Construction and Preliminary Beam Test of RISP 81.25MHz CW RFQ for Heavy Ions

Park, Bum-Sik

Rare Isotope Science Project

Contents

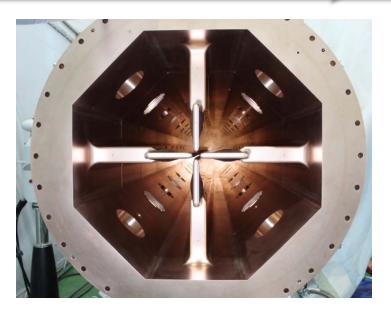
- I. Introduction
- II. Fabrication & Installation
- III. Preliminary Beam Experiment
- IV. Summary

I. Introduction

Comparisons of Heavy Ion RFQ Projects

Parameter	Unit	HLI GSI ¹⁾	SPIRAL II GANIL ¹⁾	ISAC TRIUMF ¹⁾	ATLAS ANL ¹⁾	FRIB MSU ¹⁾	RISP
Particle		A/q<8	<u>A/q= 2,3</u>	A/q <30	A/q <7	3 <a q<7<="" th=""><th>1<a q<7<="" th=""></th>	1 <a q<7<="" th="">
Frequency	MHz	108.5	88	35.3	61	80.5	81.25
Туре		4-rod	4-vane	4-rod	<u>Window</u>	4-vane	<u>4-vane</u>
Injection Energy	keV/u	2.5	20	2	30	12	10
Final Energy	keV/u	300	750	150	297	500	500
Current	uA				<u>5</u>	450	400
Length	m	3	5.077	8	3.75	5.04	<u>4.94</u>
Inter-vane Voltage	kV	80	100 – 113 Voltage Ramp	75	70	60-112 Voltage Ramp	<u>50-140</u> <u>Voltage Ramp</u>
RF Power	kW			75-100	<u>60</u>	15-100	94
Beam Power	kW				<1	1	1.4
Kilpatrick factor			1.65			1.6	<u>1.70</u>
Duty	%	50	100	100	100	100	100
Transmission efficiency	%		97			<u>80</u>	<u>98</u>
Status		Operated	Test	Operated	Operated	Test	Test

Comparisons of RFQ types


Pros and cons of RFQ types

RFQ type	Pros	Cons
Four rod	-Inexpensive -Compact size at low RF frequency	-Cooling has been a problem -RF joints have melted -Structural & RF field stability have been poor
Split coaxial (Window type)	-Compact size -Low dipole sensitivity due to windows	-Complicate structure and cooling paths -Low RF power operation
Four vane	-High RF power operation -High structural rigidity -Easy to cooling -Good for CW operation	-Large transverse dimensions -High dipole sensitivity -No ever existing for the low frequency (<200MHz for A/q >3)

RISP RFQ

Parameter	Value	
Frequency	81.25 MHz	
Particle	H ⁺¹ to ²³⁸ U ³³⁺ and ²³⁸ U ³⁴⁺	
Input Energy	10 keV/u	
Output Energy	0.507 MeV/u	
Current	0.4 mA	
Transmission	~ 98 %	
Peak surface field	1.70 Kilpatrick	
Total RF Power	94 kW	
Duty Factor	100 %(CW)	

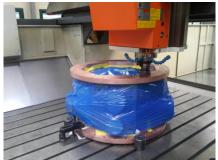
Challenges for the development of RISP RFQ

- Continuous wave operation
- High RF power operation (~100kW)
 - => Four-vane type RFQ (Lower specific thermal load and easier cooling)
- Fabrication of a low frequency RFQ with large transverse dimensions by using the brazing technology
 - => No ever existed(<200MHz).
- Reduce the RFQ length while increase the output energy for the cost effectiveness

II. Fabrication & Installation

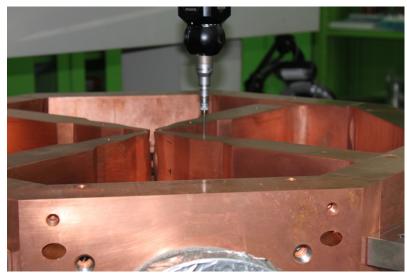
RFQ Fabrication Procedure

RLSP


- Physical & mechanical design
- Rough machine for vanes and quadrants
- 1st and 2nd Braze for cooling channels and vacuum flanges
- Flow and leak test
- Fine machining including the vane modulations
- Dimension inspection with CMM(Coordinate Measurement Machine)
- 1st assembly
- Inspect the alignment
- Installation of the dowel pins for re-assembly
- Disassemble and clean
- 2nd assembly
- Inspect the alignment
- Final braze
- Frequency and vacuum leak test
- Final machine

Braze in cooling parts, vacuum ports

Machine the vane modulations

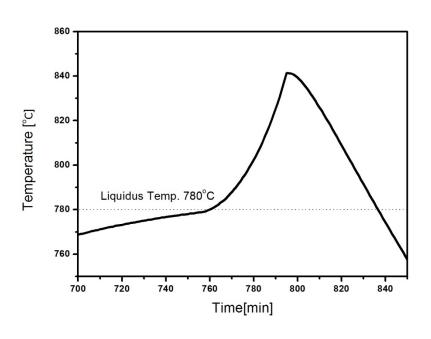

Inspect the assembly Installation of the dowel pins

Inspect the Alignment

- Pin gauge (±50um): The gap was checked in every step
- Machine the dowel pin holes at section ends
- : to measure the vane position indirectly
- measured the hole position after the every assembly process

Gap gauge

Dowel hole

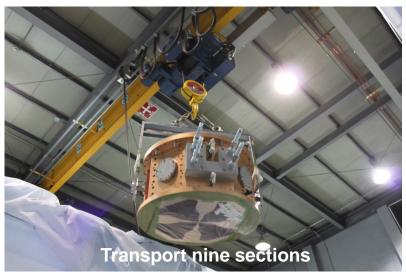


Dowel hole

Braze

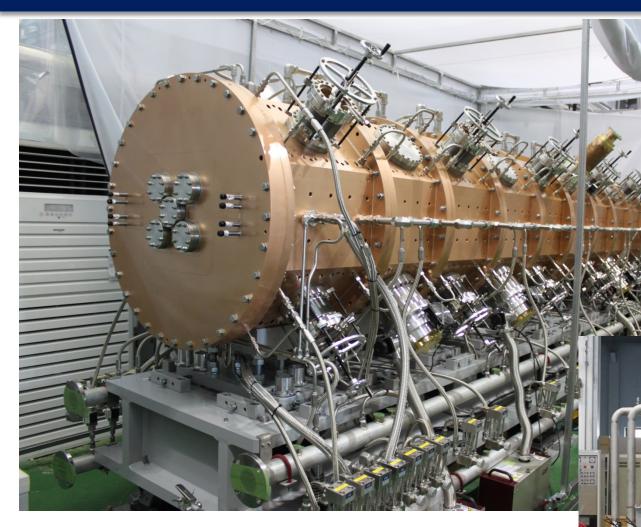
- 1. Three steps of brazing processes
- 2. For various flanges, BNi-2 brazing alloy (Liquidus Temp. 1010 $^{\circ}$)
 For cooling channel, 50% Gold / 50% copper alloy (Liquidus Temp. 970 $^{\circ}$)
 For assembly, BAg-8 copper alloy (Liquidus Temp. 780 $^{\circ}$)

Temp. profile during final brazing


Final brazing process

RFQ Installation

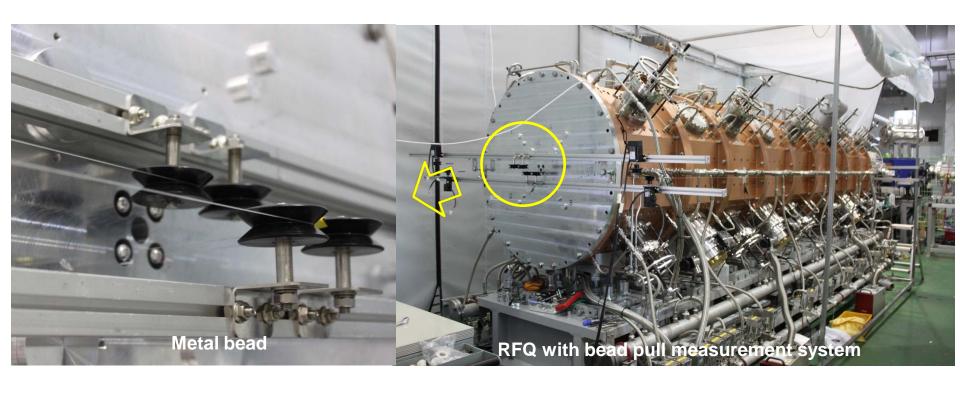
Vane gaps in the joints of each modules : tolerance ≤ ± 100 µm



Installed RFQ

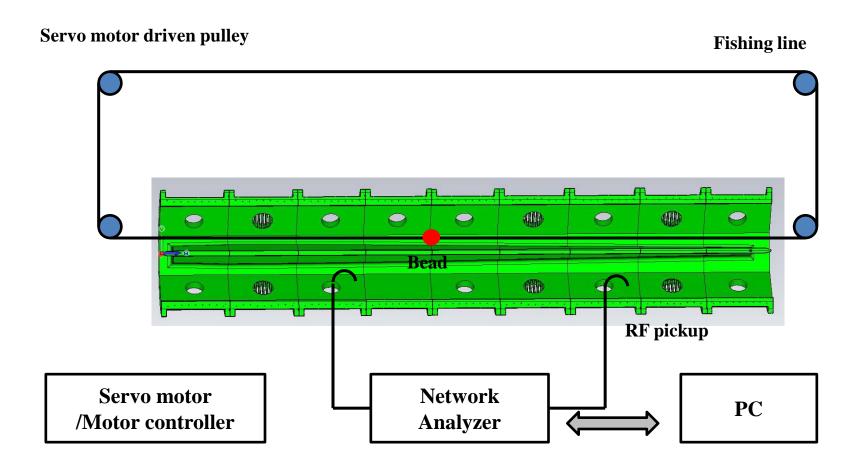
Fabricated RFQ with cooling system

Bead-pull Measurement


Frequency shift due to the bead perturbation (Slater perturbation theorem)

For spherical metal bead,

$$\frac{\Delta\omega}{\omega_0} = -\frac{3\Delta V}{4U} \left[\varepsilon_0 |E_0|^2 - \frac{\mu_0 |H_0|^2}{2} \right]$$

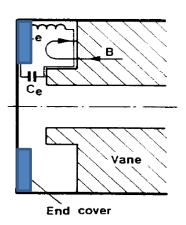

 ΔV : bead volume,

U: stored energy in the cavity E_0 : unperturbed electric field, H_0 : unperturbed magnetic field

RF Tuning setup

Bead pull measurement system

RF Tuning Tool


By adjusting the radial perturbation with slug tuners, the magnetic field distribution and the frequency can be controlled.

The machining and alignment error can be compensated with slug tuners.

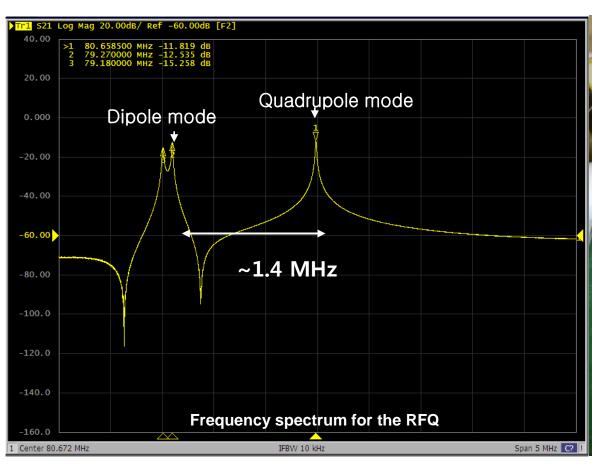
- Number of movable slug tuners : 20 ea (five for each quadrant)

<u>Due to the insensitivity for the perturbation, the geometry of endplates was adopted</u> <u>as the tuning tool to control the capacitive and inductive components</u>

$$\frac{\delta V_0(z)}{V_0(z)} \propto -\left(\frac{\ell_v}{\lambda}\right)^2$$

Schematic of endplate modification

Modified endplate


Movable slug tuner(stroke 90mm)

Mode Stability

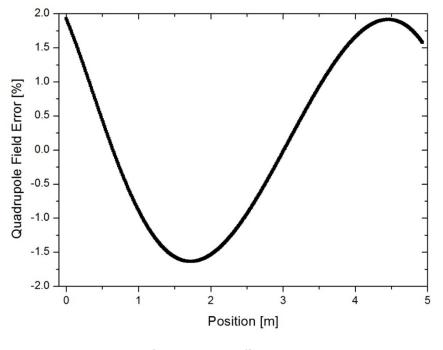
Frequency gap between the lowest dipole mode and the quadrupole mode : ~ 1.4 MHz

=> Need not dipole rod stabilizers for this study

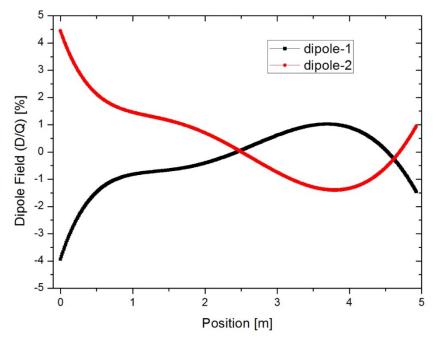
Final Tuning Result

Quadrupole mode amplitude

$$A_0 = |B_1 - B_2 + B_3 - B_4|/4$$


Dipole mode amplitude for each position $A_{D1} = |B_1 - B_3|/2$ $A_{D2} = |B_2 - B_4|/2$

$$\mathbf{A}_{\mathbf{D}1} = \left| \mathbf{B}_1 - \mathbf{B}_3 \right| / 2$$


$$\mathbf{A}_{\mathbf{D}2} = \left| \mathbf{B}_2 - \mathbf{B}_4 \right| / 2$$

Quadrupole field error compared to the designed value $< \pm 2\%$

Dipole field compared to the quadrupole field $< \pm 5\%$

Quadrupole field error

Dipole field compared to the quadrupole field

III. Preliminary Beam Experiment

Beam Acceleration Experiment

RISP

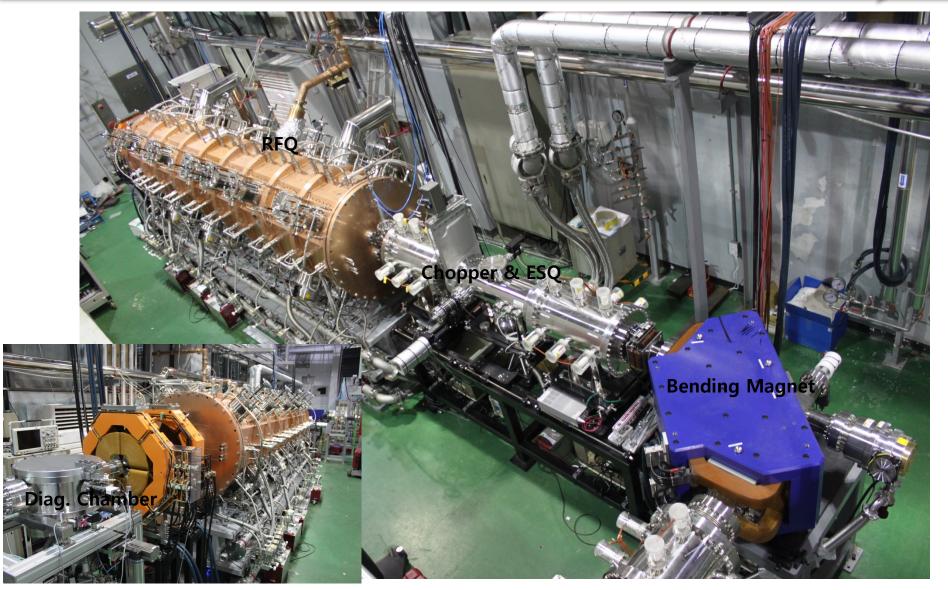
Particle: O⁺⁷

RF power: 80 kW SSPA

Input energy: 10 keV/u (22.8kV)

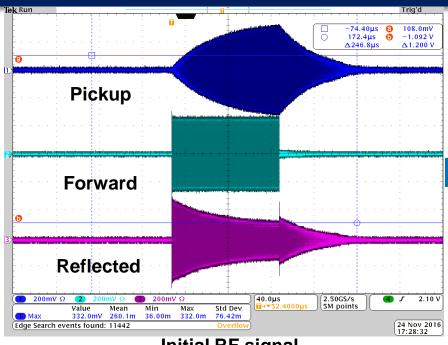
Output energy: ~500 keV/u

Accelerated beam current : ~3 µA


RF set value vs. oxygen charge

q	A/q	Power(kW)	Power(kW) 20% margin
4	4.0	25	32
5	3.2	16	20
6	2.7	11	14
7	2.3	8	10
8	2.0	6	8

Experiment Setup



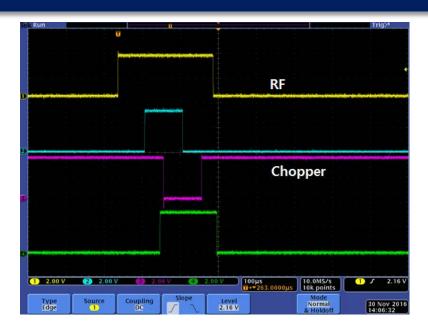
Off-site Test Facility for RFQ Beam Experiment

RF Conditioning (one coupler)

Pickup

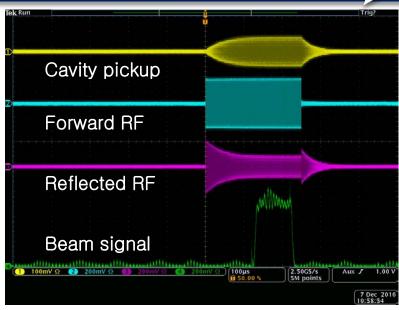
| Pickup | P

Initial RF signal


Under conditioning RF signal

- Under 8kW(forward power), more RF condition is needed.
- Maximum conditioned power: 70 kW
- Pulse repetition : 1 Hz
- Pulse width: 100 us

First Beam Experiment - Current


Timing structure

Repetition rate: 1Hz

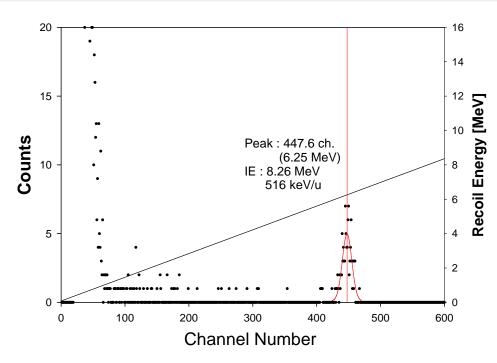
- RF pulse width: 250 us

- Chopper pulse width: 110 us

: flat top 100us, RF filling delay 120 us, rising and falling delay 5us+5us,

RF power and beam signals during the beam acceleration

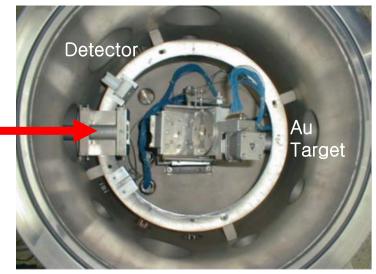
Coupling beta: 0.48


- Forward RF power : 13.2 kW

- Delivered RF power: 10.4 kW

- Measured beam current @Faraday cup : ~3µA

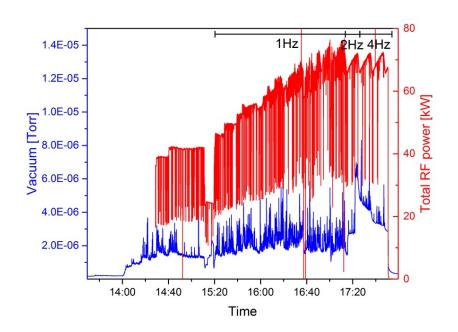
First Beam Experiment - Energy

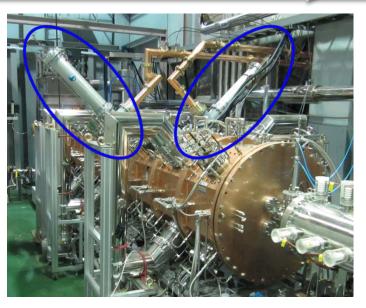


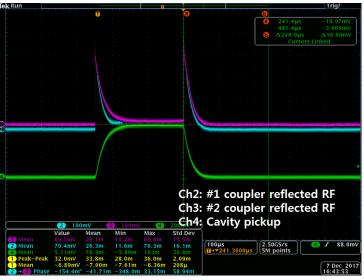
Energy measurement by the RBS(Rutherford Back Scattering) method

Accelerated beam energy was measured

- Field profile tuning was confirmed.
- Input & output beam characteristic will be measured.




Energy measurement system(RBS)


RF Conditioning (two coupler)

- RF conditioning with two power couplers
- Phase difference was compensated between coupler 1 and 2.
- Conditioning to 70kW, 4Hz in pulse mode operation (pulse width 250 us)
- Continuing to increase the repetitions

Summary

- ◆ Four-vane RFQ for low frequency was fabricated to accelerate heavy ion beams.
- ♦ Ramped field was tuned as the error is less than 2% for quadrupole error and 5% for dipole field by using not only the slug tuners but also the endplate geometry modification.
- RISP RFQ was installed and preliminary beam test was accomplished at the off-site test facility.
- ♦ The design, fabrication and tuning process of the RISP RFQ was confirmed by the preliminary beam test results.

Many collaborators from the VitroTech Co. and RI Research Instruments GmbH contributed to the success of the RFQ fabrication. In particular, we would like to thank Dr. Y.Y. Lee (BNL retired) and Dr. D. Schrage (LANL retired) for their helpful advice and cooperation.