Overview of the A-BNCT System in Korea

Jan. 30th, 2018

D.S. Kim

A-BNCT Project
Dawonsys

Contents

- I. Brief history of BNCT R&D activities in Korea
- II. Introduction of A-BNCT project
- III. Development status of the A-BNCT facility
- IV. Future plan & Discussion

BNCT (Boron Neutron Capture Therapy)

❖ Principle of BNCT

Therapeutic Features of BNCT

- Clarity of therapeutic principles
- Treatment unit of cell size
- Minimization of radiation exposures for normal tissues
- Reduction of side effects
- Treatment of malignant cancers which are not effective with conventional treatments
 (Brain Tumor, Head & Neck Cancer, Malignant Skin Cancer, Recurrent Cancers, Radiation Resistant Cancers)

❖ Clinical Trials of BNCT

Cell death by 2ndary ions from NR

Stage	Fields	Name of diseases	Treatment Effects
Clinical	Brain Tumor	Glioma GlioblastomaMutiforme(GBM) Astrocytoma	good
Trials & Treatment	Head-Neck Tumor	Carcinoma	good
	Skin Cancer	Malignant Melanomas Mesothelioma	good
Under	Recurrent Cancer	Recurrent Breast Cancer	good
Clinical Trials	Thyroid Cancer	Undifferntial Thyroid Cancer	Fair

Brief History of BNCT R&D Activities in Korea

❖ 25 years to study on BNCT : Neutron Sources, Boron Compounds, Biological Effects, TPS

- 1. Survey study of BNCT: KIRAMS ('92-'96)
- 2. Establishment of basic technology of BNCT: KAERI ('96-'99)
- 3. Building a thermal neutron beam port at 30MW Hanaro reactor : KAERI ('97-'02)
- 4, Development of Boron labeled compound (¹⁸F-BPA, ¹²³I-BPA) : KIMAMS ('02-05)
- 5. Biological studies on cells & rats with boron compounds and thermal neutrons: KAERI('02-'07)
- 6. Design study of an accelerator based BNCT : Hanyang Univ. ('02-'07)
- 7. Development of new boron compounds,: Wonkwang, Chosun & Korea Univ. ('02- '12)
- 8. Construction of a 100MeV Proton Linac, KOMAC, (Korea Multipurpose Accelerator Complex) KAERI ('02-'12)
- 9. Establish of A-BNCT project : Dawonsys Consortium ('16-'20)

☐ Hanaro (30MW Reactor)

☐ KOMAC (100MeV Linac)

Evolution of BNCT Facilities – Neutron Source

Development of BNCT systems

Requirements for Neutron Sources

- 1. Quality of neutron beam
 - Epithermal neutron spectrum
- 2. Quantity of neutron beam
 - Epithermal neutron flux
- 3. Reduction of harmful radiation doses
 - Fast neutrons / thermal neutrons
 - Prompt gamma radiation
- 4. Elimination of induced radiations dose
 - Induced radiations from

Considerations as a Medical Facility

- 1. Hospital based facility
 - Small size & area
 - Connection with other diagnostics
 - Easy operation (automatic controll)
- 2. Safety
 - Radiation safety
- 3. RAM
 - Reliability, availability, maintainability
- 4. Cost Effectiveness
 - Machine costs
 - Operation costs

2. Introduction to the A-BNCT Project

Technological Bases for a BNCT system at Dawonsys 🙋

Accelerator & Fusion Projects

Large Accelerator Project in Korea

- ☐ Light Source Projects
- Modulator & MPS for PLS
- Modulator & MPS for Pohang XFEL
- Medical Heavy Ion Accelerator Project
- Investment Agreement to develop heavy ion accelerator
- Precision Dipole MPS
- ☐ Heavy Ion Accelerator Project (RAON)
- Precision MPS
- ☐ Intense Neutron Source Project at KBSI
- RFQ RF Power System

❖ Participating Foreign BNCT Projects

- ☐ iBNCT Project at Tokai, Japan.
- Business;
 - Development & Delivery of a modulator for high power RF Source
 - ② Maintenance Project for RF System
- Collaboration :
 - Contribution to a foreign BNCT project using Dawonsys' Technologies.
 - ② Construction of international network to develop the Accelerator Based BNCT.

Nuclear Fusion Project

☐ KSTAR Project of NFRI

- NBI Power Supply
- ECH Power Supply
- PF & TF Magnet Power Supply
- ☐ ITER(International Thermonuclear Experiment Reactor) Project
- ITER Converter Module
- ITER Superconducting Magnet PS

☐ OIST-BNCT Project at Okinawa, Japan

- Business :
 - ① Design of New type Klystron Modulator
 - ② Solenoid Magnet & Its Power Supply
- Collaboration :

Participation and contribution to a commercial BNCT project.

History of A-BNCT Project at Dawonsys

Year Month	A-BNCT Development Activities	Results
15. 03	BNCT commercialization plan passed the board of directors of Dawonsys	· Overall planning of BNCT business
15. 05	Composition of a consortium of A-BNCT	 Organizing cooperation activities among industry, institutes, universities and hospitals.
15. 06	Start A-BNCT system design	 Design injector/RFQ/DTL Design target assembly WBS project management system Design building and utility
15. 10	Investment agreement for A-BNCT	Attract investment of building & utilities from BRC/Gachon Univ.
15. 11	Agreement on utilization of A-BNCT	· Dawonsys – Gil Hospital
16. 03	Agreement on boron drug development	· Dawonsys – Gachon University
16. 03	Propose a government project to develop & Commercialize A-BNCT	· Review & evaluation process

Summary of A-BNCT Project

☐ **Project Name**: Development of the accelerator based Boron Neutron Capture Therapy system for the cancer treatment within "1 hour" therapeutic time

☐ Project Period : 2016 . 5 ~ 2020 . 12

☐ Leading Organization : Dawonsys Inc.

Participating Organizations: Gil Hospital, Gachon Univ., PAL, KAERI and KBSI

☐ Developed Items: Proton Linac, Be Target / Moderator Assembly, Dosimetry (Neutron & Gammas), Radiation Safety & Licensing, Boron Compounds, TPS(Treatment Planning System),

Clinical Trials, Government Approvals of Boron Compounds & BNCT Treatment

A-BNCT Facility

BNCT TPS

BNCT Treatment

Set up Goals for A-BNCT facility

Qualitative Goals

- 1. To achieve and exceed characteristics of neutron source for BNCT recommended by "IAEA"
- 2.. To reduce a treatment time, less than 1 hour by delivering high flux of epi-thermal neutrons over 2 X 10⁹ [n/cm².s]
- 3. To establish and implement a precise treatment planning system through real time measurements of radiation doses and boron concentration for each patient.
- 4. To realize safety, reliability, availability, maintainability and easy operation of the system as a medical facility.
- 5. To prepare 2 treatment rooms and a research room for effective utilizations of the facility

Performance Goals

□ Neutron Source

- Epithermal Neutron Flux: more than 2 X 109 [n/cm².S]
- Ratio of Epithermal Neutrons / Thermal Neutrons : more than 20
- Fast Neutron Dose / Epithermal Neutron Dose: less than 2x10-13
- Gamma Dose / Epithermal Neutron Dose : less than 2x10⁻¹³
- Neutron Irradiation Field: about 15 x 15 cm²

☐ Accelerator & Target

• Type : High Power Proton LINAC

(50kV Injector + 3MeV RFQ + 10MeV DTL+ BT)

• Beam Energy: Two Operation Modes

10MeV (for a high neutron flux operation)

- Beam Current (Average / Peak): 10 / 50 mA
- Beam Power: max 80 kW
- Target / Cooling : Be / Water

☐ Treatment Ancillary Facilities

- Rooms: 2 treatment rooms, 1 research room
- Treatment Planning System : S/W, H/W
- Diagnostics : MRI, F18-FET, CT
- Patient Positioning & Alignment Devices

Fields and Interfaces of A-BNCT Collaboration

FRM (Facility Review Meeting)

MRM (Medical Review Meeting)

Objectives & Schedule of A-BNCT

Fabrication of Components (1st -2nd yr.)

Proton Linac: Injector + RFQ + DTL + BL
Target System: Be Target + Assembly

Constr. of Buildina & Utility (1st -2nd yr.)

Building: 35.3 x 21.8 m², Radiation Shielding Utility: Electricity, Cooling Water, Air Cond. etc

Installation & Commissioning(3rd - 5th yr.)

Proton Beam : Energy 7~10 MeV, Power 1→20→80 kW Epithermal Neutron Flux : 0.03→ 0.5→ 2 x10 9 n/cm²s

Clinical Trial(3rd - 5th yr.)

1st Stage Trial 2nd Stage Trial

Final Goal

- BNCT 3rd Stage
- Facility Transfer to the Hospital

Development of Boron Compounds (1st -3rd Yr.)

Boron Drugs: BPA. BSH, 18FBPA

Report on In-Vitro Experiment

nt Cancer Cell Uptake of B-10 : 10→25 µg/g
Entra preen Ratio of Cancer/Normal Cell : 2→4

Boron Drugs

Road Map & Milestones

Component Development and Review Process

mire Mala in the

S/W H/W Review : MRM & FRM

DR: Design Review **PI**: Performance Inspection

3. Development Status of the A-BNCT Facility

Layout of A-BNCT Facility

Building: 35.3 x 21.8 m² with shielding

Utility: Electricity, Cooling, Air Cond.

A-BNCT Facility

Neutron Generator

Proton Linear Accelerator

A-BNCT Proton Linear Accelerator

☐ A-BNCT Accelerator System (50keV Injector + 3MeV RFQ + 10MeV DTL)

Injector Parameter	Value	
Beam Energy	50 keV	
Beam Current (peak)	60 mA	
Proton Ration	> 80%	
Pulse Length	1.7 ms	
Repetition Rate	120 Hz	
Emittance	$0.11~\pi$ mm mrad	
Length	1.85 m	

RFQ Design Parameter	Value	
Frequency	352 MHz	
Beam input / output energy	0.05 / 3.0 MeV	
Beam current (average)	8 mA	
Peak surface electric field	31.73 MV/m	
Input emittance (rms, norm)	0.2 π mm mrad	
Transmission	93.96 %	
Length	3.18 m	

DTL Design parameter	Value	
Frequency	352 MHz	
Beam input / output energy	3.0 / 10.0 MeV	
Input beam current(average)	8 mA	
Length	4.85 m	
Number of DT	50	
Peak surface electric field	12 MV/m	
Magnetic gradient	50 T/m	
Total power (wall + beam)	900 (540 + 360) kW	

☐ Features & Achievements

- 1. High beam power of 80kW (10MeV, 8mA) with a compact machine size of 10m length for in-hospital facility
- 2. design & construction through domestic collaboration using domestic accelerator technology
- 3. design focus: reliability, availability, maintainability and economic consideration

Progress of the Linear Accelerator

Proton Injector (Under Beam Test)

□ **RFQ** (under Fabrication)

□ DTL (Under Fabrication)

☐ Features & Achievements

- 1. Proton injector under beam test has achieved separated machine parameters: 50keV, 60mA, 80% of proton ratio, 1.7mS pulse length etc
- 2. RFQ under fabrication targets a high beam current of 50mA and high duty of 20%.
- 3. DTL under fabrication targets also a high averaged beam current of 8 mA to achieve 80kW beam power

Beam Lines & Be Target for A-BNCT

Configurations of 3 Beam Lines

☐ Central Beam Line (1st Stage const.)

☐ Features & Achievements

- 1. Bended beam lines have an achromatic beam optics for minimized beam losses.
- 2. The central beam line is a simple straight line with a raster beam scanning system for a large area uniform beam
- 3. Be target system uses a simple thick Be plate of 20mm with back cooling allowing hydrogen blistering

□ Be Target

Epithermal Neutron Generation — Moderator Assembly

Moderator Assembly

Neutron Spectrum (Calculated)

Characteristics of Neutron Fluxes & Doses

	Epithermal Neutron Flux	Thermal Neutron Flux	Epi / Thermal Ratio (<0.5eV)		Epi / Fast Ratio (>100keV)	Gamma Dose / Epi Ratio
0 cm	4.15 x 10 ⁹ /cm ² *s	8.68 x 10 ⁷ /cm ² *s	47.81	7.56 x 10 ⁷ /cm ² *s	54.87	7.91 x 10 ⁻¹⁴ Gy*cm ²
5 cm	2.34 x 10 ⁹ /cm ² *s	5.11 x 10 ⁷ /cm ² *s	45.83	4.84 x 10 ⁷ /cm ² *s	48.32	-
IAEA	> 1.00 x 10 ⁹ /cm ² *s		> 20			< 2.00 x 10 ⁻¹³ Gy*cm ²

Features & Achievements

- 1. High epithermal neutron flux to be able to realize treatment time less than 1 hour.
- 2. Minimization of the fast neutron & gamma doses to reduce radiation side effects.
- 3. All design parameters of neutron & radiations meet the IAEA recommendations

Radiation Safety & Licensing

☐ Radiation Licensing Schedule

Year Month	A-BNCT Activities
17. 8	Submitted a radiation safety report of A-BNCT facility to KINS
10-12	Review of the report in KINS
18. 1-2	Evaluation of the facility operation
3	Approval of the radiation safety license
5-8	Inspection of the radiation safety during operation

Construction Progress of A-BNCT facility

☐ Aerial Photo of A-BNCT building (18. 01)

☐ Rooms inside the building (17. 10)

Accelerator Room

Corridor

Roof

Future Plan of the A-BNCT facility

☐ Major Milestones of A-BNCT Facility

Year Month	A-BNCT Activities
17.11	Completion of the building and utilities
12	To start Installation of accelerator systems
18. 1	To get a radiation license by the government
3	To start beam commissioning of the accelerator
5	To start experiments of neutron generation
7	To get an operation license of the facility
9	To open neutron beams for BNCT experiments

□ Configuration of the facility in 1st Stage

