9th Asian Forum for Accelerators and Detectors

GEM-based polarimeter detector development for storage ring EDM experiment

Seongtae Park

Center for Axion and Precision Physics(CAPP) of Institute for Basic Science (IBS), South Korea

AFAD2018
Daejeon Convention Center, Daejeon, South Korea
Jan. 28-31, 2018

- 1. Introduction to storage ring EDM search
- 2. Polarimeter for EDM search
- 3. CAPP GEM detector development
- 4. COSY beam test results
- 5. Summary and plans

About IBS/CAPP

- **❖** Center for Axion and Precision Physics Research (CAPP) at Institute for Basic Science (IBS) (Director: Yannis Semertzidis)
- **♦ Web site: http://capp.ibs.re.kr/html/capp_en/**
- **❖** Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon, South Korea Located at KAIST Munji campus in Daejeon Mu

We are working on:

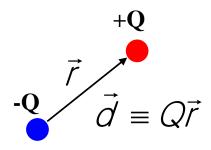
- > Axion-dark matter search
 - ✓ Cavities, Cryogenics, Electronics, Super conducting magnet, SQUID, etc. Jirisan N.P.—
 - ✓ ARIADNE, GNOME
- > Storage ring Proton/Deuteron/electron EDM
 - ✓ Polarimeter, Beam position monitoring (with magnetic shielding), Beam dynamics, etc.
- Axion-coupled oscillating EDM search using storage ring method
- ➤ Muon g-2 experiment
 - ✓ System design, Systematics
- Others (COMET, etc)

Yongpyong

Mountains

Village Andong

Yellow



Introduction to EDM

❖Motivation

- ✓ Strong CP problem, Θ_{OCD}
- ✓ Matter-antimatter asymmetry (Baryogenesis)

Electric Dipole Moment

> P, T violation due to an EDM

$$H = -\mu \vec{\sigma} \cdot \vec{B} - d\vec{\sigma} \cdot \vec{E}$$

$$T(\vec{B}, \vec{\sigma} \, sign \, change) : H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

$$P(\vec{E} \, sign \, change) : H = -\mu \vec{\sigma} \cdot \vec{B} + d\vec{\sigma} \cdot \vec{E}$$

$$\mu = g \frac{q}{2m}, d = \eta \frac{q}{2mc}$$

A nonzero particle EDM violates P, T, and assuming CPT conservation, also CP violation.

The first direct measurement of EDM in neutron and it's sensitivity improvement

PHYSICAL REVIEW

VOLUME 108, NUMBER 1

OCTOBER 1. 1957

Experimental Limit to the Electric Dipole Moment of the Neutron

J. H. Smith,* E. M. Purcell, and N. F. Ramsey
Oak Ridge National Laboratory, Oak Ridge, Tennessee, and Harvard University, Cambridge, Massachusetts
(Received May 17, 1957)

1957

2006

An experimental measurement of the electric dipole moment of the neutron by a neutron-beam magnetic resonance method is described. The result of the experiment is that the electric dipole moment of the neutron equals the charge of the electron multiplied by a distance $D = (-0.1 \pm 2.4) \times 10^{-20}$ cm. Consequently, if an electric dipole moment of the neutron exists and is associated with the spin angular momentum, its magnitude almost certainly corresponds to a value of D less than 5×10^{-20} cm.

PRL **97**, 131801 (2006)

PHYSICAL REVIEW LETTERS

week ending 29 SEPTEMBER 2006

Improved Experimental Limit on the Electric Dipole Moment of the Neutron

C. A. Baker, D. D. Doyle, P. Geltenbort, K. Green, M. G. D. van der Grinten, P. G. Harris, P. Iaydjiev, N. Ivanov, P. D. J. R. May, J. M. Pendlebury, J. D. Richardson, D. Shiers, and K. F. Smith

¹Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom

²Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United Kingdom

³Institut Laue-Langevin, BP 156, F-38042 Grenoble Cedex 9, France

(Received 9 February 2006; revised manuscript received 29 March 2006; published 27 September 2006)

An experimental search for an electric dipole moment (EDM) of the neutron has been carried out at the Institut Laue-Langevin, Grenoble. Spurious signals from magnetic-field fluctuations were reduced to insignificance by the use of a cohabiting atomic-mercury magnetometer. Systematic uncertainties, including geometric-phase-induced false EDMs, have been carefully studied. The results may be interpreted as an upper limit on the neutron EDM of $|d_n| < 2.9 \times 10^{-26} e$ cm (90% C.L.).

DOI: 10.1103/PhysRevLett.97.131801

PACS numbers: 13.40.Em, 07.55.Ge, 11.30.Er, 14.20.Dh

Current EDM bounds and plan

Current EDM bounds

- ✓ SM predicts non-vanishing EDM
 - $|d_e| < 10^{-38} \text{ e.cm}$
 - $|d_{n,p}| < 10^{-31} \text{ e.cm}$
 - Beyond current experiment limit
- ✓ SUSY prediction: 10⁻²⁵~10⁻²⁸ e·cm (nEDM limit)
- ✓ Neutron EDM bound: $|d_n| < 2.9 \times 10^{-26}$ e.cm ('06, ultracold neutrons)
- ✓ Proton EDM bound: $|d_p| < 7.9 \times 10^{-25}$ e.cm ('09, ¹⁹⁹Hg)
- ✓ Electron EDM bound: $|d_e| < 8.7 \times 10^{-29}$ e. cm ('14, ThO)
- ❖ Target sensitivity level in the storage ring pEDM experiment
 - \checkmark High statistics (10¹¹ protons/store) is achievable using storage ring
 - ✓ Goal 10⁻²⁹ e·cm (statistical limit in about one year)
 - ✓ \rightarrow 10⁻³⁰ e·cm (with an upgrade)
- ❖ Physics reach >10³ TeV

How to measure EDM?

You need...

Particles(EDM)

Flectric field

Spin precession! $\frac{d\vec{s}}{dt} = \vec{d}x\vec{E}$ (how fast?)

$$\frac{d\vec{s}}{dt} = \vec{d}x\vec{E}$$

p,d,e etc. (EDM)

Where are my protons?

You need storage ring! (high statistics!)

Charged particle in an electric field?

F=qE

Lost from the observation area

MDM, EDM and spin precession

❖ Spin dynamics (with EDM and MDM) in magnetic+electric field (T-BMT equation)

$$\frac{d\vec{s}}{dt} = \vec{\mu} \times \vec{B} + \vec{d} \times \vec{E} = \vec{s} \times (\vec{\omega}_s + \vec{\omega}_{edm}) \text{ (for particle at rest)}$$

$$\mu = (ge/2m)s = ge\hbar/4m, d = (\eta e/2mc)s = \eta e\hbar/4mc$$

with
$$\vec{\beta} \cdot \vec{E} = \vec{\beta} \cdot \vec{B} = 0$$

(T-BMT equation: for moving particle)

$$\vec{\omega} = -\frac{e}{m} \left[a\vec{B} - \left(a - \frac{m}{p} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\frac{\vec{E}}{c} + \vec{\beta} \times \vec{B} \right) \right], a = \frac{g - 2}{2}$$

MDM in B-field

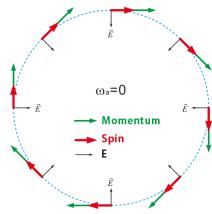
MDM in induced B-field

EDM term

Storage ring technique for EDM search

g-2 precession in pure electric ring

$$\Rightarrow \vec{\omega}_a = \frac{e}{m} \left[a - \left(\frac{m}{p} \right)^2 \right] \frac{\vec{\beta} \times \vec{E}}{c}$$


for the proton (a=1.792847357(23)) > 0

$$\vec{\omega}_a = 0$$
 at $p = \frac{m}{\sqrt{a}} = 0.700740 \text{ GeV/c}$: magic momentum

\$ Use frozen spin method (static EDM measurement)

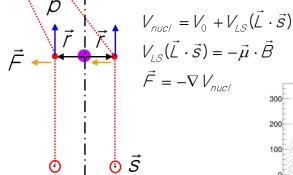
- ✓ Spin freezes to the momentum direction
- ✓ a>0 particles (p,e, etc.): use magic momentum
- ✓ a<0 (deuteron) : use E+B field
- ✓ spin precesses only on the vertical plane!
- ✓ No precession on the ring plane

$$\vec{\omega}_{EDM} = -\frac{e\eta}{2m} \frac{\vec{E}}{c}$$

- ❖ Storage ring EDM collaboration is trying to establish the experiment at CERN
 - **✓EDM Kick-off meeting at CERN in Mar. 2017**
 - ✓ About 50 participants

Polarimeter and asymmetry

❖ Use asymmetrical proton scattering on Carbon target

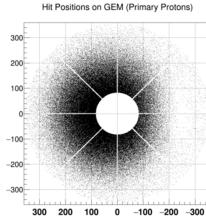

- Hadronic elastic scattering(spin-orbit interaction)
- Asymmetrical proton hit distribution on the detector plane
- L/R (U/D) asymmetry for vertical (horizontal) component of proton polarization

➤ For spin 1/2 particle

$$\sigma(\theta) = \sigma_{unpol}(\theta) [1 + P_y A_y]$$

$$L/R \text{ asymmetry } \varepsilon_{LR} = P_y A_y = \frac{L - R}{L + R}$$

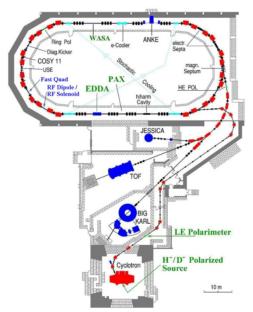
$$P_y = \frac{1}{A_y} \frac{L - R}{L + R}$$

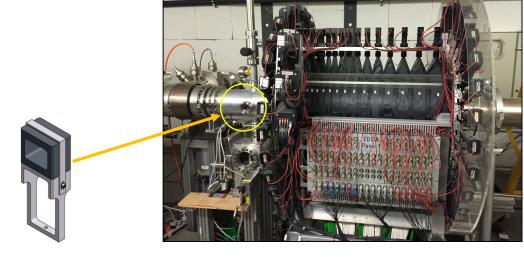


Incoming protons

Detectors

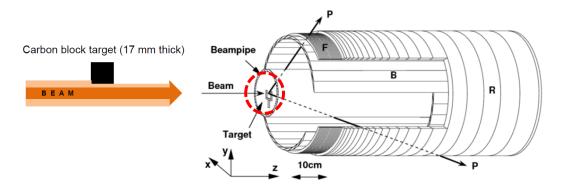
• P_y is calculated from the asymmetry with known A_y


• P_{y} changes in time due to the precession in E field.



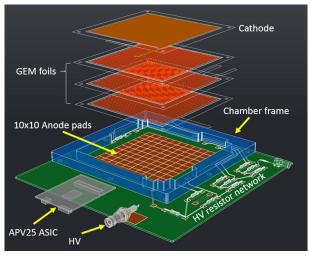
Simulation by Hoyong Jeong

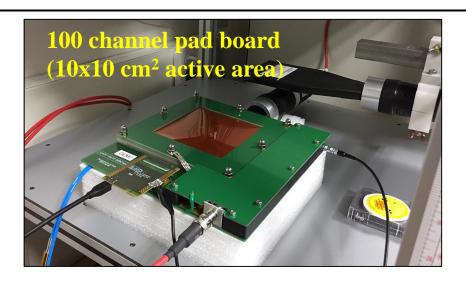
COSY ring and **EDDA** polarimeter

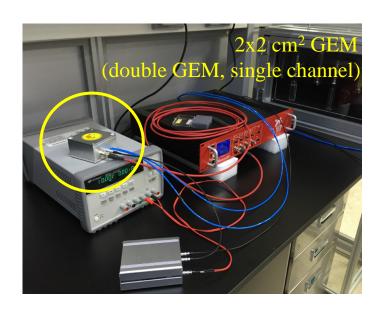


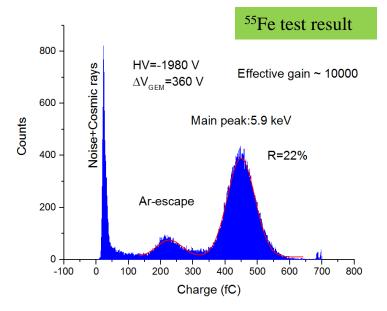
COSY carbon tube target

COSY ring (Juelich, Germany)

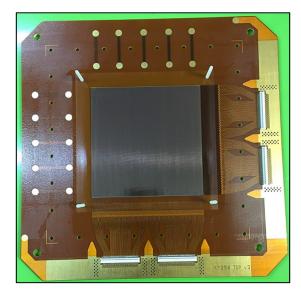

COSY EDDA detector FZJ, Juelich, Germany

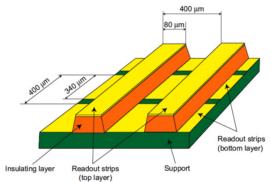

CAPP GEM detectors

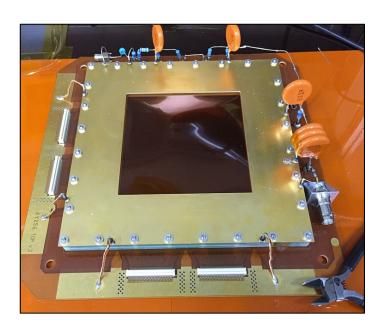

for Asymmetry measurement, Tracking



CAPP GEM detectors

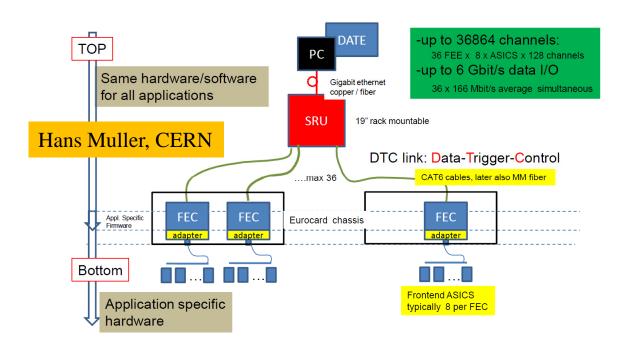


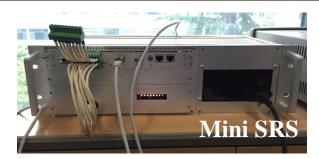


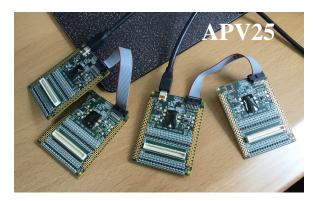


CAPP GEM detectors

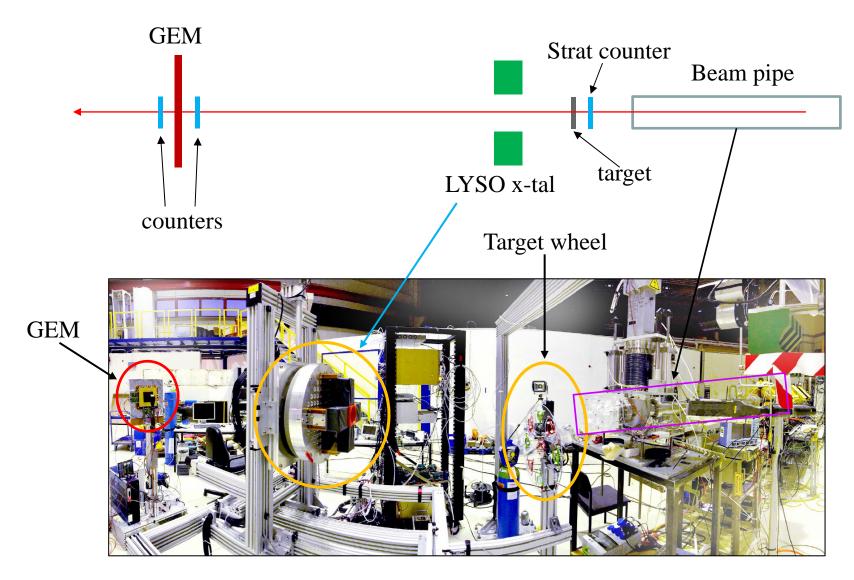
512 channel X_Y strip board (R~115 µm), CERN PCB workshop


10x10 cm² GEM detector assembly

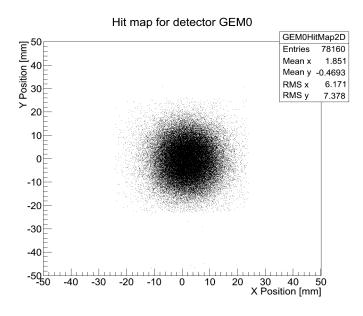


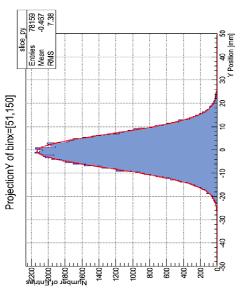

to beam test at COSY, Germany

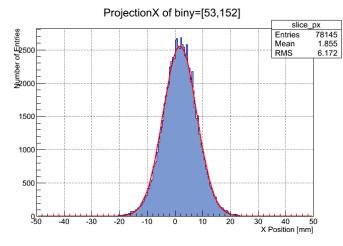
DAQ system for GEM test



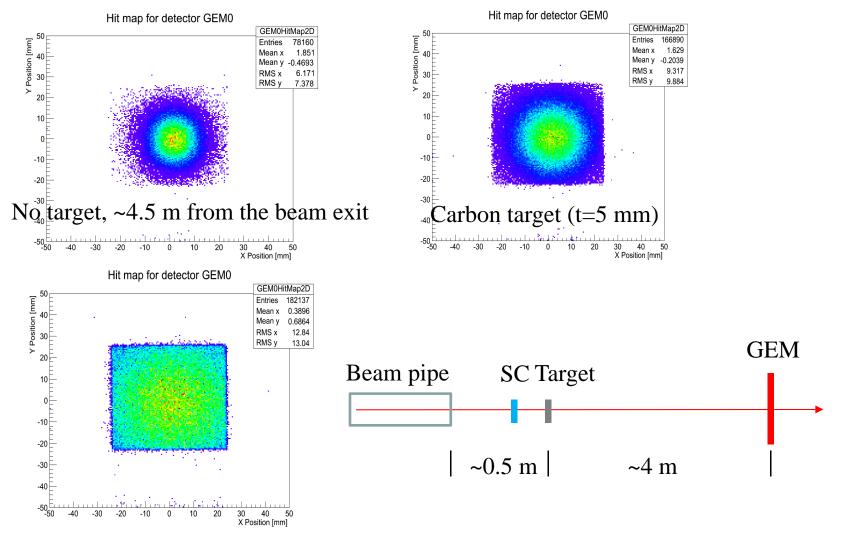
- ❖ SRS: Scalable Readout System
- ✓ Developed and distributed by the RD51 collaboration
- ✓ FE Hybrid+ adapter card+FEC+DAQ PC
 - Hybrid: APV25, VMM, GEMROC, Beetle, etc
 - APV: analog chip
 - VMM: digital chip with peak detection and time information
- **❖** Special thanks to CERN GDD lab. for providing SRS system (Hans Muller, Eraldo Oliveira)




Beam test setup at COSY(Big Karl room)

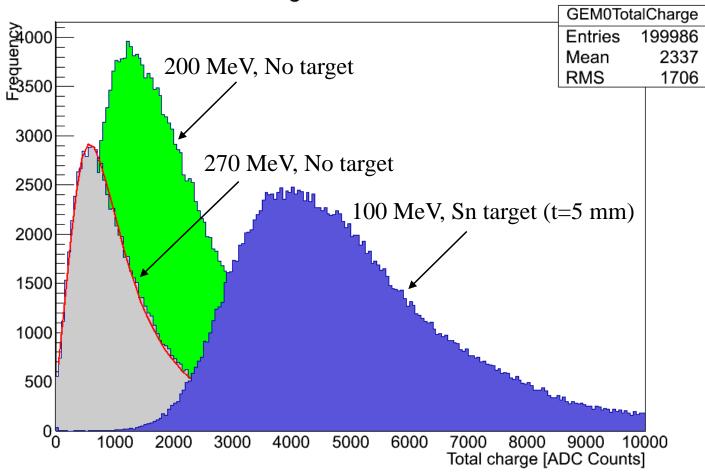


Deuteron beam profile

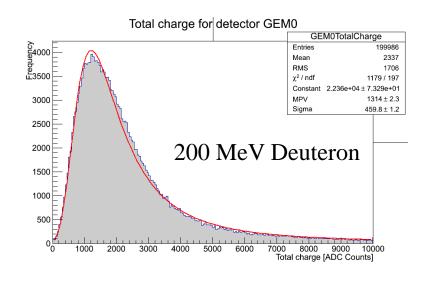


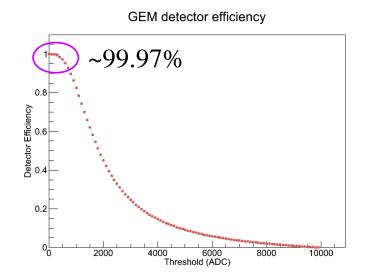
Triple GEM detector 512 channel X-Y strip board 270 MeV Deuteron beam

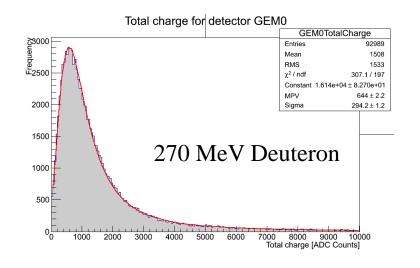
Deuteron beam spread by materials

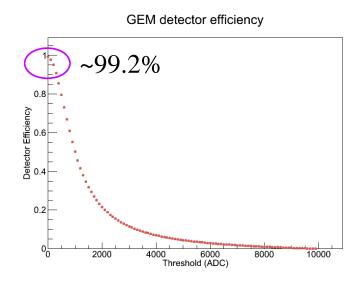


Carbon target (t=5 mm)+ plastic scintillator (t=10 mm)

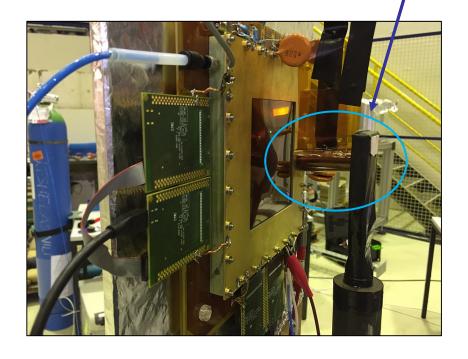

GEM response to Deuteron beam

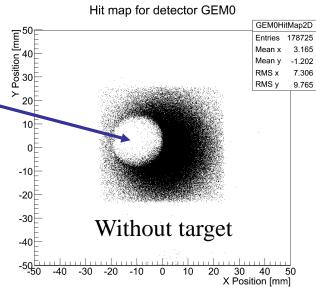

Total charge for detector GEM0

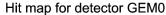


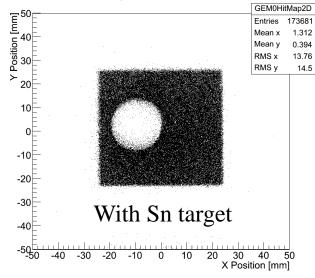


Detection efficiency








GEM digital imaging

Cupper rod

Summary and Plans

- ❖ IBS/CAPP is developing GEM-based polarimeter detectors for storage ring proton EDM experiment
- ❖ Successful beam test at COSY, Germany

≻Plans:

- Asymmetry measurement with polarized proton/deuteron beams
- ❖ Tracking test with multiple GEM planes (3~4)
 - ✓ Beam profile monitor during the measurement
- ❖ More test at KOMAC(Gyeongju, Korea)
 - ✓ In the second half of 2018?

Thank you!