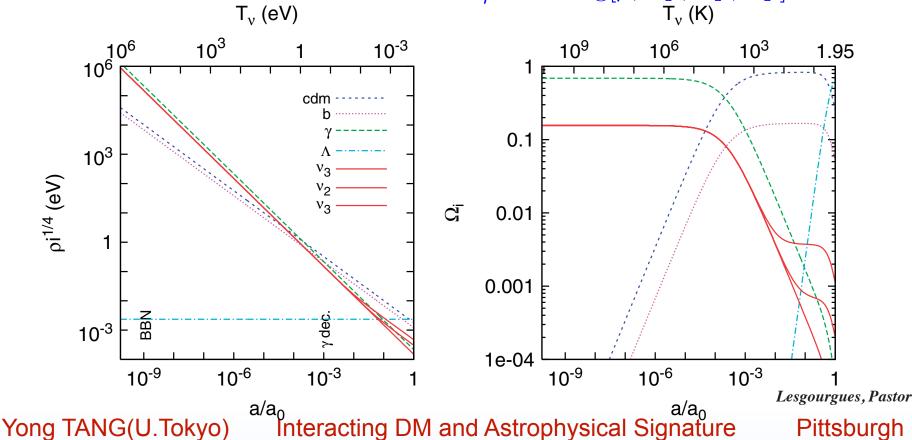
- Theoretically motivated
 - Atomic DM, Mirror DM, Composite DM...
 - Eventually, all DM is interacting in some way, the question is how strongly?
 - Self-Interacting DM,SIMP $\frac{\sigma}{M_X}\sim {
 m cm}^2/{
 m g}\sim {
 m barn/GeV}$
- Possible new testable signatures
 - CMB, LSS, BBN
 - Other astrophysical effects,...
- Solution of CDM controversies
 - Cusp-vs-Core, Too-big-to-fail, missing satellite,...
 - H_{0} , σ_{8} ? 3σ

Cosmological History

Einstein's equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4}T_{\mu\nu}$$

• Homogeneous&isotropy $g_{\mu\nu}= {
m Diag}[1,-a^2,-a^2,-a^2] \ T_{\mu\nu}= {
m Diag}[
ho,-p,-p,-p] \ {
m T_{v}\,(K)}$

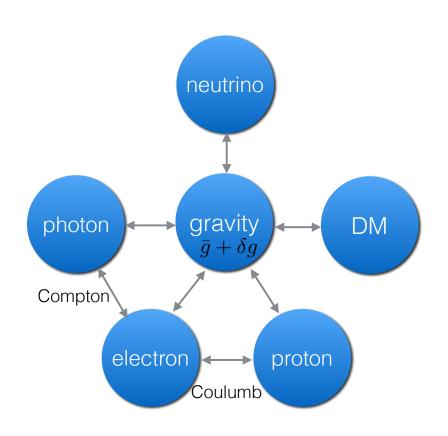


Cosmological History

Small perturbations (— Inflation)

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}, T_{\mu\nu} = \overline{T}_{\mu\nu} + \delta T_{\mu\nu},$$

- First-order perturbation of Boltzmann equation
 - anisotropy in CMB(δT)
 - matter power spectrum for LSS (δρ)
 - Primordial GW

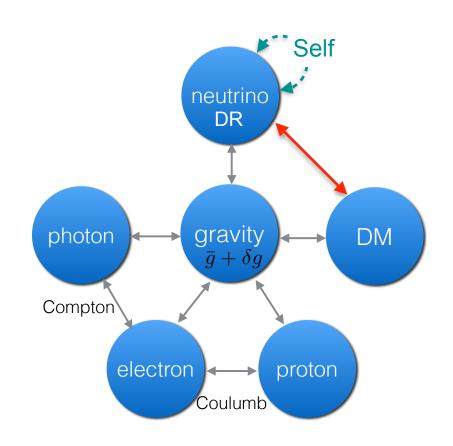


Modified Cosmological History

Small perturbations (— Inflation)

$$g_{\mu\nu} = \overline{g}_{\mu\nu} + \delta g_{\mu\nu}, T_{\mu\nu} = \overline{T}_{\mu\nu} + \delta T_{\mu\nu},$$

- First-order perturbation of Boltzmann equation
 - anisotropy in CMB(δT)
 - matter power spectrum for LSS (δρ)
 - Primordial GW
- (Self-)Interaction sometimes also matters



Interacting Radiation

free-streaming

$$\dot{\delta}_{\nu} = -\frac{4}{3}\,\theta_{\nu} + 4\dot{\phi} \; ,$$

$$\dot{\theta}_{\nu} = k^2 \left(\frac{1}{4} \delta_{\nu} - \sigma_{\nu} \right) + k^2 \psi ,$$

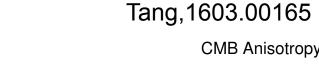
$$\dot{F}_{vl} = \frac{k}{2l+1} \left[lF_{v(l-1)} - (l+1)F_{v(l+1)} \right],$$

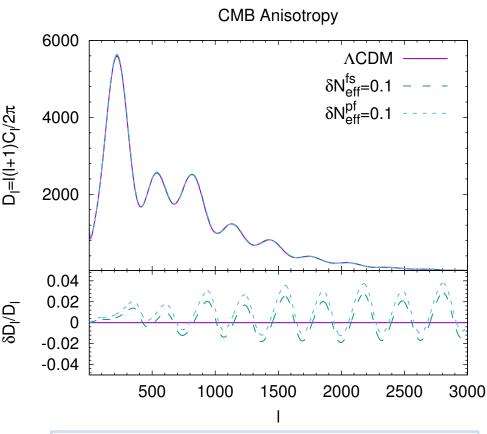
perfect fluid _□ ≫ ℋ

$$\dot{\delta}_{\nu} = -\frac{4}{3}\,\theta_{\nu} + 4\dot{\phi} \; ,$$

$$\dot{\theta}_{\nu} = k^2 \left(\frac{1}{4} \delta_{\nu} - \sigma_{\nu} \right) + k^2 \psi ,$$

$$\sigma_v=0$$





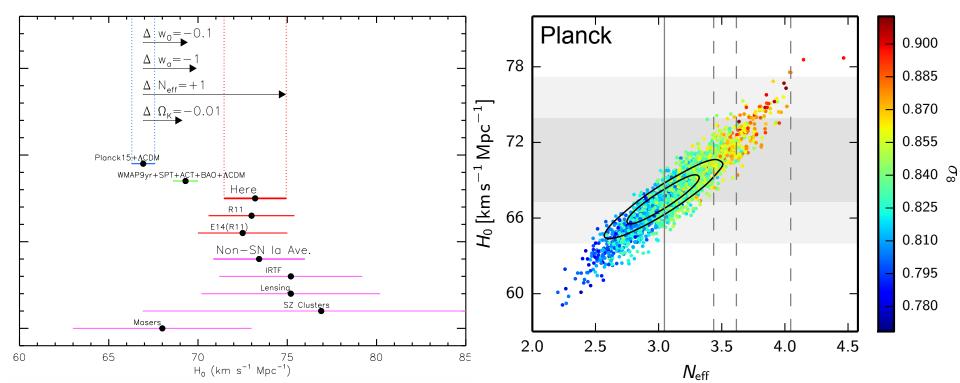
Neutrinos as perfect fluid excluded, *Audren* et al 1412.5948

Tension in Hubble Constant?

Hubble Constant H₀ defined as the present value of

$$H \equiv \frac{1}{a} \frac{da}{dt} = \frac{\sqrt{\rho_r + \rho_m + \rho_\Lambda}}{M_p}$$

- Planck(2015) gives $67.8 \pm 0.9 \text{ km s}^{-1} \text{Mpc}^{-1}$
- HST(2016) gives $73.24 \pm 1.74 \text{ km s}^{-1} \text{Mpc}^{-1}$



Tension in σ_8 ?

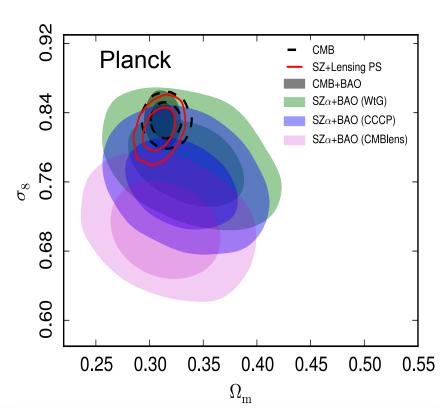
Variance of perturbation field→collapsed objects

$$\delta(\mathbf{r}) = \frac{\rho(\mathbf{r}) - \bar{\rho}}{\bar{\rho}}, \sigma^{2}(r) = \langle \delta(\mathbf{x})\delta(\mathbf{x} - \mathbf{r}) \rangle$$
$$\delta(\mathbf{k}) = \frac{1}{(2\pi)^{3}} \int \delta(\mathbf{r})e^{-i\mathbf{k}\cdot\mathbf{r}}d^{3}\mathbf{r}, P(k) = \langle |\delta(\mathbf{k})|^{2} \rangle$$

• *P(k)*: matter power spectrum

$$\sigma^{2}(R) = \frac{1}{2\pi^{2}} \int W_{R}^{2}(k) P(k) k^{2} dk,$$

• $\sigma_8 \equiv \sigma(8h^{-1}\mathrm{Mpc})$



Tension in σ_8 ?

Planck2015, Sunyaev–Zeldovich cluster counts

Data	$\sigma_8 \left(\frac{\Omega_{ m m}}{0.31} \right)^{0.3}$	Ω_{m}	σ_8
$\overline{\text{WtG} + \text{BAO} + \text{BBN}}$	0.806 ± 0.032	0.34 ± 0.03	0.78 ± 0.03
CCCP + BAO + BBN [Baseline]	0.774 ± 0.034	0.33 ± 0.03	0.76 ± 0.03
CMBlens + BAO + BBN	0.723 ± 0.038	0.32 ± 0.03	0.71 ± 0.03
$\overline{\text{CCCP} + H_0 + \text{BBN}}$	0.772 ± 0.034	0.31 ± 0.04	0.78 ± 0.04

Planck2015, Primary CMB

Parameter	[1] Planck TT+lowP	[2] Planck TE+lowP	[3] Planck EE+lowP	[4] Planck TT,TE,EE+lowP
$\Omega_{ m b} h^2 \ldots \ldots$	0.02222 ± 0.00023	0.02228 ± 0.00025	0.0240 ± 0.0013	0.02225 ± 0.00016
$\Omega_{ m c} h^2 \ldots \ldots$	0.1197 ± 0.0022	0.1187 ± 0.0021	$0.1150^{+0.0048}_{-0.0055}$	0.1198 ± 0.0015
$100\theta_{\mathrm{MC}}$	1.04085 ± 0.00047	1.04094 ± 0.00051	1.03988 ± 0.00094	1.04077 ± 0.00032
au	0.078 ± 0.019	0.053 ± 0.019	$0.059^{+0.022}_{-0.019}$	0.079 ± 0.017
$ln(10^{10}A_s)$	3.089 ± 0.036	3.031 ± 0.041	$3.066^{+0.046}_{-0.041}$	3.094 ± 0.034
$n_{\rm s}$	0.9655 ± 0.0062	0.965 ± 0.012	0.973 ± 0.016	0.9645 ± 0.0049
H_0	67.31 ± 0.96	67.73 ± 0.92	70.2 ± 3.0	67.27 ± 0.66
Ω_{m}	0.315 ± 0.013	0.300 ± 0.012	$0.286^{+0.027}_{-0.038}$	0.3156 ± 0.0091
$\sigma_8 \dots \dots$	0.829 ± 0.014	0.802 ± 0.018	0.796 ± 0.024	0.831 ± 0.013
$10^9 A_{\rm s} e^{-2\tau} \dots \dots$	1.880 ± 0.014	1.865 ± 0.019	1.907 ± 0.027	1.882 ± 0.012

Diffusion Damping

CMB Silk damping

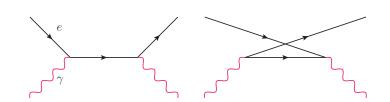
 Dark Matter scatters with radiation, which induces new contributions in the cosmological perturbation equations, ex: Ma&Bertschinger, Boehm et al, ETHOS...

$$\dot{\delta}_{\chi} = -\theta_{\chi} + 3\dot{\Phi},
\dot{\theta}_{\chi} = k^{2}\Psi - \mathcal{H}\theta_{\chi} + S^{-1}\dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right),
\dot{\theta}_{\psi} = k^{2}\Psi + k^{2}\left(\frac{1}{4}\delta_{\psi} - \sigma_{\psi}\right) - \dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right),
\dot{\theta}_{\psi} = k^{2}\Psi + k^{2}\left(\frac{1}{4}\delta_{\psi} - \sigma_{\psi}\right) - \dot{\mu}\left(\theta_{\psi} - \theta_{\chi}\right),$$

where dot means derivative over conformal time $d\tau \equiv dt/a$ (a is the scale factor), θ_{ψ} and θ_{χ} are velocity divergences of radiation ψ and DM χ 's, k is the comoving wave number, Ψ is the gravitational potential, δ_{ψ} and σ_{ψ} are the density perturbation and the anisotropic stress potential of ψ , and $\mathcal{H} \equiv \dot{a}/a$ is the conformal Hubble parameter. Finally, the scattering rate and the density ratio are defined by $\dot{\mu} = an_{\chi} \langle \sigma_{\chi\psi} c \rangle$ and $S = 3\rho_{\chi}/4\rho_{\psi}$, respectively.

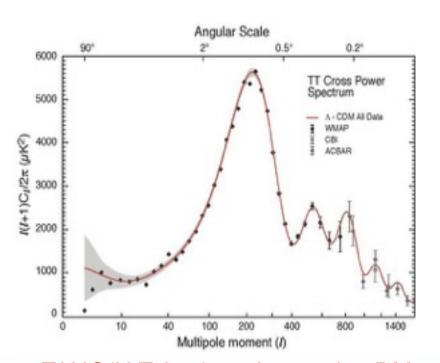
- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²

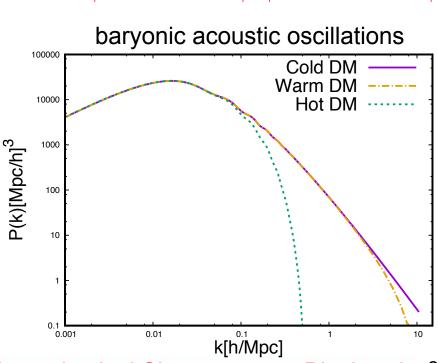
 Thomson scattering



- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²

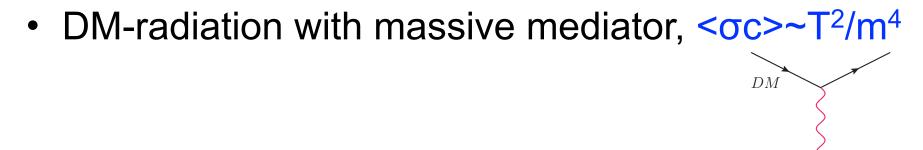
 Thomson scattering





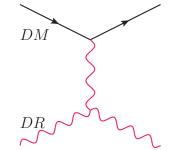
- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²

 Thomson scattering



- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²

 Thomson scattering
 - DM-radiation with massive mediator, <σc>~T²/m⁴
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542



- The precise form of the scattering term, <σc>, is fully determined by the underlying microscopic or particle physics model, for example
 - electron-photon, <σc>~1/m²

 Thomson scattering
 - DM-radiation with massive mediator, <σc>~T²/m⁴
 - non-Abelian radiation, <σc>~1/T²
 Schmaltz et al(2015), 1507.04351,1505.03542
 - (pseudo-)scalar radiation, $<\sigma c>\sim 1/T^2$, μ^2/T^4 , T^2/m^4 Tang,1603.00165

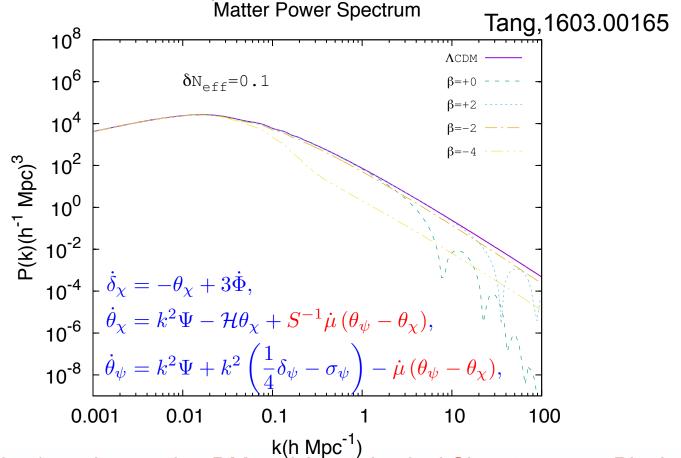
DM

Effects on LSS

Parametrize the cross section ratio

$$u_0 \equiv \left[\frac{\sigma_{\chi\psi}}{\sigma_{\rm Th}}\right] \left[\frac{100{\rm GeV}}{m_{\chi}}\right], u_{\beta}(T) = u_0 \left(\frac{T}{T_0}\right)^{\beta},$$

where $\sigma_{\rm Th}$ is the Thomson cross section, $0.67 \times 10^{-24} {\rm cm}^{-2}$.



A Light Dark Photon

Lagrangian

Ko&*Tang*,1608.01083

$$\mathcal{L} = -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + D_{\mu}\Phi^{\dagger}D^{\mu}\Phi + \bar{\chi}\left(i\not{D} - m_{\chi}\right)\chi + \bar{\psi}i\not{D}\psi$$
$$-\left(y_{\chi}\Phi^{\dagger}\bar{\chi}^{c}\chi + y_{\psi}\Phi\bar{\psi}N + h.c.\right) - V(\Phi, H),$$

- DM χ (+1), dark radiation ψ (+2), scalar(+2)
- U(1) symmetry (unbroken), massless dark photon V_{μ}

$$\Omega h^2 \simeq 0.1 \times \left(\frac{y_{\chi}}{0.7}\right)^{-4} \left(\frac{m_{\chi}}{\text{TeV}}\right)^2$$
.

• Φ can decay into ψ and N.

Dark Radiation δN_{eff}

Effective Number of Neutrinos, Neff

$$\rho_R = \left[1 + N_{\text{eff}} \times \frac{7}{8} \left(\frac{4}{11}\right)^{4/3}\right] \rho_{\gamma},$$

$$\rho_{\gamma} \propto T_{\gamma}^4$$

- In SM cosmology, N_{eff} = 3.046, neutrinos decouple around MeV, and then stream freely.
- Cosmological bounds

Joint CMB+BBN, 95% CL preferred ranges Planck 2015, arXiv:1502.01589

$$N_{\text{eff}} = \begin{cases} 3.11_{-0.57}^{+0.59} & \text{He+}Planck \text{TT+lowP,} \\ 3.14_{-0.43}^{+0.44} & \text{He+}Planck \text{TT+lowP+BAO,} \\ 2.99_{-0.39}^{+0.39} & \text{He+}Planck \text{TT,TE,EE+lowP,} \end{cases}$$

Constraint on New Physics

$$N_{
m eff} < 3.7$$
 $m_{
m v,\,sterile}^{
m eff} < 0.52~{
m eV}$ 95%, $Planck~TT+lowP+lensing+BAO$. Yong TANG(U.Tokyo) Interacting DM and Astrophysical Signature Pitt

Dark Radiation δN_{eff}

Massless dark photon and fermion will contribute

$$\delta N_{\text{eff}} = \left(\frac{8}{7} + 2\right) \left[\frac{g_{*s} (T_{\nu})}{g_{*s} (T^{\text{dec}})} \frac{g_{*s}^{D} (T^{\text{dec}})}{g_{*s}^{D} (T_{D})} \right]^{\frac{4}{3}},$$

where T_{ν} is neutrino's temperature,

 g_{*s} counts the effective number of dof for entropy density in SM,

 g_{*s}^D denotes the effective number of dof being in kinetic equilibrium with V_{μ} .

For instance, when $T^{\rm dec}\gg m_t\simeq 173{\rm GeV}$ for $|\lambda_{\Phi H}|\sim 10^{-6}$, we can estimate $\delta N_{\rm eff}$ at the BBN epoch as

$$\delta N_{\text{eff}} = \frac{22}{7} \left[\frac{43/4}{427/4} \frac{11}{9/2} \right]^{\frac{4}{3}} \simeq 0.53,$$
 (1)

δN_{eff}=0.4~1 for relaxing tension in Hubble constant

Scattering Cross Section

The averaged cross section $\langle \sigma_{\chi\psi} \rangle$ can be estimated from the squared matrix element for $\chi\psi \to \chi\psi$:

$$\overline{|\mathcal{M}|^2} \equiv \frac{1}{4} \sum_{\text{pol}} |\mathcal{M}|^2 = \frac{2g_X^4}{t^2} \left[t^2 + 2st + 8m_\chi^2 E_\psi^2 \right], \quad (9)$$

where the Mandelstam variables are $t = 2E_{\psi}^{2} (\cos \theta - 1)$ and $s = m_{\chi}^{2} + 2m_{\chi}E_{\psi}$, where θ is the scattering angle, and E_{ψ} is the energy of incoming ψ in the rest frame of χ . Integrated with a temperature-dependent Fermi-Dirac distribution for E_{ψ} , we find that $\langle \sigma_{\chi\psi} \rangle$ goes roughly as $g_{\chi}^{4}/(4\pi T_{D}^{2})$.

 In general, the cross section could have different temperature dependence, depending on the underlying particle models.

Numerical Results

We take the central values of six parameters of Λ CDM from Planck,

$$\Omega_b h^2 = 0.02227$$
, Baryon density today $\Omega_c h^2 = 0.1184$, CDM density today $100\theta_{\rm MC} = 1.04106$, $100 \times {\rm approximation~to~} r_*/D_A$ $\tau = 0.067$, Thomson scattering optical depth $\ln\left(10^{10}A_s\right) = 3.064$, Log power of primordial curvature perturbations $n_s = 0.9681$, Scalar Spectrum power-law index

which gives $\sigma_8 = 0.817$ in vanilla ΛCDM cosmology.

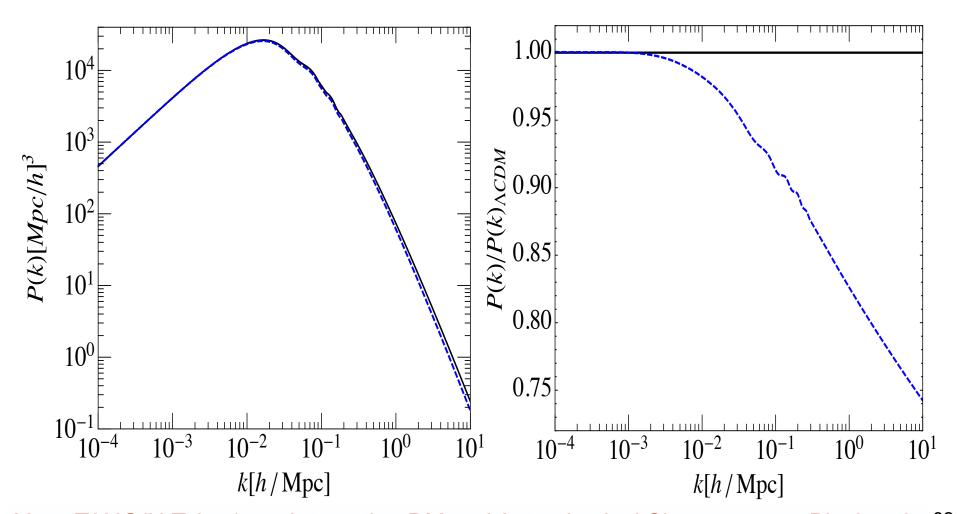
With the same input as above, now take

$$\delta N_{\rm eff} \simeq 0.53, m_\chi \simeq 100 {\rm GeV} \ {\rm and} \ g_X^2 \simeq 10^{-8}$$

in the interacting DM case, we have $\sigma_8 \simeq 0.744$.

Matter Power Spectrum

DM-DR scattering causes diffuse damping at relevant scales, resolving σ_8 problem



Residual Non-Abelian DM&DR

Ko&Tang, 1609.02307

 Consider SU(N) Yang-Mills gauge fields and a Dark

$$\mathcal{L} = -\frac{1}{4} F^{a}_{\mu\nu} F^{a\mu\nu} + (D_{\mu}\Phi)^{\dagger} (D^{\mu}\Phi) - \lambda_{\phi} (|\Phi|^{2} - v_{\phi}^{2}/2)^{2},$$

Take SU(3) as an example,

$$A_{\mu}^{a}t^{a} = \frac{1}{2} \begin{pmatrix} A_{\mu}^{3} + \frac{1}{\sqrt{3}}A_{\mu}^{8} & A_{\mu}^{1} - iA_{\mu}^{2} & A_{\mu}^{4} - iA_{\mu}^{5} \\ A_{\mu}^{1} + iA_{\mu}^{2} & -A_{\mu}^{3} + \frac{1}{\sqrt{3}}A_{\mu}^{8} & A_{\mu}^{6} - iA_{\mu}^{7} \\ A_{\mu}^{4} + iA_{\mu}^{5} & A_{\mu}^{6} + iA_{\mu}^{7} & -\frac{2}{\sqrt{3}}A_{\mu}^{8} \end{pmatrix}.$$

$$\bullet \quad SU(3) \rightarrow SU(2)$$

$$\langle \Phi \rangle = \begin{pmatrix} 0 & \frac{v_{\phi}}{\sqrt{2}} \end{pmatrix}^{T}, \Phi = \begin{pmatrix} 0 & \frac{v_{\phi} + \phi(x)}{\sqrt{2}} \end{pmatrix}^{T},$$

The massive gauge bosons $A^{4,\dots,8}$ as dark matter obtain masses,

$$m_{A^{4,5,6,7}} = \frac{1}{2}gv_{\phi}, \ m_{A^8} = \frac{1}{\sqrt{3}}gv_{\phi},$$

and massless gauge bosons $A^{1,2,3}_{\mu}$. The physical scalar ϕ can couple to $A^{4,\cdots,8}_{\mu}$ at tree level and to $A^{1,2,3}$ at loop level.

$$SU(N) \to SU(N-1)$$

- 2N-1 massive gauge bosons: Dark Matter
- (N-1)²-1 massless gauge bosons: Dark Radiation
- mass spectrum

$$m_{A^{(N-1)^2,...,N^2-2}} = \frac{1}{2}gv_{\phi}, \ m_{A^{N^2-1}} = \frac{\sqrt{N-1}}{\sqrt{2N}}gv_{\phi},$$

This can be proved by looking at the structure of f^{abc} . Divide the generators t^a into two subset,

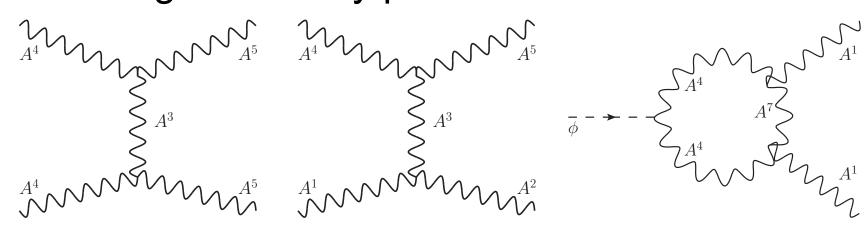
$$a \subset [1, 2, ..., (N-1)^2 - 1], a \subset [(N-1)^2, ..., N^2 - 1].$$

Since $[t^a, t^b] = if^{abc}t^c$ for the first subset forms closed SU(N-1) algebra, we have $f^{abc} = 0$ when only one of a, b and c is from the second subset. If one index is $N^2 - 1$, then other two must be among the second subset to give no vanishing f^{abc} , because t^{N^2-1} commutes with t^a from SU(N-1).

Phenomenology

Scattering and decay processes

Ko&Tang, 1609.02307



Constraints

$$\delta N_{
m eff} = rac{8}{7} \left[(N-1)^2 - 1
ight] imes 0.055,$$
 \bullet N<6 if thermal $g^2 \lesssim rac{T_{\gamma}}{T_A} \left(rac{m_A}{M_P}
ight)^{1/2} \sim 10^{-7},$ \bullet small coupling, \bullet non-thermal property $rac{m_A}{T_{
m rob}} \sim \ln \left[rac{\Omega_b M_P g^4}{\Omega_X m_B n}
ight] \sim \mathcal{O}(30).$

- N<6 if thermal
- non-thermal production,
- low reheating temperature

Schmaltz et al(2015) EW charged DM

Chiral Dark Radiation

Ko, Nagata, Tang, 1706.05605

	S	χ_L	$\overline{\chi}_R$	Ψ_1	Ψ_2	$\overline{\Psi}_1$	$\overline{\Psi}_2$
$\overline{\mathrm{SU}(N)}$	1	1	1	N	N	$\overline{\mathbf{N}}$	$\overline{\mathbf{N}}$
U(1)	0	+1	-1	Q_Ψ	$-Q_{\Psi}$	$-(Q_\Psi-2)$	$Q_\Psi-2$
						-1	

Lagrangian

Other context, Harigaya&Nomura, 1603.03430

$$\mathcal{L}_{\text{hid}} = \sum_{i=1,2} \Psi_i^{\dagger} \overline{\sigma}^{\mu} i \mathcal{D}_{\mu} \Psi_i + \sum_{i=1,2} \overline{\Psi}_i^{\dagger} \overline{\sigma}^{\mu} i \mathcal{D}_{\mu} \overline{\Psi}_i + \overline{\chi} \left(i \mathcal{D} - m_{\chi} \right) \chi + \frac{1}{2} \partial_{\mu} S \partial^{\mu} S$$
$$- \left\{ y \overline{\chi}_R \chi_L S + \text{h.c.} \right\} - V_{\text{sca}} ,$$
$$V_{\text{sca}} = \frac{1}{2} m_S^2 S^2 + \left(\mu_{S\Phi} S + \lambda_{S\Phi} S^2 \right) \Phi^{\dagger} \Phi + \xi_S S + \frac{\kappa_S}{2!} S^3 + \frac{\lambda_S}{4!} S^4$$

DM χ is like dark lepton

Model Features

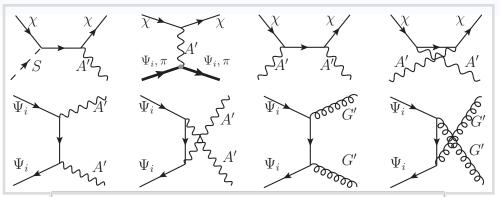
- Chiral fermions' mass terms are forbidden by the symmetries, acting as dark radiation,
- U(1) coupling is small, ~10⁻³⁻⁴, approximate flavour symmetry, $SU(2)_L \times SU(2)_R$
- Below SU(N) confinement(≤ 1eV), light dark pions arise, also massive but light dark gauge boson because the condense breaks U(1),

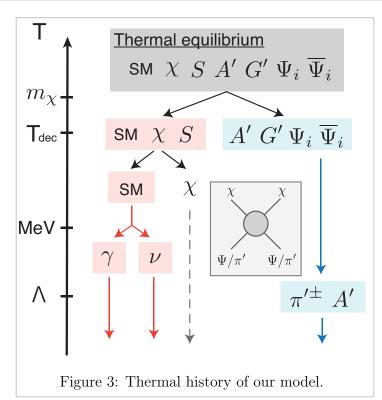
$$\langle \overline{\Psi}\Psi \rangle \equiv \langle \Psi_1 \overline{\Psi}_1 + \Psi_1^{\dagger} \overline{\Psi}_1^{\dagger} \rangle = \langle \Psi_2 \overline{\Psi}_2 + \Psi_2^{\dagger} \overline{\Psi}_2^{\dagger} \rangle \neq 0 ,$$

dark pion and gauge boson as dark radiation.

 Scattering between DM and DR induces diffuse damping and can suppress the matter power spectrum.

Thermal History





- Equilibrium at High T,
- kinetic decoupling of chiral sector,
- Chemical decoupling of DM from SM,
- DM scatters with chiral fermions/NG bosons through U(1) gauge interaction, till matter domination.
- Neff constrains the confinement scale
 <1eV

$$N = 2, \delta N_{\text{eff}} = 0.59(0.97)$$

Other Related Work

- Partially Acoustic DM, Chacko, Cui, Hong, Okui, and Tsai, arXiv:1609.03569
- Partially Acoustic DM and Cosmological Constraints, Raveri, Hu, Hoffman, Wang, arXiv:1709.04877
- Lyman-alpha forest and DM-DR interaction, Krall, Cyr-Racine and Dvorkin, arXiv:1705.08894
- Interacting Dark Sector and Precision Cosmology, Buen-Abad, Schmaltz, Lesgourgues, Brinckmann, arXiv:1708.09406
- Dark Catalysis, Agrawal, Cyr-Racine, Randall, Scholtz, arXiv:1702.05482
- •

Summary

- We discussed possible cosmological effects in some interacting Dark Matter models with Dark Radiation
- Such scenarios are motivated theoretically and also from observational tensions, ex: H_0 and σ_8
- It might be possible to resolve two tensions by modifying the DM sector
- We present several particle physics models:
 - A massless dark photon with unbroken gauged U(1)
 - Residual non-Abelian DM and DR
 - Hidden charged DM with chiral fermions

Thanks for your attention.