

LAMPS GEM based TPC R&D

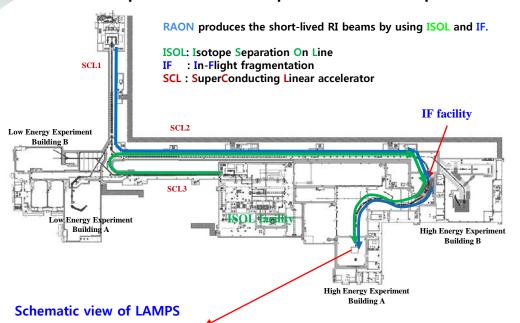
RYU, Min Sang

RI Experimental Systems Team Rare Isotope Science Project (RISP) Institute for Basic Science (IBS)

- Nuclear collision experiment and LAMPS at RAON
- LAMPS TPC
- Characteristics of GEM for TPC
- TPC prototype with GEM
- Test setup of TPC prototype
- Test results with positron beam and cosmic ray muons
- New design of LAMPS TPC
- Summary

Large Acceptance Multi-Purpose Spectrometer (LAMPS) Time Projection Chamber (TPC) Gas Electron Multiplier (GEM)

Rare isotope
Accelerator complex for
ON-line experiments


High energy nuclear collision experiment at RAON

RAON

Rare isotope Accelerator complex for ON-line experiments

Plenary talk "Status of RAON construction" by Y.K.KWON at AFAD2018 in Jan 29 2018

Initial design concept of RAON facility

High intensity short-lived RI beams by ISOL & IF

- ISOL: direct fission of ²³⁸U by 70 MeV proton
- IF: ²³⁸U of 200 MeV/u (8.3 pμA)

More exotic RI beams by ISOL+IF

Stable heavy-ion beams

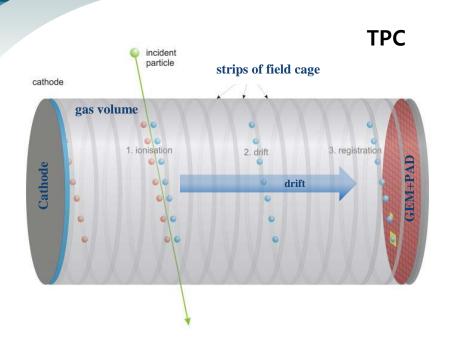
Goal of LAMPS

- Study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment and nuclear reaction study

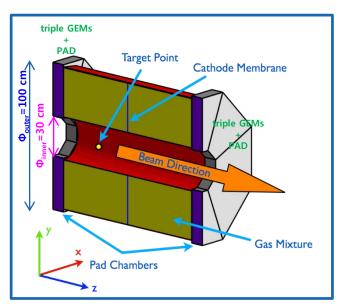
Requirements of LAMPS

- Magnetic strength (B): 0.5 T (B_{max} ~1 T)
- homogeneity of B field in TPC (Δ B/B) < ±1%
- more than 3π solid angle acceptance
- momentum (p) and particle identification (PID) of charged particles
- detection range of neutron energy: 10-300 MeV

Five institutes for LAMPS collaboration


• IBS, Korea Univ., Inha Univ., Chonnam National Univ., Chonbuk National Univ.

LAMPS TPC (Time Projection Chamber)



Operation of TPC

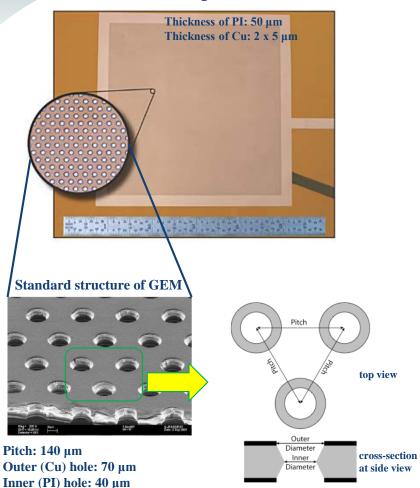
- 1. Incident particle ionizes gas molecular into an ion-electron pair ionization following the particle path in the gas volume.
- 2. Electrons drift toward triple GEMs and PAD readout.
- 3. Amplified electrons in GEMs are registered on PAD readout.

Requirements of LAMPS TPC

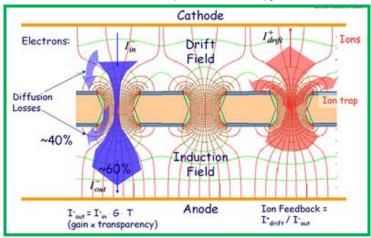
- **Gain** of triple GEMs $\sim 10^5$ in P-10 (Ar:CH₄=90:10)
- **Position resolution (\sigma_p)** 200-300 µm
- Good **E** field homogeneity of field cage

● LAMPS TPC initial design

- Field cage (2x60 cm)
- Length: 120 cm
- Inner and outer diameters: 30 and 100 cm
- Triple GEMs in each 8 sectors
- PAD readout
- GET system (~30k channels)



Characteristics of GEM for TPC



Gaseous Electron Multiplier (GEM)

Electron multiplication in the GEM

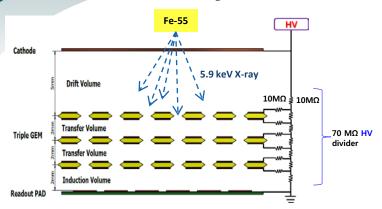
M. Hohlmann's presentation for CMS Upgrade Review, Feb. 2013

Disadvantages of wire method for TPC

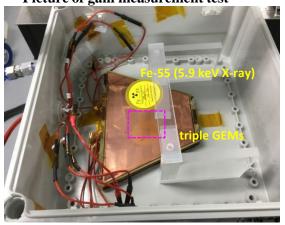
- Difficult to handle thin wires & limited spacing in between wires
- Dead time for data taking due to gating grid
- limited operation with continuous wave (CW) beam

Advantages of GEM for TPC

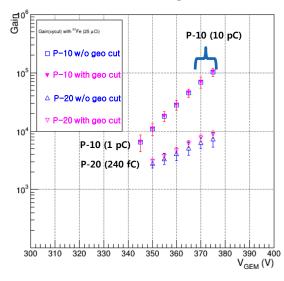
- Physical strength better than wire
- Prevent positive ions in ion back flow (IBF)
- High gain and good radiation hardness
- Enable to be operated at high event rate and under CW beam



Gain of triple-GEMs



Schematic view of triple-GEM detector



$$\begin{aligned} \text{Gain} &= \frac{<\textbf{Q}_{tot}>}{\textbf{N}_0\textbf{Q}_e} = \frac{<\textbf{Q}_{tot}>}{\textbf{220}\times\textbf{1}.602*\textbf{10}^{-19c}} \\ &<\textbf{Q}_{tot}>: \text{ mean value of measured charge} \\ &\textbf{N}_0: & \text{initial number of p-e pairs} \\ &\textbf{Q}_e: & \text{electric charge of electron} \end{aligned}$$

Picture of gain measurement test

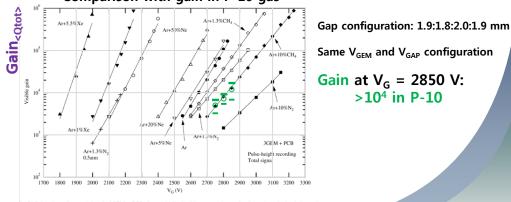
Gain in mixed gases

Gap configuration: 5:2:2:2 mm

Mixed gases:

- P-10 (Ar:CH₄=90:10)
- P-20 (Ar:CH₄=80:20)

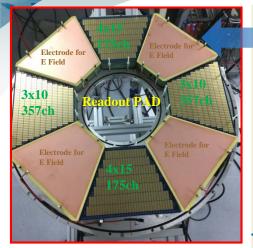
Input dynamic range:

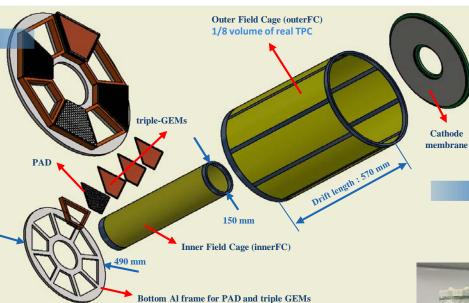

- 1 and 10 pC in P-10
- 240 fC in p-20

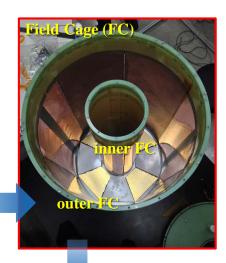
Data Analysis:

- no region selection
- region selected near Fe-55

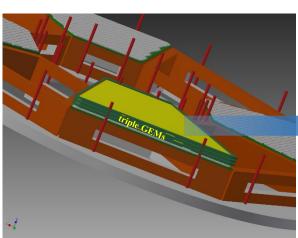
Gain at V_{GEM}=375 V: ~10⁵ in P-10 ~8x10³ in P-20

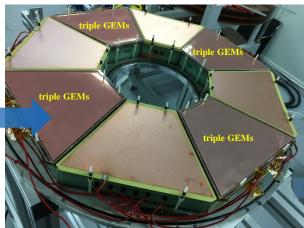

ig. 7. Gain-voltage characteristics of a 3GEM + PCB photomultiplier in different gas mixtures for the total anode signal, detected ith a charge amplifier, including both fast (primary) and slow (secondary scintillation-induced) components.

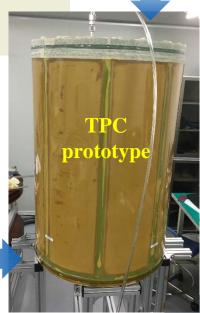

NIM A 443 (2000) 164 A. Buzulutskov, et. al.



TPC prototype with triple GEMs







Test setups of TPC prototype at ELPH in Tohoku University

Run summary

Beam time: 2 days (12h+12h) in Nov 1-2 2016

Beam: positron

Mixed gases:

- P-10 (Ar/CH₄=90/10)
- Ar-CO2 (Ar/CO₂=90/10)

PAD sizes:

- 4x15 mm² for TPC prototype
- 3x10 mm² for GEM detector

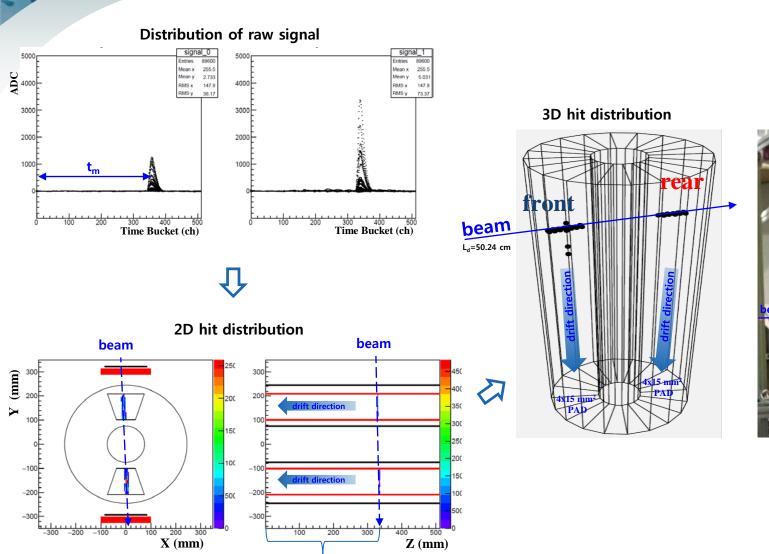
Electric field on field cage (FC):

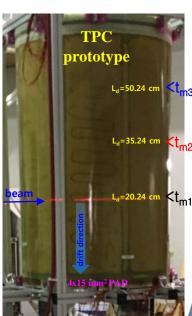
- $-E_{\rm FC} = 115, 125, 135, 145, 155 \text{ V/cm in P-10}$
- $-E_{FC} = 170 \text{ V/cm}$ in Ar-CO2

Applied voltage on a GEM, gap, and GEM1top:

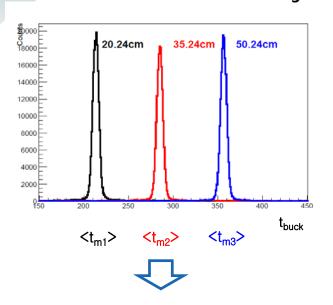
- $-V_{GEM} = V_{GAP} = -345 \text{ V}$
- $-V_{GEM1top} = -2,070 \text{ V } (3V_{GEM} + 3V_{GAP})$

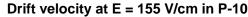
Beam height (or drift length, L_d) at TPC prototype:

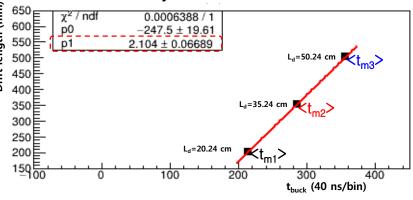

- $-L_d^{MAX} = 57 \text{ cm}$
- $-L_d = 20.24, 35.24, 50.24 \text{ cm}$

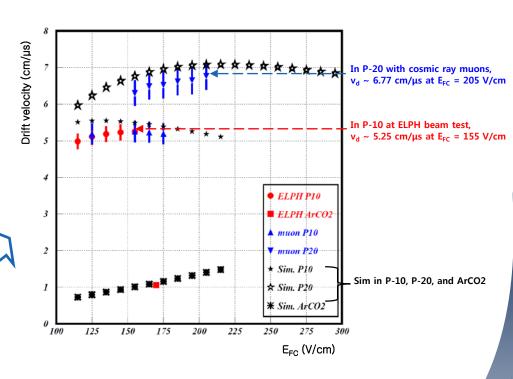


Data analysis and event display



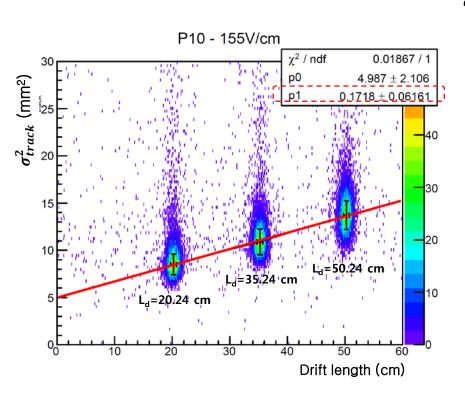


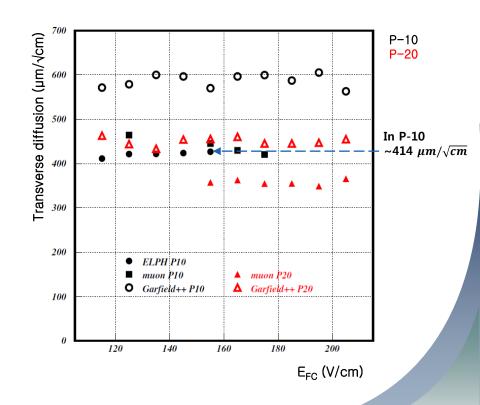

Test result: drift velocity


Time distribution for each beam height

 $v_d = 2.104 (\pm 0.167) \text{ mm/t}_{buck}$ = 5.26 (±0.167) cm/\(\mu\s^2\)

Test result: diffusion

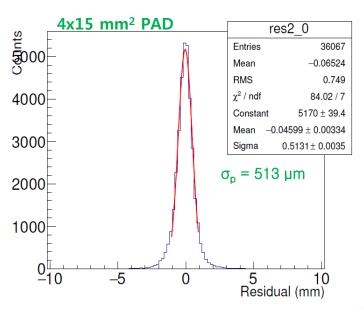

$$\sigma_{track}^2 = C_D^2 \cdot Z + \sigma_0^2$$

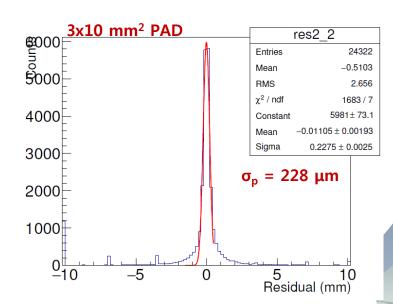

 σ_{track} : standard deviation of charge cloud

C_D: transverse diffusion

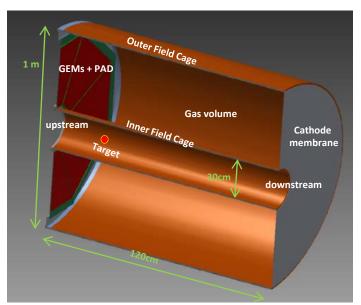
Z: drift length

 σ_0 : from readout system





Test result: position resolution



Why TPC re-designing?

- Need to improve momentum resolution ($\Delta p/p$) of TPC initially designed ($v_D > 5$ cm/ μ s, $L_d = 60$ cm)
- Limited electronics channels of GET system for readout on both sides of TPC
- Expect **more radiation damage** on the electronics at downstream than upstream

Test results of TPC prototype

- Gain of triple GEMs at V_{GEM} = 375 V: ~8x10³ in P-20 gas
- **Drift velocity** (v_D): over 6 cm/ μ s in E_{FC} =155-205 V/cm in P-20 gas
- **Transverse diffusion** (C_D): ~ 400-500 $\mu m/\sqrt{cm}$ in P-20 gas
- Position resolution (σ_p): ~228 μm with 3x10 mm² PAD

New design for LAMPS TPC

- Field cage of 120 cm long with v_D over 6 cm/ μ s
- Length: 120 cm
- Inner and outer diameters: 30 and 100 cm
- GEMs+PAD in each 8 sectors
- PAD readout only in upstream for better position resolution,
- GET system (Max. 30,720 channels)

- Experimental facilities for various science topics with stable and short-lived RI beams has been developing and constructing at RAON.
- Large Acceptance Multi-Purpose Spectrometer (LAMPS) for symmetry energy study in nuclear physics experiment has been developing.

TPC prototype

```
Field cage (drift length of 57 cm and strip pitch of 2.5 mm)

2 mm gap triple GEMs (effective area ~140 cm²)

PAD readout: 175 channels for 4x15 mm²

357 channels for 3x10 mm²

GET system
```

• Test results of TPC prototype with positron beam and cosmic ray muon Gain of triple GEMs at V_{GEM} = 375 V: ~10⁵ in P-10 and ~8x10³ in P-20

```
Drift velocity (v<sub>D</sub>): ~5.25 cm/μs at E_{FC} = 155 V/cm in P-10 gas ~6.77 cm/μs at E_{FC} = 205 V/cm in P-20 gas Diffusion (C<sub>D</sub>): ~ 400-500 \mu m/\sqrt{cm} in P-10 and P-20 gases Position resolution (σ<sub>P</sub>): ~228 \mu m with 3x10 mm<sup>2</sup> PAD ~513 \mu m with 4x15 mm<sup>2</sup> PAD
```

Outlook

Large GEM test chamber (effective GEM area \sim 1,650 cm 2) Specific design of main component for LAMPS TPC

