Non-perturbative analysis of the spectrum of meson resonances in an ultraviolet-complete composite-Higgs model

Nicolas Bizot (IPNL-Lyon)

based on arXiV: 1610.09293 [Phys.Rev. D95 (2017)] with M. Frigerio, M. Knecht and J.-L. Kneur

Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS), Daejeon - 28 August 2017

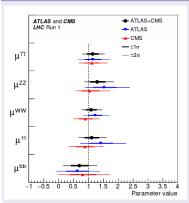
A SM-like Higgs boson

Higgs mass

SM-like Higgs boson discovered at LHC with mass $m_h=125.09\pm0.24~{\rm GeV}.$ [ATLAS & CMS combination (1503.07589)]

⇒ No unknown parameters in the SM which becomes predictive.

Higgs couplings



[ATLAS & CMS combination (1606.02266)]

- So far no significant deviations compared to the SM prediction
 ⇒ SM is a successful theory up to the EW scale
- precision will continue to increase
 Any deviations will be the sign of new physics beyond the SM (BSM)

The need of BSM physics

The SM is a successful theory up to the EW scale but he has some shortcomings

⇒ Several hints point towards the necessity to introduce BSM physics

Observational facts

- ▶ Dark matter
- ▶ Baryon asymmetry
- ▶ Neutrinos masses
- . . .

Theoretical puzzles

- ► Hierarchy problem
- Huge Hierarchy between SM fermion masses
- ► Gauge coupling unification
- **.** . . .

No answer to these observational and theoretical issues in the SM

- ⇒ One necessarily need to introduce BSM physics
- ⇒ The SM is an effective model valid up to the EW scale

Table of contents

Composite Higgs models

2 The electroweak sector

The coloured sector

Table of contents

Composite Higgs models

2 The electroweak sector

The coloured sector

Basics ideas of composite Higgs models

- \blacktriangleright New strong dynamics condensates at scale Λ and spontaneously breaks a global symmetry G into H
- \Rightarrow Higgs is naturally light as a pNGB leaving in the coset G/H

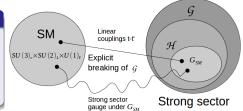
QCD: $G/H = SU(3)_L \times SU(3)_R/SU(3)_V \rightarrow 8 \text{ pNGBs } (\pi^{\pm}, \pi^0, K^{\pm}, K^0\overline{K}^0, \eta)$

Gauging of SM symmetry

- ► SM gauge symmetry embedded inside unbroken group H
- \Rightarrow pNGBs charged under G_{SM} (4 associated to Higgs doublet)
- \Rightarrow Gauging explicitly breaks G but can not destabilise Higgs potential and induce EWSB

Partial compositeness

- ➤ Potential (and mass) for Higgs generated from another explicit breaking
- ⇒ Linear couplings between SM fermions and composite spin 1/2 resonances



Effective approaches

Underlying dynamics

Barring extra space-time dimensions

 \Rightarrow Simplest, well-understood, explicit realization provided by gauge theory of fermions that confines at the multi-TeV scale Λ

Full gauge theory (hypergluons, hyperfermions as d.o.f.) hard to study below Λ because of its non-perturbative nature \Rightarrow Effective models are useful

Chiral Lagrangians: dictated only by global symmetries

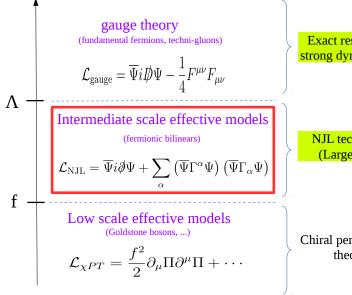
$$\mathcal{L}_{\chi PT} = rac{F_G^2}{4} \langle (D_\mu U)^\dagger D^\mu U
angle \qquad U = \exp(2iG^{\hat{A}}T^{\hat{A}}/F_G)\Sigma_\epsilon$$

- ⇒ Little information on the details of the strong dynamics
- ⇒ Not sure that an UV completion exists
- ▶ 4-fermion interactions (gauge bosons froze-out)

$$\mathcal{L}_{\mathit{NJL}} = (\overline{\Psi} \Gamma^{\alpha} \Psi) (\overline{\Psi} \Gamma_{\alpha} \Psi)$$

- ⇒ Definite UV completion and underlying gauge symmetry respected
- ⇒ Possible to make calculation of non-perturbative quantities with Nambu Jona-Lasinio (NJL) techniques [Nambu and Jona-Lasinio '61]

The framework



Exact results on the strong dynamics exist

> NJL techniques (Large N), ...

Chiral perturbation theory

Table of contents

Composite Higgs models

2 The electroweak sector

The coloured sector

The electroweak sector

UV completions: EW sector (Higgs as pNGB) + coloured sector (top partners)

Basic requirements for an UV completion

- \blacktriangleright Higgs as a composite Nambu-Goldstone boson leaving in coset G/H
- ▶ Custodial symmetry: $H \supset SU(2)_L \times SU(2)_R$
- ▶ No fundamental scalars: gauge theories with fermions

Minimal UV models classified in [Ferretti, Karateev, '14]

Minimal model: $SU(4)/Sp(4) \cong SO(6)/SO(5)$

- ► SU(4)/Sp(4) \Rightarrow only 5 NGBs: Higgs doublet + singlet η
- ▶ 4 Weyl fermions $\psi \Rightarrow SU(4)$ global symmetry
- ► $Sp(4) \Rightarrow \psi$ belong to a pseudo-real hypercolour representation: the fundamental of Sp(2N) [Barnard et al. '13]

Fermionic bilinears

			Colour Flavour		our
		Lorentz	Sp(2N)	SU(4)	Sp(4)
Hypercolour fermions Spin-zero bilinears Spin-one bilinears	ψ^a_i	(1/2,0)	$\Box i$	4^a	4
	$\overline{\psi}_{ai} \equiv \psi_{aj}^{\dagger} \Omega_{ji}$	(0, 1/2)	$\Box i$	$\overline{4}_a$	4*
	$M^{ab} \sim (\psi^a \psi^b)$	(0,0)	1	6^{ab}	5 + 1
	$\overline{M}_{ab} \sim (\overline{\psi}_a \overline{\psi}_b)$	(0,0)	1	$\overline{6}_{ab}$	5 + 1
	$a^{\mu} \sim (\overline{\psi}_a \overline{\sigma}^{\mu} \psi^a)$	(1/2, 1/2)	1	1	1
	$(V^{\mu}, A^{\mu})_a^b \sim (\overline{\psi}_a \overline{\sigma}^{\mu} \psi^b)$	(1/2, 1/2)	1	15_b^a	10 + 5

Hypercolour-invariant fermionic bilinears have the quantum numbers of the meson resonances

Lightest composite meson resonances

Scalars: $\sigma + S^{\hat{A}} \sim 1 + 5$

Pseudo-scalars: $\eta' + G^{\hat{A}} \sim 1 + 5$

Vectors: $V_{\mu}^{A} \sim 10$

Axial-vector: $a_{\mu} + A_{\mu}^{\hat{A}} \sim 1 + 5$

The fate of the SU(4) symmetry

▶ The model is a vector-like gauge theory: all fermions ψ can be made massive $(m_{\psi}\psi\psi)$, while preserving the gauge hypercolour symmetry $G_c=Sp(2N)$

Three cases in vector-like theories: [Peskin, '80]

- ▶ $G = SU(N_f)_L \times SU(N_f)_R$ and $H_m = SU(N_f)_V$ (complex rep. of G)
- ▶ $G = SU(2N_f)$ and $H_m = SO(2N_f)$ (real rep.) $H_m = Sp(2N_f)$ (pseudo-real rep.)
- ▶ Vafa-Witten theorem: The flavour subgroup H of G preserved by m_{ψ} can not be spontaneously broken \Rightarrow If SU(4) broken, it is broken down to Sp(4)
- ▶ 't Hooft anomaly matching:

Any global UV anomaly (generated by the hyperfermions ψ) must be matched in the IR, either by massless spin-1/2 baryons or Goldstone boson

 ψ 's can not form baryons because they are in pseudo-real hypercolour irreps $\Rightarrow SU(4)$ unavoidably spontaneously broken

$$d^{AB\hat{C}} = 2Tr[\{T^A, T^B\}T^{\hat{C}}]$$

SU(4) broken $(T^{\hat{A}})$ and unbroken (T^{A}) generators combine in non-zero anomaly coefficients \Rightarrow Global anomalies

$$(\psi^a \psi^b) \equiv \psi^a_i \Omega_{ii} \psi^b_i$$

The unique invariant tensor of Sp(2N) is two-index antisymmetric SU(4)-flavour contraction also antisymmetric $(4 \times 4 = 6_A + 10_C)$

Effective potential from four-fermion interactions

Nambu-Jona Lasinio approximation of strong dynamics: 'froze out' hypergluons inducing 4-fermion interactions

Scalar 4-fermion operators relevant for the spontaneous breaking:

$$\mathcal{L}_{\textit{scal}}^{\psi} = \frac{\kappa_{\textit{A}}}{2N} (\psi^{\textit{a}} \psi^{\textit{b}}) (\overline{\psi}_{\textit{a}} \ \overline{\psi}_{\textit{b}}) + \frac{\kappa_{\textit{B}}}{8N} \left[\epsilon_{\textit{abcd}} (\psi^{\textit{a}} \psi^{\textit{b}}) (\psi^{\textit{c}} \psi^{\textit{d}}) + \textit{h.c.} \right]$$

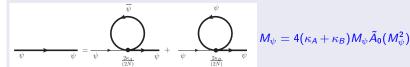
- $ightharpoonup \kappa_{A,B} \sim 1/\Lambda^2$ real, dimensionful couplings
- lacktriangledown κ_A controls spontaneous symmetry breaking SU(4) o Sp(4)
- ightharpoonup κ_B explicitly breaks the anomalous U(1) symmetry
- ▶ Introducing auxiliary field M^{ab} whose equation of motion is $M^{ab} = -\frac{(\kappa_A + \kappa_B)}{(2N)}(\psi^a\psi^b)$
- ▶ Compute effective potential $V_{eff}(M^{ab})$ induced by fermion loops and minimise
- ▶ Minimum is non-zero above a critical coupling κ_A which depends on κ_B ($\kappa_B/\kappa_A < 1$) $\Rightarrow M_\psi \neq 0$ and $SU(4) \rightarrow Sp(4)$ [Barnard et al. 13]

$$\langle M^{ab}
angle = rac{M_{\psi}}{2} \Sigma_{\mathbf{0}} \ = rac{M_{\psi}}{2} egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ -1 & 0 & 0 & 0 \ 0 & -1 & 0 & 0 \end{pmatrix}$$

Mass gap from four-fermion interactions

Lagrangian can be rewritten in the 'physical' channels, corresponding to definite Sp(4) representations using SU(4) Fierz identities:

Schwinger Dyson equation determines dynamical fermion mass $extit{\emph{M}}_{\psi}$



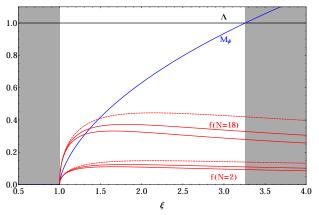
Self-consistence implicitly ressums all diagrams leading in 1/N

$$\xi \equiv \frac{\Lambda^2 (\kappa_A + \kappa_B)}{4\pi^2} = \left[1 - \frac{\mathit{M}_{\psi}^2}{\Lambda^2} \ln \left(\frac{\Lambda^2 + \mathit{M}_{\psi}^2}{\mathit{M}_{\psi}^2}\right)\right]^{-1}$$

- $\begin{array}{ll} \text{critical} & 1<\xi\lesssim 3.25 & \underset{\text{coupling}}{\text{maximal}} \end{array}$
- Non trivial solution $M_{\psi} \neq 0$ (SU(4) spontaneously broken) exists only if $\xi > 1$
- ► Consistent resummation: $0 < M_{\psi}/\Lambda \lesssim 1$

The Goldstone decay constant f

$$\langle vac|\mathcal{J}_{\mu}^{\hat{A}}(0)|G^{\hat{B}}(p)\rangle = ip_{\mu}\frac{f}{\sqrt{2}}\delta^{\hat{A}\hat{B}} \qquad \begin{array}{l} \text{EW precision observables receive order} \\ v^2/f^2 \text{ corrections} \Rightarrow f \gtrsim 0.5-1 \text{ TeV} \\ \\ \frac{f^2}{2} = \lim_{q^2 \to 0} [-q^2\overline{\Pi}_A(q^2)] = \frac{\widetilde{\Pi}_A(0)}{1+2\kappa_D\widetilde{\Pi}_A(0)/N}, \qquad \widetilde{\Pi}_A(0) = -2(2N)M_{\psi}^2\widetilde{B}_0(0,M_{\psi}^2) \\ \end{array}$$



- ► f residue of the Goldstone boson pole in the resummed transverse axial correlator
- ► f sets the scale of the composite sector
- $ightharpoonup f \propto 1/\sqrt{N}$
- ► f can be as small as $\Lambda/10$ ($\Lambda \equiv NJL$ cutoff)
- ⇒ possibly large hierarchy

Spin one channels

Vector and axial-vector 4-fermion interactions

Vector and axial vector resonances associated to spin 1 bilinears

$$\mathcal{L}_{\text{vect}}^{\psi} = \frac{\kappa_{C}^{\prime}}{2N} \left(\overline{\psi}_{a} \overline{\sigma}^{\mu} \psi^{a} \right) \left(\overline{\psi}_{b} \overline{\sigma}_{\mu} \psi^{b} \right) + \frac{\kappa_{D}^{\prime}}{2N} \left(\overline{\psi}_{a} \overline{\sigma}^{\mu} \psi^{b} \right) \left(\overline{\psi}_{b} \overline{\sigma}_{\mu} \psi^{a} \right)$$

Lagrangian can be rewritten in the 'physical' channels, corresponding to definite Sp(4) representations using SU(4) Fierz identities

$$\mathcal{L}_{\text{vect}}^{\psi} = \frac{\kappa_{\text{C}}}{2N} \left(\overline{\psi} \, T_{\psi}^{0} \, \overline{\sigma}^{\mu} \psi \right)^{2} + \frac{\kappa_{D}}{2N} \left(\overline{\psi} \, T^{A} \overline{\sigma}^{\mu} \psi \right)^{2} + \frac{\kappa_{D}}{2N} \left(\overline{\psi} \, T^{\hat{A}} \, \overline{\sigma}^{\mu} \psi \right)^{2}$$

- \Rightarrow Non-tachyonic masses obtained for $\kappa_{C,D} > 0$ (consistent with current-current hypothesis)
- \Rightarrow Spin 1 operators with couplings $\kappa_{\mathcal{C},\mathcal{D}}$ (vector $10_{Sp(4)}$, axial-vector $(1+5)_{Sp(4)}$)

Additional spin 1 resonances associated to $(\psi^a \sigma^{\mu\nu} \psi^b) \sim 10_{Sp(4)}$ do not appear at the level of four-fermion interactions because of Lorentz and/or SU(4) invariance.

The spectrum of mesons

Bethe-Salpether equation

Resummation (geometrical series) of an infinite number of constituent fermion loops at leading order in $1/N \Rightarrow \text{Two-point correlators develop a pole}$

The pole defines the meson mass M_ϕ

$$\overline{\Pi}_{\phi}(q^2) = rac{ ilde{\Pi}_{\phi}(q^2)}{1-2\mathcal{K}_{\phi} ilde{\Pi}_{\phi}(q^2)} \quad \longrightarrow \quad 1-2\mathcal{K}_{\phi} ilde{\Pi}_{\phi}(q^2=M_{\phi}^2) = 0$$

ϕ	K_{ϕ}	$ ilde{\Pi}_\phi(q^2)$			
$G^{\hat{A}}$	$2(\kappa_A + \kappa_B)/(2N)$	$ ilde{\Pi}_P(q^2) = (2N) \left[ilde{A}_0(M_\psi^2) - rac{q^2}{2} ilde{B}_0(q^2, M_\psi^2) \right]$			
η'	$2(\kappa_A - \kappa_B)/(2N)$	$\Pi_P(q^-) = (2N)[A_0(M_{\psi}) - \frac{1}{2}B_0(q^-, M_{\psi})]$			
$S^{\hat{A}}$	$2(\kappa_A - \kappa_B)/(2N)$	$\tilde{\Pi}_S(q^2) = (2N) \left[\tilde{A}_0(M_{\psi}^2) - \frac{1}{2} (q^2 - 4M_{\psi}^2) \tilde{B}_0(q^2, M_{\psi}^2) \right]$			
σ	$2(\kappa_A + \kappa_B)/(2N)$				

and similarly for the spin one channels $oldsymbol{V}$ and $oldsymbol{A}$

The spectrum of mesons

No confinement in the NJL \Rightarrow Prescription for the unphysical imaginary parts

$$1 - 2K_{\phi}\tilde{\Pi}_{\phi}(q^2) = c_0^{\phi}(q^2) + c_1^{\phi}(q^2)q^2 \longrightarrow M_{\phi}^2 = Re\left[-\frac{c_0^{\phi}(M_{\phi}^2)}{c_1^{\phi}(M_{\phi}^2)} \right]$$

 $K_\phi \equiv$ four-fermion couplings

$$ilde{\mathsf{\Pi}}_{\phi}(q^2) \equiv \mathsf{Polarisation}$$
 amplitudes

- ▶ Inserting the gap-equation, one recovers consistently the Goldstone pole: $M_G = 0$
- Singlet pseudo-scalar proportional to U(1) anomaly and mixes with axial vector:

$$M_{\eta'}^{2} = -\frac{\kappa_{B}}{\kappa_{A}^{2} - \kappa_{B}^{2}} \frac{\left[1 - 2K_{a}\tilde{\Pi}_{A}^{L}(M_{\eta'}^{2})\right]}{\tilde{B}_{0}(M_{\eta'}^{2}, M_{\psi}^{2})}$$

Scalars proportional to the mass gap M_{ib} :

$$M_{\sigma}^2 = 4M_{\psi}^2, \quad M_{S}^2 = 4M_{\psi}^2 + M_{\eta'}^2 \frac{\tilde{B}_{0}(M_{\eta'}^2, M_{\psi}^2)}{\tilde{B}_{0}(M_{S}^2, M_{\psi}^2)} \simeq M_{\sigma}^2 + M_{\eta'}^2$$

Vector heavy even for vanishing mass gap:

$$M_V^2 = \frac{-3}{4\kappa_D \tilde{B}_0(M_V^2, M_\psi^2)} + 2M_\psi^2 \frac{\tilde{B}_0(0, M_\psi^2)}{\tilde{B}_0(M_V^2, M_\psi^2)} - 2M_\psi^2$$

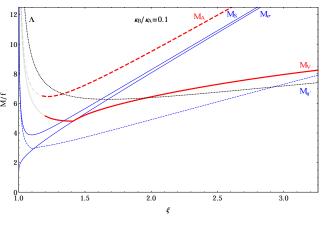
► Axial-vector generally the heaviest:

$$M_A^2 = \frac{-3}{4\kappa_D \tilde{B}_0(M_A^2, M_\psi^2)} + 2M_\psi^2 \frac{\tilde{B}_0(0, M_\psi^2)}{\tilde{B}_0(M_V A 2, M_\psi^2)} + 4M_\psi^2 \simeq M_V^2 + 6M_\psi^2$$

EW meson masses in units of f ($f \gtrsim 0.5-1$ TeV)

Current-current hypothesis

► Large-N relation among 4-fermion operators dominated by single hypergluon exchange $\rightarrow \kappa_A = \kappa_C = \kappa_D$ $(M_a = M_A)$

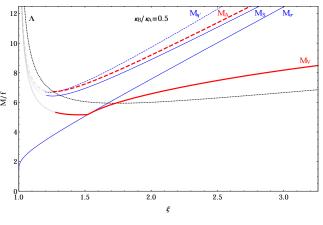


- $M_{\phi}/f \sim 1/\sqrt{N}$ (N=4 here)
- Free parameters: $\xi = \Lambda^2 (\kappa_A + \kappa_B)/(4\pi^2)$ κ_B/κ_A
- ► EW splitting neglected (e.g. $5_{Sp(4)} = 2_{\pm 1/2}1_0$)
- $\Rightarrow \text{Full } Sp(4) \text{ multiplets}$
- ► Consistently recover NGBs: $M_G = 0$

EW meson masses in units of f ($f \gtrsim 0.5-1$ TeV)

Current-current hypothesis

▶ Large-N relation among 4-fermion operators dominated by single hypergluon exchange $\rightarrow \kappa_A = \kappa_C = \kappa_D$ $(M_a = M_A)$



- $M_{\phi}/f \sim 1/\sqrt{N}$ (N = 4 here)
- Free parameters: $\xi = \Lambda^2 (\kappa_A + \kappa_B)/(4\pi^2)$ κ_B/κ_A
- ► EW splitting neglected (e.g. $5_{Sp(4)} = 2_{\pm 1/2}1_0$)
- \Rightarrow Full Sp(4) multiplets
- ► Consistently recover NGBs: $M_G = 0$

Current-current hypthesis

Four-fermions operators couplings may be related

- \Rightarrow Prediction of relative strength between the various physical channels (works well in QCD)
- ▶ Start from Sp(2N) current-current operators: encode UV dynamics in 'ladder' approximation, that holds when N is (moderately) large
- ▶ Use Fierz transformations to generate various operators

$$\mathcal{L}_{\mathit{UV}} = \mathsf{g}_{\mathit{HC}} \mathcal{J}_{\psi}^{\mu I} \mathcal{G}_{\mu I} \qquad \mathcal{J}_{\psi}^{\mu I} = \psi \left(\Omega T^{I}
ight) \sigma^{\mu} \overline{\psi}$$

Assume that confining strong dynamics can be described (1^{rst} approximation) by exchange of one hypergluon which acquired a dynamical mass

 \Rightarrow 'Ladder' approximation strong dynamics generates Sp(2N) current-current operators

$$\mathcal{L}_{ ext{eff}} = rac{\kappa_{ ext{UV}}}{2N} \mathcal{J}_{\psi}^{\mu I} \mathcal{J}_{\psi \mu}^{I} ~~ \kappa_{ ext{UV}}/(2N) \sim g_{ ext{HC}}^2/\Lambda^2 ~~ (g_{ ext{HC}} \sim 1/\sqrt{2N})$$

Lorentz and SU(N) for the fundamental (flavour) Fierz transformations are very well-known but not Sp(2N) that we derived

Current-current hypthesis

Four-fermions operators couplings may be related

- \Rightarrow Prediction of relative strength between the various physical channels (works well in QCD)
- Start from Sp(2N) current-current operators: encode UV dynamics in 'ladder' approximation, that holds when N is (moderately) large
- ▶ Use Fierz transformations to generate various operators

Sp(2N) Fierz matrix for the fundamental representation:

$$\begin{pmatrix} (\Omega T^0)_{ij} (\Omega T^0)_{kl} \\ \sum\limits_{l} (\Omega T^l)_{ij} (\Omega T^l)_{kl} \\ \sum\limits_{\hat{l}} (\Omega T^{\hat{l}})_{ij} (\Omega T^{\hat{l}})_{kl} \end{pmatrix} = \begin{pmatrix} \frac{1}{2N} & \frac{1}{2N} & \frac{1}{2N} \\ \frac{2N+1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{(2N+1)(N-1)}{2N} & \frac{N-1}{2N} & -\frac{N+1}{2N} \end{pmatrix} \begin{pmatrix} (\Omega T^0)_{il} (\Omega T^0)_{kj} \\ \sum\limits_{l} (\Omega T^l)_{il} (\Omega T^l)_{kj} \\ \sum\limits_{\hat{l}} (\Omega T^{\hat{l}})_{il} (\Omega T^{\hat{l}})_{kj} \end{pmatrix} \,,$$

Table of contents

Composite Higgs models

2 The electroweak sector

The coloured sector

The partial compositeness paradigm

A new explicit breaking source is needed to:

- ► Destabilise Higgs potential and induce EWSB
- ► Generate SM fermion masses and couplings with composite Higgs
- \Rightarrow Two main possibilities: linear or bilinear couplings between SM fermions and operators of the strong sector

(potential generated mainly by the heaviest SM particle ie top quark)

Bilinear coupling

Exchange of massive states at scale Λ_{UV} generates: $\Delta \mathcal{L} = \lambda_{\Psi} \overline{\Psi}_{SM} \Psi_{SM} \mathcal{O}$ $\mathcal{O} = \overline{\Psi}_{HC} \Psi_{HC}$

SM fermions masses supressed by at least (Λ/Λ_{UV})

 \Rightarrow Too small mass for top quark, except if $\Lambda \simeq 4\pi f \gg v$ but large fine-tunning

Linear coupling (partial compositeness)

SM fermions may mix with Spin1/2 composite resonances:

$$\Delta \mathcal{L} = \lambda_{\Psi} \overline{\Psi}_{SM} \mathcal{O} + h.c.$$

$$\mathcal{O} = \overline{\Psi}_{HC} \Psi_{HC} \Psi_{HC}$$

⇒ A priori "possible" to obtain large enough top quark mass with proper anomalous dimension

 \Rightarrow Need to introduce new constituent coloured fermions X^f that can form spin-1/2 baryons

Adding the coloured sector

Introduce new constituent coloured fermions X^f that can form spin-1/2 baryons mixing with SM top quark

 \Rightarrow Need to go beyond Sp(2N) fundamental representation

Coloured fundamental fermions

- ▶ VL embedding of $SU(3)_c$ inside coloured sector implies 6 Weyl fermions X^f $\Rightarrow SU(6) \rightarrow SO(6) \supset SU(3)_c$
- ▶ Real representation: 2-index traceless antisymmetric

$$X_{ii}^f = -X_{ii}^f \sim \bigcap \qquad X_{ii}^f \Omega_{ji} = 0$$

- ▶ $N \ge 2$ as $d(\square) = (2N + 1)(N 1)$
- \Rightarrow minimal case: $Sp(2) \cong SU(2)$ (EW sector alone) \rightarrow lattice results available $Sp(4) \cong SO(5)$ (EW+ coloured sector)

Coloured fermionic bilinears

	Lorentz	Sp(2N)	SU(6)	SO(6)
X_{ij}^f	(1/2,0)	\Box_{ij}	6^f	6
$\overline{X}_{fij} \equiv \Omega_{ik} X_{fkl}^{\dagger} \Omega_{lj}$	(0, 1/2)	$igwedge_{ij}$	$\overline{6}_f$	6
$M_c^{fg} \sim (X^f X^g)$	(0,0)	1	21^{fg}	20' + 1
$\overline{M}_{cfg} \sim (\overline{X}_f \overline{X}_g)$	(0,0)	1	$\overline{21}_{fg}$	20' + 1
$a_X^{\mu} \sim (\overline{X}^f \overline{\sigma}^{\mu} X_f)$	(1/2, 1/2)	1	1	1
$(V_c^{\mu}, A_c^{\mu})_f^g \sim (\overline{X}_f \overline{\sigma}^{\mu} X^g)$	(1/2, 1/2)	1	35_g^f	15 + 20'

Spin-zero coloured mesons

Spin-one coloured mesons

Lightest composite coloured meson resonances

 $\underline{\mathsf{Scalars:}} \quad \sigma_{\mathsf{X}} + \mathcal{S}_{\mathsf{c}}^{\hat{\mathsf{F}}} \sim 1 + 20'$

<u>Pseudo-scalars:</u> $\eta_X + G_c^{\hat{F}} \sim 1 + 20'$

<u>Vectors:</u> $V_c^{\mu F} \sim 15$

Axial-vector: $a_c^{\mu} + A_c^{\mu\hat{F}} \sim 1 + 20'$

$$20'_{SO(6)} = (8+6+\overline{6})_{SU(3)_c}$$
 $15_{SO(6)} = (1+8+3+\overline{3})_{SU(3)_c}$ pheno coloured scalars [Cacciapaglia et al, '15]

$\overline{U(1)}$ (anomalous) symmetries

Lot of changes appears when theory includes both EW and coloured sectors

- ▶ Important to consider global fermion numbers $U(1)_{\psi}$ and $U(1)_{X}$
- ▶ Currents $\mathcal{J}_{\mu\psi,X}^0$ both anomalous w.r.t Sp(2N) (like $U(1)_A$ in QCD)
- ► However, one linear combination is anomaly free and thus conserved: $\mathcal{J}_{\mu}^0 = \mathcal{J}_{\mu X}^0 3(N-1)\mathcal{J}_{\mu yb}^0$
- \Rightarrow New Goldstone boson η_0 appears while η' receive a mass from the anomaly

Construct the minimal operator that preserves all exact symmetries but explicitly breaks the anomalous U(1) (generalisation of κ_B -term)

- ► EW sector: Sp(2N) anomaly breaks $U(1)_{\psi} \rightarrow \mathcal{O}_{\psi} = -\frac{1}{4}\epsilon_{abcd}(\psi^a\psi^b)(\psi^c\psi^d)$
- ▶ Colour sector: anomaly breaks $U(1)_X \to \mathcal{O}_X = -\frac{1}{6!} \epsilon_{f_1 \cdots f_6} \epsilon_{g_1 \cdots g_6} (X^{f_1} X^{g_1}) \cdots (X^{f_6} X^{g_6})$
- $\qquad \qquad \underline{ \text{Full theory preserves } U(1)_{X-3(N-1)\psi} \colon} \to \mathcal{L}_{\psi X} = A_{\psi X} \frac{\mathcal{O}_{\psi}}{(2N)^2} \left[\frac{\mathcal{O}_{X}}{[(2N+1)(N-1)]^6} \right]^{(N-1)}$

After spontaneous breaking $\mathcal{L}_{\psi X}$ generates effective 4-fermion operators ψ^4 , X^4 and $\psi^2 X^2$

The fate of $SU(4) \times SU(6) \times U(1)$

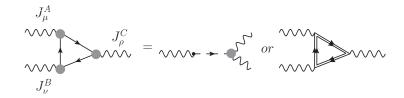
$$\frac{\text{Trilinear baryons:}}{\Psi^{fgh}} = (\psi^a \psi^b X^f), \ \Psi^{ab}_f = (\psi^a \psi^b \overline{X}_f) \ \Psi^{af}_b = (\psi^a \overline{\psi}_b X^f)$$

$$\Psi^{fgh}_h = (X^f X^g X^h), \ \Psi^{fg}_h = (X^f X^g \overline{X}_h)$$

Anomaly matching condition:

$$\sum_{i=\psi,X} n_i A(r_i) = \sum_{i=baryon} n_{i'} A(r_i), \qquad 2 \operatorname{Tr}[T_r^{\hat{A}}\{T_r^B, T_r^C\}] = A(r) d^{\hat{A}BC}$$

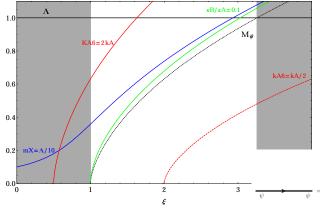
- ▶ $SU(4)^3$: Matching impossible for $N \neq 8n \Rightarrow SU(4)$ breaks to Sp(4) and one expects non-zero condensate $\langle \psi \psi \rangle \neq 0$
- ▶ $SU(6)^3$: Matching always possible $\Rightarrow SU(6)$ may not break to SO(6) and the condensate $\langle XX \rangle$ may vanish or not
- \blacktriangleright $SU(4)^2 \times U(1), SU(6)^2 \times U(1), U(1)^3$: U(1) most likely broken by $\langle \psi \psi \rangle$



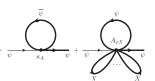
Mass gap equations

$$\begin{cases} M_{\psi} = 4 \left[\kappa_A + \kappa_B(M_X^2) \right] M_{\psi} \tilde{A}_0(M_{\psi}^2) \\ M_X = 4 \left[\kappa_{A6} + \kappa_{B6}(M_{\psi}^2, M_X^2) \right] M_X \tilde{A}_0(M_X^2) + m_X \end{cases}$$

$$\begin{cases} \kappa_B = \kappa_{B6} = 0 \\ \kappa_A = \kappa_{A6}, m_X = 0 \\ \Rightarrow M_{\psi} = M_X \end{cases}$$



- Coloured sector window [between critical coupling $(M_X=0)$ and maximal coupling $(M_X=\Lambda)$] shifts respect to the EW sector window
- $m_X \neq 0$: No critical coupling as $M_X \geqslant m_X$

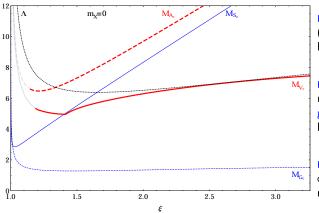


Coloured meson masses

Current-current hypothesis

The ratio EW masses/ coloured masses strongly depends on the ratio κ_{A6}/κ_{A} Unfortunately the large-N approximation does not determine this ratio uniquely (but still determines $\kappa_{A6} = \kappa_{C6} = \kappa_{D6}$)

 \Rightarrow Choose $\kappa_A = \kappa_{A6}$



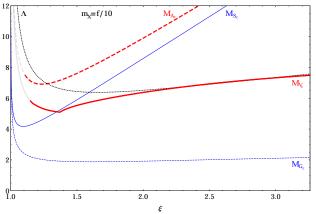
- $M_{\phi}/f \sim 1/\sqrt{N}$ N = 4, $\kappa_B/\kappa_A = 1/100$ here
- ► Goldstone bosons receive a mass from gluon loops that evade bounds for $f \ge 1$ TeV
- ► Goldstone (and coloured resonances) mass increase with *f*

Coloured meson masses

Current-current hypothesis

The ratio EW masses/ coloured masses strongly depends on the ratio κ_{A6}/κ_{A} Unfortunately the large-N approximation does not determine this ratio uniquely (but still determines $\kappa_{A6} = \kappa_{C6} = \kappa_{D6}$)

 \Rightarrow Choose $\kappa_A = \kappa_{A6}$



- $M_{\phi}/f \sim 1/\sqrt{N}$ (N = 4, $\kappa_B/\kappa_A = 1/100$ here)
- ► Goldstone bosons receive a mass from gluon loops that evade bounds for $f \gtrsim 1$ TeV
- ► Goldstone (and coloured resonances) mass increase with *f*

Radiative contributions to the coloured pNGBs

Gauging explictly breaks G and induce radiative mass to NGBs:

$$\Delta M_{G_{\hat{A}}}^2 = -\frac{3}{4\pi} \frac{1}{F_G^2} \frac{g_W^2}{4\pi} \times \int_0^\infty dQ^2 \ Q^2 \ \Pi_{V-A}(-Q^2) \times \left[\sum_{\hat{B}} \left(f^{\hat{A}W\hat{B}} \right)^2 - \sum_{B} \left(f^{\hat{A}\hat{W}B} \right)^2 \right]$$

$$f^{abc} = 2iTr(T^a[T^b, T^c])$$

$$T^{\mathcal{W}} = T^{\mathcal{W}} + T^{\hat{\mathcal{W}}}$$
 gauged generators, $T^{\mathcal{W},\hat{\mathcal{W}}}$ linear combination of $T^{A,\hat{A}}$

As $G_{SM}\subset H \to f^{\hat{A}\hat{W}B}=0$ ($T^{\hat{W}}=0$) \Rightarrow Always positive contribution in CHMs that can not break EW symmetry

Coloured pNGBs masses

Coloured pNGBs receive mass from gluon loops:

$$\underline{\rm Octet} : \Delta M_{O_c}^2 = -\frac{3}{4\pi} \frac{1}{F_{G_c}^2} \int_0^\infty dQ^2 \, Q^2 \, \Pi_{V-A}^X(-Q^2) \times \frac{3}{4\pi} g_s^2$$

$$\underline{\text{Sextet}} : \Delta M_{S_c}^2 = -\frac{3}{4\pi} \frac{1}{F_{G_c}^2} \int_0^\infty dQ^2 \ Q^2 \ \Pi_{V-A}^X(-Q^2) \times \frac{1}{4\pi} \left(\frac{10}{3} g_s^2 + \frac{16}{9} g'^2 \right)$$

 \Rightarrow Enough to comply with direct searches even for f=1 TeV (and even for $m_X=0$ contarry to the common expectation)

Singlet meson masses with mixing

The Sp(4) singlet mesons σ , η' , a^{μ} may mix with the SO(6) singlet ones σ_c , η'_c , a^{μ}_c (all SM singlets)

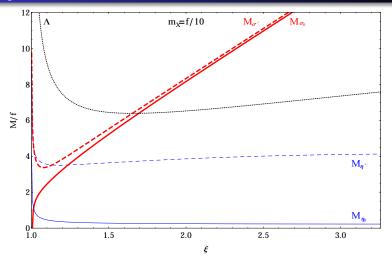
If on ignores mixing: $\left\{ \begin{array}{l} M_{\sigma} = 2\,M_{\psi} \\ M_{\sigma_c} = 2\,M_X \end{array} \right. \left\{ \begin{array}{l} M_{\eta'}^2 \sim \kappa_B \\ M_{\eta'_c}^2 \sim (\kappa_{B6}, m_X) \end{array} \right. \left\{ \begin{array}{l} M_a = M_A \\ M_{a_c} = M_{Ac} \end{array} \right.$

- ▶ Axial-vectors: Sp(2N) current-current operators do not induce singlet-singlet mixing operators
- \Rightarrow Axial singlet mixing is subleading in 1/N
- ▶ (Pseudo-)scalars: Anomalous operator $A_{\psi X}$ induces a coupling $\psi^2 X^2$ of the same order as the couplings ψ^4 , X^4
- ⇒ The mixing is a leading effect for (pseudo-)scalars
- \Rightarrow One linear combination of eta', η'_c is massless for $m_X=0$: U(1) Goldstone

$$\mathbf{K}_{\eta_{\psi}\eta_{X}} = \begin{pmatrix} K_{\eta_{\psi}} & -K_{\psi X} & 0 & 0 \\ -K_{\psi X} & K_{\eta_{X}} & 0 & 0 \\ 0 & 0 & K_{a} & 0 \\ 0 & 0 & 0 & K_{a_{c}} \end{pmatrix} \;, \qquad \mathbf{\Pi}_{\eta_{\psi}\eta_{X}} = \begin{pmatrix} \tilde{\Pi}_{p}^{\psi} & 0 & \sqrt{p^{2}} \tilde{\Pi}_{AP}^{\psi} & 0 \\ 0 & \tilde{\Pi}_{p}^{X} & 0 & \sqrt{p^{2}} \tilde{\Pi}_{AP}^{X} \\ \sqrt{p^{2}} \tilde{\Pi}_{AP}^{\psi} & 0 & \tilde{\Pi}_{A}^{L} & 0 \\ 0 & \sqrt{p^{2}} \tilde{\Pi}_{AP}^{X} & 0 & \tilde{\Pi}_{A}^{LX} \end{pmatrix}$$

Mixed states may couple both to EW gauge boson ($\phi \to \gamma \gamma$) and gluons ($gg \to \phi$) \Rightarrow Potential discovery channel

Singlet masses



- ▶ η_0 is a pNGB associated to spontaneously broken U(1) symmetry $\Rightarrow M_{n_0}^2 \sim m_X$: could be very light
- ▶ η' obtains a mass through the anomaly $\Rightarrow M_{n0}^2 \sim A_{\psi X}$: No way to estimate $A_{\psi X}$, η' could also be very light

Experimental signatures

► Fermionic UV completions of CHMs require:

- \Rightarrow In general two species of fundamental fermions should be present (EW fermions ψ and coloured fermions X)
- ► Additional PNGBs have in general anomalous couplings to SM gauge bosons and couplings to tops (thanks to PC)

Singlets η , η_0 and η' as well as the octet \mathcal{O}_c are present in all UV completions \Rightarrow Interesting to focus on them [Cacciapaglia, Flacke et al, 1507.02283, 1610.06591]

- $ightharpoonup \eta$ and η' produced by gluon fusion through the anomaly and decay to dibosons $(gg,WW,ZZ,Z\gamma,\gamma\gamma)$ and di-top
- $ightharpoonup \eta$ decays into diboson ($ZZ, \gamma Z, WW$) and produced by EW interactions as no anomalous coupling to gg
- ⇒ More difficult to produce it
- \triangleright \mathcal{O}_c mainly pair produced by QCD interactions and decays through the anomalous couplings gg, γg and Zg or deacys into $t\bar{t}$

Conclusions

- General idea of a composite Nambu-Goldstone Higgs particle provides a very attractive framework for the EWSB
- ⇒ Gauge theory confining at the multi-TeV scale has the potential to provide a UV-complete framework to study composite Higgs phenomenology
- \Rightarrow Minimal model features 4 flavours [SU(4)/Sp(4)] which condense as the hypercolour interaction becomes strong
- ightharpoonup SU(4) flavour symmetry unavoidably broken spontaneously to Sp(4) as required for NGB Higgs ('t Hooft anomaly matching)
- ▶ NJL well describes SSB: non-perturbative computation of $M_{\psi,X}$ and f
- \Rightarrow f can be as small as $\Lambda/10 \to$ large hierarchy could explain that no new states have been observed so far at LHC
- ► Computation of the composite masses (consistent with lattice results) \Rightarrow spectrum belong to multi-TeV range but few states can be relatively light (e.g. EW and coloured pNGBs including η_0 , η' for small κ_B/κ_A , vectors for intermediate ξ , σ for small ξ)
- ▶ Only few parameters $(\xi, \kappa_{A6}/\kappa_A, \kappa_B/\kappa_A, N, m_X)$ if current-current hypothesis is assumed \Rightarrow Phenomenologically simple

Outlooks

First thorough analysis of the spectrum of meson resonances in confining gauge theory with fermions in two different representations of the gauge group

⇒ Main limitation: absence of interactions with SM fermion fields (to generate Yukawa couplings between the composite Higgs and the SM fermions and induce radiatively Higgs potential that realizes EWSB)

- ► Calculation of top partners masses within NJL framework [work in progress]
- \Rightarrow Relevant for LHC studies
- ► Generate Higgs potential by realizing partial compositeness
- ► Consider other UV completions (other cosets and/or hyperfermions)
- \Rightarrow Completions with $f \sim \mathit{N}^2$ imply lighter composite resonances in EW sector
- ► Explore minimal fundamental partial compositeness paradigm [Sanino, Strumia, Tesi, '16]
- \Rightarrow baryons made of 1 scalar and 1 fermion ie $B=(S\psi)$: easy to compute top partners masses

Thanks for your attention!

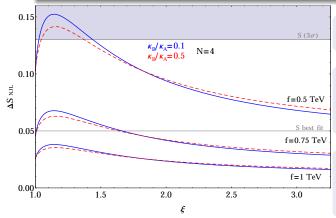
NJL estimation of S parameter

S parameter

Need only to assume vev for the Higgs (No need to explicitly consider details of breaking terms)

$$\Delta S = 16\pi \left. \frac{d\Pi_{3Y}^{(\nu)}(q^2)}{dq^2} \right|_{q^2 = 0} = 8\pi \frac{v^2}{f^2} \left. \frac{d}{dq^2} \left(q^2 \Pi_{V-A}(q^2) \right) \right|_{q^2 = 0}, \frac{v}{f} = \sin\left(\frac{\langle h \rangle}{f}\right)$$

Correlator $\Pi_{V-A}(q^2)$ can be estimated in the NJL approximation



 3σ limit assumes $\Delta T = 0$

 ΔS decreases when strong sector decouples (ie increase of f)

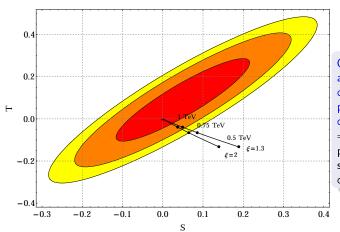
No corresponding shift in T parameter due to custodial symmetry

S-T ellipse

IR contributions

Composite sector also modifies Higgs couplings to EW gauge bosons by factor $\sqrt{1-v^2/f^2}$

$$\Delta S_{\rm IR} = \frac{1}{6\pi} \frac{v^2}{f^2} \ln \left(\frac{\mu}{M_h} \right), \qquad \Delta T_{\rm IR} = -\frac{3}{8\pi} \frac{1}{\cos^2 \theta_W} \frac{v^2}{f^2} \ln \left(\frac{\mu}{M_h} \right) = -\frac{9}{4} \frac{\Delta S_{\rm IR}}{\cos^2 \theta_W}$$



One expects additional contributions from partial

${\tt compositeness}$

⇒ Not complete prediction, only shown is specific contributions

Vector-like theories

Vector-like gauge theories

Asymptotically free and confining gauge theory with a set of N_f Dirac fermions (even number of Weyl) that can all be made massive in a gauge invariant way

⇒ Exact results concerning non-perturbative dynamical aspects exist

Vafa-Witten theorem

In any vector-like gauge theory with massless fermions and vanishing vacuum angles, the subgroup H_m of the flavour group G that corresponds to the remaining global symmetry when all fermion flavours are given identical gauge invariant masses, cannot be spontaneously broken

 \Rightarrow If H_m corresponds to a maximal subgroup of G: either G is not spontaneously broken at all or G is spontaneously broken towards H_m

Three cases in vector-like theories: [Peskin, '80]

- ▶ $G = SU(N_f)_L \times SU(N_f)_R$ and $H_m = SU(N_f)_V$ (complex rep. of G)
- ► $G = SU(2N_f)$ and $H_m = SO(2N_f)$ (real rep.) $H_m = Sp(2N_f)$ (pseudo-real rep.)