Coherent elastic neutrino-nucleus scattering and Nonstandard neutrino Interactions

Jiajun Liao

University of Hawaii

with D. Marfatia, based on work in
Phys. Lett. B 775, 54 (2017)
[arXiv:1708.04255]

Outline

- COHERENT experiment
- Nonstandard Interactions
- COHERENT constraints on NSI
- Summary

Outline

- COHERENT experiment
- Nonstandard Interactions
- COHERENT constraints on NSI
- Summary

Coherent Elastic neutrinoNucleus Scattering (CEvNS)

Moment transfer $\longrightarrow Q \lesssim 1 / R \longleftarrow$ Nuclear radius
Can be Satisfied for $E_{v}<50 \mathrm{MeV}$

$$
\text { Nuclear recoil energy } \quad E_{r} \leq \frac{2 E_{v}^{2}}{M+2 E_{v}} \sim 50 \mathrm{keV}
$$

DM direct detection experiments
\longrightarrow detection thresholds of 10 keV

Coherent effects of a weak neutral current

Daniel Z. Freedman \dagger
National Accelerator Laboratory, Batavia, Illinois 60510
and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790
(Received 15 October 1973; revised manuscript received 19 November 1973)

Abstract

If there is a weak neutral current, then the elastic scattering process $\nu+A \rightarrow \nu+A$ should have a sharp coherent forward peak just as $e+A \rightarrow e+A$ does. Experiments to observe this peak can give important information on the isospin structure of the neutral current. The experiments are very difficult, although the estimated cross sections (about $10^{-38} \mathrm{~cm}^{2}$ on carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasicoherent nuclear excitation processes $\nu+A \rightarrow \nu+A^{*}$ provide possible tests of the conservation of the weak neutral current. Because of strong coherent effects at very low energies, the nuclear elastic scattering process may be important in inhibiting cooling by neutrino emission in stellar collapse and neutron stars.

CEvNS in the SM

$$
\mathcal{L}_{N C}^{S M}=-\frac{G_{F}}{\sqrt{2}} \sum_{\substack{q=u, d \\ \alpha=e, \mu, \tau}}\left[\bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\alpha}\right]\left(g_{L}^{q}\left[\bar{q} \gamma_{\mu}\left(1-\gamma^{5}\right) q\right]+g_{R}^{q}\left[\bar{q} \gamma_{\mu}\left(1+\gamma^{5}\right) q\right]\right)
$$

$$
\frac{d \sigma}{d E_{r}}=\frac{G_{F}^{2} M}{2 \pi} F^{2}\left(Q^{2}\right)\left[\left(G_{V}+G_{A}\right)^{2}+\left(G_{V}-G_{A}\right)^{2}\left(1-\frac{E_{r}}{E_{\nu}}\right)^{2}-\left(G_{V}^{2}-G_{A}^{2}\right) \frac{M E_{r}}{E_{\nu}^{2}}\right]
$$

$$
G_{V}=g_{p}^{V} Z+g_{n}^{V} N \quad \mathrm{~F}\left(Q^{2}\right): \text { Nuclear form factor } \quad Q^{2}=2 M E_{r}
$$

$$
G_{A}=g_{p}^{A}\left(Z_{+}-Z_{-}\right)+g_{n}^{A}\left(N_{+}-N_{-}\right)
$$

Small for most nuclei

For $E_{r} \ll E_{v}$

$$
\frac{d \sigma_{\alpha}}{d E_{r}}=\frac{G_{F}^{2}}{2 \pi} Q_{\alpha}^{2} F^{2}\left(2 M E_{r}\right) M\left(2-\frac{M E_{r}}{E_{\nu}^{2}}\right)
$$

SM nuclear Charge $Q_{\alpha, \mathrm{SM}}^{2}=\left(Z g_{p}^{V}+N g_{n}^{V}\right)^{2}$

$$
\begin{aligned}
& g_{p}^{V}=\frac{1}{2}-2 \sin ^{2} \theta_{W} \sim 0.04 \\
& g_{n}^{V}=-\frac{1}{2} \quad \longrightarrow \sigma_{S M} \propto N^{2}
\end{aligned}
$$

COHERENT experiment

Fig. 2. COHERENT detectors populating the "neutrino alley" at the SNS (34). Locations in this basement corridor profit from more than 19 m of continuous shielding against beam-related neutrons, and a modest 8 m.w.e. overburden able to reduce cosmic-ray induced backgrounds, while sustaining an instantaneous neutrino flux as high as $1.7 \times 10^{11} v_{\mathrm{u}} / \mathrm{cm}^{2} \mathrm{~s}$.

COHERENT data

134 ± 22 events observed
173 ± 48 events predicted in the SM
6.7。 CL evidence for CEvNS

Neutrino Flux

Stopped π^{-}captured on target nuclei
$\pi^{+} \rightarrow \mu^{+}+\nu_{\mu} \quad$ Two body decay $\rightarrow \mu^{+} \rightarrow e^{+}+\bar{\nu}_{\mu}+\nu_{e}$
Three body decay

$$
\phi_{\nu_{\mu}}\left(E_{\nu}\right)=\delta\left(E_{\nu}-\frac{m_{\pi}^{2}-m_{\mu}^{2}}{2 m_{\pi}}\right),
$$

$$
\phi_{\bar{\nu}_{\mu}}\left(E_{\nu}\right)=\frac{64 E_{\nu}^{2}}{m_{\mu}^{3}}\left(\frac{3}{4}-\frac{E_{\nu}}{m_{\mu}}\right),
$$

$$
\phi_{\nu_{e}}\left(E_{\nu}\right)=\frac{192 E_{\nu}^{2}}{m_{\mu}^{3}}\left(\frac{1}{2}-\frac{E_{\nu}}{m_{\mu}}\right),
$$

$$
N_{\alpha}^{i}=\frac{r N_{\mathrm{POT}}}{4 \pi L^{2}} \times \frac{2 m_{\mathrm{det}}}{M_{\mathrm{CSI}}} N_{A} \times \int d n_{\mathrm{PE}} f\left(n_{\mathrm{PE}}\right) \frac{d E_{r}}{d n_{\mathrm{PE}}} \int d E_{\nu} \phi_{\alpha}\left(E_{\nu}\right) \frac{d \sigma_{\alpha}}{d E_{r}}\left(E_{\nu}, E_{r}\right)
$$

$r=0.08$ is the number of neutrinos per flavor for each proton on target
$N_{\text {POT }}=1.76 \times 10^{23}$ is the total number of protons delivered to the target
$L=19.3 \mathrm{~m}$ is the distance between the source and the CsI detector
$m_{\text {det }}=14.6 \mathrm{~kg}$ is the mass of detector, $M_{C S I}$ is the molar mass of CsI
"Approximately 1.17 photoelectrons are expected per keV of cesium or iodine nuclear recoil energy"

$$
n_{\mathrm{PE}}=1.17\left(\frac{E_{r}}{\mathrm{keV}}\right)
$$

COHERENT Collaboration, Science (2017)

SM spectrum

Sterile neutrinos: Anderson et al. 2012; Dutta et al. 2015; Kosmas et al. 2017
Neutrinos magnetic moment: Dodd et al. 1991; Scholberg 2005; Kosmas et al. 2015 Light dark matter: deNiverville et al. 2015

Nonstandard neutrino interactions:
Barranco et al. 2005, 2007; Scholberg 2005;
Dutta et al. 2015; Lindner et al. 2016; Dent et
al. 2016; Coloma et al. 2017; Shoemaker 2017
see also COHERENT Collaboration, Science (2017), Coloma et al. 1708.02899

Outline

- COHERENT experiment
- Nonstandard Interactions
- COHERENT constraints on NSI
- Summary

Matter NSI

$$
\mathcal{L}_{N C}^{S M}=-\frac{G_{F}}{\sqrt{2}} \sum_{\substack{q=u, d \\ \alpha=e, \mu, \tau}}\left[\bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\alpha}\right]\left(g_{L}^{q}\left[\bar{q} \gamma_{\mu}\left(1-\gamma^{5}\right) q\right]+g_{R}^{q}\left[\bar{q} \gamma_{\mu}\left(1+\gamma^{5}\right) q\right]\right)
$$

$$
\left.\mathcal{L}_{N C}^{N S I}=-\frac{G_{F}}{\sqrt{2}} \sum_{\substack{q=u, d \\ \alpha, \beta=e, \mu, \tau}}\left[\bar{\nu}_{\alpha} \gamma^{\mu}\left(1-\gamma^{5}\right) \nu_{\beta}\right]\left(\varepsilon_{\alpha \beta}^{q L}\left[\bar{q} \gamma_{\mu}\left(1-\gamma^{5}\right) q\right]+\varepsilon_{\alpha \beta}^{q R}\left[\bar{q} \gamma_{\mu}\left(1+\gamma^{5}\right) q\right]\right)\right)
$$

Modification of matter potential via the MSW mechanism

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+A\left(\begin{array}{ccc}
1 & \begin{array}{cc}
\varepsilon_{e e} & \varepsilon_{e \mu} \\
\varepsilon_{e \tau} \\
\varepsilon_{e \mu}^{*} & \varepsilon_{\mu \mu} \\
\varepsilon_{\mu \tau} \\
\varepsilon_{e \tau}^{*} & \varepsilon_{\mu \tau}^{*}
\end{array} & \varepsilon_{\tau \tau}
\end{array}\right)\right]\left(\begin{array}{l}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Effective parameters

$$
\begin{aligned}
\varepsilon_{\alpha \beta} \equiv \sum_{f, C} \varepsilon_{\alpha \beta}^{f C} \frac{N_{f}}{N_{e}} & A \equiv 2 \sqrt{2} G_{F} N_{e} E \\
\epsilon_{\alpha \beta}^{f V} \equiv \epsilon_{\alpha \beta}^{f L}+\epsilon_{\alpha \beta}^{f R} & \text { On earth } N_{u}=N_{d}=3 N_{e}
\end{aligned}
$$

JL, D. Marfatia, K. Whisnant, Phys. Lett. B 767, 350 (2017)

NOvA: 810 km, E ~ 2 GeV
T2K: 295 km, E ~ 0.6 GeV

$$
\epsilon_{\tau \tau}=0.6 \text { and } \epsilon_{e \tau}=1.2
$$

Solar neutrinos produced at the center of the Sun, and travel large distance through the Earth during the night KamLAND: <L>~180 km
$\longleftarrow \epsilon_{e e}^{u}=\epsilon_{e e}^{d} \sim 0.1$
JL, D. Marfatia, K. Whisnant,
Phys. Lett. B 771, 247(2017)

Global Analysis

Gonzalez-Garcia, Maltoni [1307.3092]

		90% CL		3σ	
Param.	best-fit	LMA	LMA \oplus LMA-D	LMA	LMA \oplus LMA-D
$\varepsilon_{e e}^{u}-\varepsilon_{\mu \mu}^{u}$	+0.298	$[+0.00,+0.51]$	$\oplus[-1.19,-0.81]$	$-0.09 .+0.71]$	$\oplus[-1.40 .-0.68\rangle$
$\varepsilon_{\tau \tau}^{u}-\varepsilon_{\mu \mu}^{u}$	+0.001	$[-0.01,+0.03]$	$[-0.03,+0.03]$	$[-0.03,+0.20]$	$[-0.19,+0.20]$
$\varepsilon_{e \mu}^{u}$	-0.021	$[-0.09,+0.04]$	$[-0.09,+0.10]$	$[-0.16,+0.11]$	$[-0.16,+0.17]$
$\varepsilon_{e \tau}^{u}$	+0.021	$[-0.14,+0.14]$	$[-0.15,+0.14]$	$[-0.40,+0.30]$	$-0.40,+0.40$
$\varepsilon_{\mu \tau}^{u}$	-0.001	$[-0.01,+0.01]$	$[-0.01,+0.01]$	$[-0.03,+0.03]$	$[-0.03,+0.03]$
ε_{D}^{u}	-0.140	$[-0.24,-0.01]$	$\oplus[+0.40,+0.58]$	$[-0.34,+0.04]$	$\oplus[+0.34,+0.67]$
ε_{N}^{u}	-0.030	$[-0.14,+0.13]$	$[-0.15,+0.13]$	$[-0.29,+0.21]$	$[-0.29,+0.21]$
$\varepsilon_{e e}^{d}-\varepsilon_{\mu \mu}^{d}$	+0.310	$[+0.02,+0.51]$	$\oplus[-1.17,-1.03]$	$[-0.10,+0.71]$	$\oplus[-1.44,-0.87]$
$\varepsilon_{\tau \tau}^{d}-\varepsilon_{\mu \mu}^{d}$	+0.001	$[-0.01,+0.03]$	$[-0.01,+0.03]$	$[-0.03,+0.19]$	$[-0.16,+0.19]$
$\varepsilon_{e \mu}^{d}$	-0.023	$[-0.09,+0.04]$	$[-0.09,+0.08]$	$[-0.16,+0.11]$	$[-0.16,+0.17]$
$\varepsilon_{e \tau}^{d}$	+0.023	$[-0.13,+0.14]$	$[-0.13,+0.14]$	$[-0.38,+0.29]$	$[-0.38,+0.35]$
$\varepsilon_{\mu \tau}^{d}$	-0.001	$[-0.01,+0.01]$	$[-0.01,+0.01]$	$[-0.03,+0.03]$	$[-0.03,+0.03]$
ε_{D}^{d}	-0.145	$[-0.25,-0.02]$	$\oplus[+0.49,+0.57]$	$[-0.34,+0.05]$	$\oplus[+0.42,+0.70]$
ε_{N}^{d}	-0.036	$[-0.14,+0.12]$	$[-0.14,+0.12]$	$[-0.28,+0.21]$	$[-0.28,+0.21]$

Future experiments

DUNE: 1300 km, E ~ 3 GeV
T2HK: 295 km, E ~ 0.6 GeV
T2HKK-1.5: 295 km, E ~ 0.6 GeV $1100 \mathrm{~km}, \mathrm{E} \sim 0.8 \mathrm{GeV}$
T2HKK-2.5: $295 \mathrm{~km}, \mathrm{E} \sim 0.6 \mathrm{GeV}$ 1100 km, E ~ 0.6 GeV

Generalized MH

$$
\begin{aligned}
& \Delta m_{31}^{2} \rightarrow-\Delta m_{32}^{2} \\
& \sin \theta_{12} \leftrightarrow \cos \theta_{12} \\
& \delta \rightarrow \pi-\delta \\
& \epsilon_{e e} \rightarrow-\epsilon_{e e}-2, \\
& \epsilon_{\alpha \beta} \rightarrow-\epsilon_{\alpha \beta}^{*} \quad(\alpha \beta \neq e e)
\end{aligned}
$$

$\Longleftrightarrow H \rightarrow-H^{*}$
Same oscillation probabilities
Coloma, Schwetz [1604.05772]

JL, D. Marfatia, K. Whisnant, JHEP 1701, 071 (2017)

$\delta^{\prime}=\delta$ holds when $\epsilon=0$

Large NSI Models

Above EW scale, CLFV impose very tight constraints: $\varepsilon<O\left(10^{-3}\right)$
Below EW scale, large NSI is generated with a light gauge boson X

propagator $\propto \frac{g_{X}^{2}}{q^{2}-m_{X}^{2}}$
Farzan, Phys. Lett. B748, 311 (2015)
Farzan and Shoemaker, JHEP 07033 (2016)
Farzan and Heeck, Phys. Rev. D94, 053010 (2016)
Coherent forward scattering

$$
\begin{aligned}
& q^{2} \rightarrow 0 \quad \varepsilon \propto \frac{g_{X}^{2} m_{W}^{2}}{m_{X}^{2}} \\
& g_{X} \sim 10^{-5}, m_{X} \sim 10 \mathrm{MeV}, \varepsilon \sim O(1)
\end{aligned}
$$

NuTeV and CHARM: $q^{2} \geq 10 \mathrm{GeV}$ For $q^{2} \gg m_{X}^{2}$, sensitivity to NSI is suppressed by $\frac{g_{X}^{2}}{q^{2}} m_{X}^{2}$

COHERENT?

Outline

- COHERENT experiment
- Nonstandard Interactions
- COHERENT constraints on NSI
- Summary

Light mediator

A purely vector mediator

$$
\mathcal{L}_{\mathrm{NSI}}=-g\left(\bar{\nu} \gamma^{\rho} \nu+\bar{\mu} \gamma^{\rho} \mu+\bar{u} \gamma^{\rho} u+\bar{d} \gamma^{\rho} d\right) Z_{\rho}^{\prime}
$$

Modified effective nuclear charge

$$
Q_{\alpha, \mathrm{NSI}}^{2}=\left[Z\left(g_{p}^{V}+\frac{3 g^{2}}{2 \sqrt{2} G_{F}\left(Q^{2}+M_{Z^{\prime}}^{2}\right)}\right)+N\left(g_{n}^{V}+\frac{3 g^{2}}{2 \sqrt{2} G_{F}\left(Q^{2}+M_{Z^{\prime}}^{2}\right)}\right)\right]^{2}
$$

Moment transfer

$$
Q^{2}=2 M E_{r}
$$

$$
M_{Z^{\prime}}=10 \mathrm{MeV} \text { and } g=10^{-4}
$$

$$
\chi^{2}=\sum_{i}\left[\frac{N_{\exp }^{i}-N_{\mathrm{NSI}}^{i}(1+\alpha)}{\sigma_{\mathrm{stat}}^{i}}\right]^{2}+\left(\frac{\alpha}{\sigma_{\alpha}}\right)^{2} \quad 12 \text { bins, } 6 \leq \mathrm{F}
$$

Propagator

NSI $\propto \frac{g^{2}}{2 M E_{r}+M_{Z^{\prime}}^{2}}$

For heavy mediators, i.e., $M_{Z^{\prime}} \gg \sqrt{2 M E_{r}}$, the limit depends on $\frac{g^{2}}{M_{Z,}^{2}}$ and can constrain NSI matter effect

For very light mediators, i.e., $M_{Z^{\prime}}<50 \mathrm{MeV}$, the limit is only sensitive to g, while the NSI matter effect is sensitive to $\frac{g^{2}}{M_{Z}^{2},}$, hence the COHERENT constraint does not apply to matter NSI induced by a very light mediator.

$$
\chi^{2}=\sum_{i}\left[\frac{N_{\text {exp }}^{i}-N_{\mathrm{NSI}}^{i}(1+\alpha)}{\sigma_{\mathrm{stat}}^{i}}\right]^{2}+\left(\frac{\alpha}{\sigma_{\alpha}}\right)^{2} \quad 12 \text { bins, } 6 \leq \mathrm{P}
$$

For very light mediator, modification of the spectral shapes breaks the degeneracy.

Heavy mediator

$$
Q_{\alpha}^{2}=\left[Z\left(g_{p}^{V}+2 \epsilon_{\alpha \alpha}^{u V}+\epsilon_{\alpha \alpha}^{d V}\right)+N\left(g_{n}^{V}+\epsilon_{\alpha \alpha}^{u V}+2 \epsilon_{\alpha \alpha}^{d V}\right)\right]^{2}+\sum_{\beta \neq \alpha}\left[Z\left(2 \epsilon_{\alpha \beta}^{u V}+\epsilon_{\alpha \beta}^{d V}\right)+N\left(\epsilon_{\alpha \beta}^{u V}+2 \epsilon_{\alpha \beta}^{d V}\right)\right]^{2} .
$$

$$
\text { (a) } \epsilon_{e e}^{u V} \neq 0, \epsilon_{e e}^{d V} \neq 0
$$

$$
\text { (b) } \epsilon_{\mu \mu}^{u V} \neq 0, \epsilon_{\mu \mu}^{d V} \neq 0
$$

$$
Z g_{p}^{V}+N g_{n}^{V}= \pm\left[Z\left(g_{p}^{V}+2 \epsilon_{\alpha \alpha}^{u V}+\epsilon_{\alpha \alpha}^{d V}\right)+N\left(g_{n}^{V}+\epsilon_{\alpha \alpha}^{u V}+2 \epsilon_{\alpha \alpha}^{d V}\right)\right]
$$

Two Linear bands
Cancellation between the NSI coupling to up and down quarks permit large values of fundamental NSI parameters

Heavy mediator

$$
Q_{\alpha}^{2}=\left[Z\left(g_{p}^{V}+2 \epsilon_{\alpha \alpha}^{u V}+\epsilon_{\alpha \alpha}^{d V}\right)+N\left(g_{n}^{V}+\epsilon_{\alpha \alpha}^{u V}+2 \epsilon_{\alpha \alpha}^{d V}\right)\right]^{2}+\sum_{\beta \neq \alpha}\left[Z\left(2 \epsilon_{\alpha \beta}^{u V}+\epsilon_{\alpha \beta}^{d V}\right)+N\left(\epsilon_{\alpha \beta}^{u V}+2 \epsilon_{\alpha \beta}^{d V}\right)\right]^{2} .
$$

$$
\text { (c) } \epsilon_{e e}^{d V} \neq 0, \epsilon_{\mu \mu}^{d V} \neq 0
$$

$$
(\mathrm{d}) \epsilon_{e e}^{d V} \neq 0, \epsilon_{e \tau}^{d V} \neq 0
$$

$$
\left(Z g_{p}^{V}+N g_{n}^{V}\right)^{2}=\left[Z\left(g_{p}^{V}+\epsilon_{e e}^{d V}\right)+N\left(g_{n}^{V}+2 \epsilon_{e e}^{d V}\right)\right]^{2}+\left[Z \epsilon_{e \tau}^{d V}+2 N \epsilon_{e \tau}^{d V}\right]^{2}
$$

Effective NSI parameters

$$
\mathrm{i} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)=\frac{1}{2 E}\left[U\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \Delta m_{21}^{2} & 0 \\
0 & 0 & \Delta m_{31}^{2}
\end{array}\right) U^{\dagger}+A\left(\begin{array}{ccc}
1+\varepsilon_{e e} & \varepsilon_{e \mu} & \varepsilon_{e \tau} \\
\varepsilon_{e \mu}^{*} & \varepsilon_{\mu \mu} & \varepsilon_{\mu \tau} \\
\varepsilon_{e \tau}^{*} & \varepsilon_{\mu \tau}^{*} & \varepsilon_{\tau \tau}
\end{array}\right)\right]\left(\begin{array}{c}
\nu_{e} \\
\nu_{\mu} \\
\nu_{\tau}
\end{array}\right)
$$

Effective parameters
On earth $N_{u}=N_{d}=3 N_{e} \quad \epsilon_{\alpha \beta} \equiv \sum_{f} \epsilon_{\alpha \beta}^{f V} \frac{N_{f}}{N_{e}}$
$\epsilon_{\alpha \alpha} \approx 3\left(\epsilon_{\alpha \alpha}^{u V}+\epsilon_{\alpha \alpha}^{d V}\right)$
$-0.95 \leq \epsilon_{e e} \leq 1.95, \quad-0.66 \leq \epsilon_{\mu \mu} \leq 1.57$.
For heavy mediators $M_{Z \prime}>50 \mathrm{MeV}$ $\epsilon_{e e}=-2$ is excluded at $90 \% \mathrm{CL}$

Summary

Parameter degeneracies due to the NSI parameters strongly affect sensitivities of future neutrino oscillation experiments.
COHERENT constraints on NSI depend on the mediator mass.

- For a lighter mediator, COHERENT data only constrain the mediator coupling, and large NSI can still be generated by a very light mediator.
- For a heavier mediator, the COHERENT constraints are weakened by degeneracies between different combinations of fundamental NSI parameters. However, the data can place meaningful constraints on the effective NSI parameters in Earth matter for mediator $M_{Z^{\prime}}>50 \mathrm{MeV}$.
Thank you!

Backup slides

Next generation long baseline experiments

JL, D. Marfatia, K. Whisnant, JHEP 1701, 071 (2017)

[^0]
Other results

COHERENT Collaboration, Science (2017)

Coloma et al. 1708.02899

Sterile neutrinos

$\Delta m_{41}^{2}=1.75 \mathrm{eV}^{2},\left|U_{e 4}\right|=0.164,\left|U_{\mu 4}\right|=0.119$
Collin et al. Phys. Rev. Lett. 117, 221801 (2016)

Multiple elements

Scholberg, Phys. Rev. D 73, 033005 (2006)

[^0]: For DUNE, $1 \mathrm{yr}=1.76 \times 10^{7} \mathrm{~s}$; for HyperK, $1 \mathrm{yr}=1.0 \times 10^{7} \mathrm{~s}$.

