Radiative Kähler moduli stabilization

Hajime Otsuka (Waseda U.)

arXiv:1711.10274

with

T. Kobayashi, N. Omoto and T. H. Tatsuishi (Hokkaido U.)

Introduction

The standard model of particle physics

Gauge group: $SU(3) \times SU(2) \times U(1)$

Matter content:

	spin1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$
quarks	$Q^i = (u_L, d_L)^i$	(3, 2, 1/6)
$(\times 3 \text{ families})$	u_R^i	$(\bar{3}, 2, -2/3)$
	d_R^i	$(\bar{3}, 1, 1/3)$
leptons	$L^i = (\nu, e_L)^i$	(1, 2, -1/2)
$(\times 3 \text{ families})$	e_R^i	(1, 1, 1)
	spin0	
Higgs	$H = (H^+, H^0)$	(1, 2, -1/2)

	spin1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$
gluon	g	(8, 1, 0)
W bosons	W^{\pm} W^0	(1, 3, 0)
B boson	B^0	(1, 1, 0)

Introduction

Problem:

No gravitational interaction in the standard model

String theory

A good candidate for the unified theory of the gauge and gravitational interactions

Introduction

Problem:

No gravitational interaction in the standard model

String theory

A good candidate for the unified theory of the gauge and gravitational interactions

(Perturbative) superstring theory requires the extra 6 dimension.

- OThe geometric parameters of extra 6D dimensional space →4D scalar fields (called moduli)
- OUnless they are stabilized, it will lead to unobserved fifth forces.
- OStabilization of the extra dimensional space
- → Moduli stabilization (creating a moduli potential)

Moduli are ubiquitous in string compactifications

O Good candidate of inflaton

O Supersymmetry breaking

O Moduli cosmology

Moduli interact with matter fields gravitationally.

→Such long-lived particles affect the cosmology of the early Universe

(e.g., dark matter abundance, baryon asymmetry,...)

O Ultralight axions

In the LARGE volume scenario, (Type IIB string on Calabi-Yau (CY) manifold)

$$V_{\rm axion} \sim e^{-\mathcal{V}^{2/3}} \cos\left(\frac{a}{f}\right)$$

Axion mass is suppressed by the LARGE CY volume $\langle \mathcal{V} \rangle \gg l_s^6$ l_s : string length

Such an ultralight axion is a target of astrophysical and cosmological observations.

From such phenomenological points of view, it is quite important to discuss the moduli dynamics.

Outline

- O Introduction
- O Moduli stabilization in type IIB string
- (i) KKLT scenario
- (ii) LARGE volume scenario (LVS)
- **ORadiative Kähler moduli stabilization**

O Conclusion

Moduli fields (4D massless scalar fields):

Closed string moduli

-) Dilaton: S $\langle \operatorname{Re}(S) \rangle = g_s^{-1}$ g_s : string coupling
- ii) Kähler moduli : T Size of the internal cycles

iii) Complex structure moduli :U Shape

O String axions

Imaginary parts of moduli fields

e.g.

Integrating the 4-form C_4 over the internal 4-cycles Σ^i of internal manifold,

$$\sigma^i(x) = \int_{\Sigma^i} C_4$$

Kähler moduli : $T^i = \tau^i + i\sigma^i$, $(i = 1, 2, \dots, h^{1,1})$

 τ^i : The volume of 4-cycles

A lot of axions originating from higher dimensional form fields

O String axions

Imaginary parts of moduli fields

e.g.

Integrating the hol.3-form Ω over the internal 3-cycles $A^{\rm i}$ of internal manifold,

$$U^i(x) = \int_{A^i} \Omega$$

Complex structure moduli

$$i = 1, 2, \cdots, h^{2,1}$$

Flux compactification

Flux compactification is useful to stabilize the moduli fields.

Let us consider higher-dimensional Maxwell's theory on $R^{1,3} \times M$,

$$\int_{R^{1,3}\times M} F_p \wedge * F_p$$

When there exists a magnetic flux F_p in a cycle Σ_p of M

$$\int_{\Sigma_p} F_p = n \in Z$$

It generates a potential depending on the metric of extra dimension Generating moduli potential

Flux compactification in type IIB string on Calabi-Yau(CY)

Type IIB string on $R^{1,3} \times CY$,

$$\int_{R^{1,3}\times CY} G_3 \wedge * G_3$$

$$G_3 = F_3 - iSH_3 \quad : \text{three-form}$$

$$G_3 = G_3 - iSH_3 \quad : \text{three-form}$$

The fluxes on the three-cycle of CY (Σ_3) generate the moduli potential,

$$\int_{\Sigma_3} F_3 \qquad \int_{\Sigma_3'} H_3$$

We can stabilize the dilaton S and all the complex structure moduli Giddings-Kachru-Polchinski '02' U^i ($i = 1, 2, ..., h^{2,1}$).

 $h^{2,1}$: # of three-cycles of CY

Flux compactification in type IIB string on Calabi-Yau(CY)

After the Kaluza-Klein reductions, type IIB string on CY orientifold is described by 4D N=1 supergravity action.

Scalar potential (in units of $M_{\rm pl} = 2.4 \times 10^{18} {\rm GeV}$):

$$V = e^{K} \left(\sum_{I,J} K^{I\bar{J}} D_{I} W D_{\bar{J}} W - 3|W|^{2} \right)$$

$$D_{I} = \partial_{I} + K_{I}$$

The flux-induced superpotential

[Gukov-Vafa-Witten '00]

 $K_I = \partial_I K$

$$W = W_{\text{flux}}(S, U)$$

leads to the stabilization of S and U at the supersymmetric minimum.

$$D_SW = D_UW = 0$$

The remaining problem of string compactification is how to stabilize the Kähler moduli.

OKKLT scenario

[Kachru-Kallosh-Linde-Trivedi '03]

Non-perturbative effects

OLARGE volume scenario

[Balasubramanian-Berglund-Conlon-Quevedo '05]

Stringy correction(α' -corrections)+Non-perturbative effects

ORadiative Kahler moduli stabilization [Kobayas

[Kobayashi-Omoto-Otsuka-Tatsuishi '17]

Stringy correction(α' -corrections)+ radiative corrections from sparticles

Outline

- O Introduction
- O Moduli stabilization in type IIB string
- (i) KKLT scenario
- (ii) LARGE volume scenario (LVS)
- **ORadiative Kähler moduli stabilization**

O Conclusion

ONon-perturbative effects in the superpotential

$$K = -2\ln(\mathcal{V})$$
 $\mathcal{V}(T)$: CY volume $W = W_0 + \sum_i A_i e^{-a_i T_i}$ $W_0 = \langle W_{\mathrm{flux}} \rangle$

$$W_0 = \langle W_{\text{flux}} \rangle$$

$$V_F = e^K \left(K^{T_i \bar{T}_j} D_{T_i} W D_{\bar{T}_j} \bar{W} - 3|W|^2 \right)$$

Stabilization of Kähler moduli:

$$D_{T_i}W = \partial_{T_i}W + (\partial_{T_i}K)W = 0$$

$$\operatorname{Re}(T_i) \sim \frac{|\ln(W_0)|}{a_i} \gg 1$$

However, we require the tuning of W_0 to achieve $D_{T_i}W=0$.

1KKLT scenario

When the number of Kahler modulus is $h^{1,1} = 1$,

$$K = -3\ln(T + \overline{T})$$

$$W = W_0 + Ae^{-aT}$$

However, we require the tuning of W_0 to achieve $\text{Re}(T)\gg 1$.

OThe inclusion of stringy α' -corrections to the Kähler potential ONon-perturbative effects in the superpotential

$$K=-2\ln(\mathcal{V}+\xi)$$
 $\mathcal{V}(T)$: CY volume $W=W_0+\sum_i A_i e^{-a_i T_i}$ $W_0=\langle W_{\mathrm{flux}} \rangle$

$$W = W_0 + \sum_i A_i e^{-a_i T_i}$$

$$W_0 = \langle W_{\text{flux}} \rangle$$

The stringy α' -corrections (from 10D R^4 term)

Becker-Becker-Haack-Louis '02]

$$\xi \simeq -2.4 \times 10^{-3} \chi \, g_s^{-3/2}$$

 χ : Euler number of CY

 g_s : String coupling

For Calabi-Yau $P_{[1,1,1,6,9]}^4$ with two Kähler moduli,

Volume of CY:

$$\mathcal{V} = \tau_b^{3/2} - \tau_s^{3/2}$$

$$K = -2\ln(\mathcal{V} + \xi)$$

$$W = W_0 + A_s e^{-a_s T_s}$$

$$\tau_s = \text{Re}(T_s)$$

$$W = W_0 + A_s e^{-a_s T_s}$$

$$\tau_s = \operatorname{Re}(T_s)$$

The scalar potential:

$$V_F = \frac{a_s^2 |A_s|^2 e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{a_s |A_s W| \tau_s e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{3\xi |W|^2}{4\mathcal{V}^3} + \mathcal{O}\left(\frac{1}{\mathcal{V}^4}\right)$$

The two Kähler moduli are stabilized at

$$\langle \mathcal{V} \rangle \sim |W_0| e^{a_s \tau_s} \qquad \langle \tau_s \rangle \sim \xi^{2/3}$$

The two Kähler moduli are stabilized at

$$\langle \mathcal{V} \rangle \sim |W_0| e^{a_s \tau_s} \qquad \langle \tau_s \rangle \sim \xi^{2/3}$$

OCY volume is extremely large $\langle \mathcal{V} \rangle \sim |W_0| e^{a_s \tau_s} \gg 1$

OWe require the positive ξ

$$\xi \simeq -2.4 \times 10^{-3} \chi \, g_s^{-3/2} > 0$$

Euler number of CY should be negative, namely

$$\chi = 2(h^{1,1} - h^{2,1}) < 0 \iff h^{2,1} > h^{1,1}$$

of complex structure moduli > # of Kahler moduli

OUltralight axion:

Non-perturbative effects

$$W_{\text{non}} = A_b e^{-a_b T_b}$$
$$T_b = \tau_b + i\sigma_b$$

generate the potential of axion associated with volume modulus.

$$V_{\rm axion} \sim e^{-\mathcal{V}^{2/3}} \cos(a_b \sigma_b)$$

$$\langle \mathcal{V} \rangle \sim |W_0| e^{a_s \tau_s} \gg 1$$

LARGE volume leads to the tiny mass of axion.

Outline

- O Introduction
- O Moduli stabilization in type IIB string
- (i) KKLT scenario
- (ii) LARGE volume scenario (LVS)

ORadiative Kähler moduli stabilization

O Conclusion

Radiative Kähler moduli stabilization

OThe inclusion of matter fields Q_a living on D7-branes

D7-branes wrapping T_i

 $i \in \{1, 2, \cdots, h^{1, 1}\}$

$$K_{\text{matter}} = Z_{a\bar{a}}^{(i)} |Q_a|^2$$

Kähler metric: $Z_{a\bar{a}}^{(i)}=(T_i+\bar{T}_i)^{-n_i^a}$

Also, the gaugino fields localized on D7-branes

Gauge kinetic function :
$$f = \frac{T_i}{2\pi}$$

OThe inclusion of matter fields Q_a living on D7-branes

$$K = -2\ln(\mathcal{V} + \xi) + Z_{a\bar{a}}^{(i)}|Q_a|^2$$

$$W = W_0$$

$$W_0 = \langle W_{\text{flux}} \rangle$$

$$W_0 = \langle W_{\text{flux}} \rangle$$

Scalar potential :
$$V_{\alpha'} \simeq \frac{3\xi |W|^2}{4\mathcal{V}^3}$$

Volume modulus ${\mathcal V}$ runs away to ${\mathcal V} o \infty$

Moduli F-term

$$F^{T_i} = -e^K K^{T_i \bar{T}_j} K_{\bar{T}_j} \bar{W}_0 \neq 0$$

generates the soft masses

$$m_a^2 \simeq V_{\alpha'} + (1 - n_i^a) m_{3/2}^2$$
 $M_f \simeq m_{3/2}$
 $m_{3/2} \simeq W_0 / \mathcal{V}$

Sparticle masses depend on the CY volume,

$$m_a^2 \simeq V_{\alpha'} + (1 - n_i^a) m_{3/2}^2$$
 $M_f \simeq m_{3/2}$
 $m_{3/2} \simeq W_0 / \mathcal{V}$

→ Radiative corrections through the Coleman-Weinberg (CW) potential

$$V_{\text{CW}} = \frac{1}{32\pi^2} \int^{\Lambda^2} dk^2 k^2 \text{STr} \ln(k^2 + M^2)$$

$$\simeq \frac{c_1}{32\pi^2} \Lambda^2 m_{3/2}^2 + \mathcal{O}(m_{3/2}^4)$$

$$c_1 \simeq c_{\text{b}} - 2c_{\text{f}} + 4$$

We fix the cutoff scale $\Lambda=m_{
m KK}$ as the mass of Kaluza-Klein mode.

$$m_{\mathrm{KK}} = \frac{\sqrt{\pi}}{\mathcal{V}^{2/3}} M_{\mathrm{Pl}}$$

Scalar potential

 $\bigcirc \alpha'$ -corrections and radiative corrections

$$V_F = V_{\alpha'} + V_{\rm CW}$$

In units of $\Lambda = m_{\rm KK} = 1$

$$M_{\rm Pl} = \frac{\mathcal{V}^{2/3}}{\sqrt{\pi}} \qquad W_0 \equiv \hat{W}_0 M_{\rm Pl}^3$$

$$V_F \simeq \frac{|\hat{W}_0|^2}{\pi^2} \left[\frac{3\xi}{4\mathcal{V}^{1/3}} + \frac{c_1}{32\pi^2} \frac{\pi}{\mathcal{V}^{2/3}} \right]$$

Volume modulus is perturbatively stabilized at

$$\langle \mathcal{V} \rangle \simeq 18664 \left(-\frac{c_1/\xi}{10^3} \right)^3$$

From the positivity of $\langle \partial_{\mathcal{V}} \partial_{\mathcal{V}} V_F \rangle$ $c_1 > 0$ and $\xi < 0$

Volume modulus is perturbatively stabilized at

$$\langle \mathcal{V} \rangle \simeq 18664 \left(-\frac{c_1/\xi}{10^3} \right)^3$$
 $c_1 > 0 \text{ and } \xi < 0$

However, the potential energy becomes negative at this minimum,

$$V_F < 0$$

To achieve tiny cosmological constant, we introduce the anti-D3 branes

$$V_{\rm up} = \frac{\epsilon}{\mathcal{V}^2} M_{\rm Pl}^4$$

We have checked that such an uplifting term does not change the structure of moduli stabilization scenario.

OThe scalar potential in units of $\Lambda=m_{ m KK}$

$$e^{\langle K(S,U)\rangle/2}|\hat{W}_0| = 1$$
 $g_s = 0.1$ $\xi = -0.1$ $n_i^a = 0,$ $c_b = 120$ $c_f = 12.$

OMass scales of typical modes

Volume modulus

$$m_{\tau} \simeq 3.5 \times 10^{-3} |\hat{W}_0| \left(-\frac{10^3}{c_1/\xi}\right)^{3/2} (-\xi)^{1/2} m_{\text{KK}}$$

Gravitino

$$m_{3/2} \simeq 3.2 \times 10^{-2} \left(-\frac{10^3}{c_1/\xi} \right) |\hat{W}_0| m_{\rm KK}$$

Dilaton and Complex structure moduli

KK mode

$$m_{U,S} = N m_{3/2}$$

$$m_{\rm KK} = 1$$

Stringy mode

$$m_{\rm st} = 2.4 \left(\frac{g_s}{10^{-1}}\right)^{1/4} \left(-\frac{10^3}{c_1/\xi}\right)^{1/2} m_{\rm KK}$$

Planck scale

$$M_{\rm Pl} = 176 \left(-\frac{c_1/\xi}{10^3} \right)^2 m_{\rm KK}$$

$$m_{\tau}, m_{3/2} < m_U, m_S < m_{KK} < m_{st} < M_{Pl}$$

OMass scales of typical modes

$$e^{\langle K(S,U)\rangle/2}|\hat{W}_0| = 1$$
 $g_s = 0.1$ $\xi = -0.1$

$$c_1 \simeq c_b - 2c_f + 4$$
 $c_b^{(MSSM)} = 52$ $c_f^{(MSSM)} = 12$ $\mathcal{V} \simeq \kappa (T + \bar{T})^{3/2}$

Scale	$c_1 = 50$	$c_1 = 100$	$c_1 = 1000$
\mathcal{V}	691	5530	5.5×10^{6}
au	$39\kappa^{-2/3}$	$156\kappa^{-2/3}$	$1.6 \times 10^4 \kappa^{-2/3}$
$m_{\tau}[\mathrm{GeV}]$	1.7×10^{14}	1.5×10^{13}	4.8×10^9
$m_{3/2}[{ m GeV}]$	3.5×10^{15}	4.4×10^{14}	4.4×10^{11}
$m_{U,S}[{ m GeV}]$	$3.5N \times 10^{15}$	$4.4N \times 10^{14}$	$4.4N \times 10^{11}$
$m_{ m KK} [{ m GeV}]$	5.5×10^{16}	1.4×10^{16}	1.4×10^{14}
$m_{ m st} [{ m GeV}]$	9.1×10^{16}	3.2×10^{16}	1.0×10^{15}
$M_{\rm Pl}[{ m GeV}]$	2.4×10^{18}	2.4×10^{18}	2.4×10^{18}

Radiative Kähler moduli stabilization

- O The inclusion of α' -corrections and radiative corrections
- → Stabilization of CY volume without tuning flux-induced superpotential

$$\langle \mathcal{V} \rangle \simeq 18664 \left(-\frac{c_1/\xi}{10^3} \right)^3$$

O Large number of sparticle contributions

$$c_1 \simeq c_b - 2c_f + 4 = 10^{2-3}$$

O Positive Euler number of CY

$$\xi \simeq -2.4 \times 10^{-3} \chi \, g_s^{-3/2} < 0$$

$$\chi = 2(h^{1,1} - h^{2,1}) > 0 \iff h^{1,1} > h^{2,1}$$

of complex structure moduli < # of Kähler moduli

Comment on the stabilization of other Kähler Moduli

(I) Non-perturbative effects

Similar to the LVS,

$$K = -2\ln(\mathcal{V} + \xi)$$
$$W = W_0 + A_s e^{-a_s T_s}$$

$$V_F = \frac{a_s^2 |A_s|^2 e^{-2a_s \tau_s}}{\mathcal{V}} - \frac{a_s |A_s W| \tau_s e^{-a_s \tau_s}}{\mathcal{V}^2} + \frac{3\xi |W|^2}{4\mathcal{V}^3} + \frac{c_1}{32\pi^2} \Lambda^2 m_{3/2}^2}{V_{\text{LVS}}}$$

Volume modulus and another modulus can be stabilized at

$$a_s \tau_s \sim \ln(\mathcal{V})$$
 $\mathcal{V} \simeq 18664 \left(-\frac{c_1/\hat{\xi}}{10^3}\right)^3$ $\hat{\xi} \equiv \xi - \frac{4}{3} \frac{(\tau_s)^2}{(-\kappa_{ssi}t^i)}$

Comment on the stabilization of other Kähler Moduli

(II) D-term stabilization

Anomalous U(1)s on hidden $D7_i$ -branes (or fractional D3-branes)

$$V_D^{D7} = \sum_i \left(q_{T_i}^{(D7_i)} \partial_{T_i} K - q_m |\phi_m|^2 \right)^2$$

generate the moduli potential induced by the Fayet-Iliopoulos term.

Anomalous U(1) gauge bosons eat the linear combination of string axions.

For vanishing matter fields, some moduli correspond to the bow-up modes (brane at singularities).

Ultralight axion

OScalar potential is a function of CY volume.

→The axion associated with CY volume remains massless.

Axion potential is generated by the non-perturbative effects,

$$W = W_0 + e^{-\frac{2\pi}{n}T}$$

where CY volume is approximated as $\mathcal{V} \simeq (T + ar{T})^{3/2}$

Axion mass and its decay constant

$$\frac{m_{\theta}}{m_{3/2}} \simeq \mathcal{V}e^{-\frac{\pi}{2n}\mathcal{V}^{2/3}} \qquad f_{\theta} \simeq \frac{\sqrt{6}n}{2\pi} \frac{M_{\text{Pl}}}{\mathcal{V}^{2/3}}$$

Scale	n = 1	n=3	n = 5	n = 7	n=9
$m_{ heta}/m_{3/2}$	2.3×10^{-209}	7.4×10^{-68}	9.7×10^{-40}	9.1×10^{-28}	3.7×10^{-21}
$f_{\theta}[\mathrm{GeV}]$	3×10^{15}	9×10^{15}	1.5×10^{16}	2×10^{16}	2.7×10^{16}

Kähler moduli stabilization

OKKLT scenario

[Kachru-Kallosh-Linde-Trivedi '03]

Non-perturbative effects

Tuning : $|W_{\rm flux}| \ll M_{\rm Pl}^3$

OLARGE volume scenario

[Balasubramanian-Berglund-Conlon-Quevedo '05]

Stringy corrections +Non-perturbative effects

No tuning : $|W_{\rm flux}| \sim M_{\rm Pl}^3$ Euler number of CY is negative

ORadiative Kähler moduli stabilization [Kobayashi-Omoto-Otsuka-Tatsuishi '17]

Stringy corrections + radiative corrections from sparticles

No tuning : $|W_{\rm flux}| \sim M_{\rm Pl}^3$ Euler number of CY is positive

Conclusion

- O Leading α' -and radiative corrections
- → Stabilization of overall Kähler modulus

if the Euler number of CY is positive

- O Other Kahler moduli can be stabilized by D-terms and/or non-perturbative effects
- O Prediction of Ultralight axion

Discussion

- O Cosmology and phenomenology of the ultralight axion
- O Explicit moduli stabilization in a detailed setup