

KAERI's Developments of Various Electron Accelerators for Medical/Industrial/ Basic Scientific Applications

Yujong Kim

yjkim@kaeri.re.kr, yjkim3488@gmail.com

KAERI-2018-066

Outline

- **□** Acknowledgements
- ☐ Short Introduction to KAERI
 - KAERI Facts and KAERI's Accelerators
 - KAERI's Roadmap for Developments of Electron Accelerators
- ☐ Introduction to Electron Linear Accelerators (Linacs)
 - Applications of MeV Range Electron Linacs
 - Main Components of Low Energy RF Linacs
- ☐ Electron Linear Accelerator (Linac) Developments at KAERI
 - 6 MeV & 15 MeV S-band Linacs for Medical, CIS, and NDT
 - 6 MeV X-band Linacs for CyberKnife
 - 10 MeV 10 kW Linac for Electron Beam Irradiation Facility
 - S-band RF Gun for Ultrafast Sciences
 - **20 MeV Superconducting Linac for neutron Time of Flight Facility**
- ☐ Short Introduction to a New Korean Synchrotron Light Source
- **□** Summary

Acknowledgements

Y. Kim gives his sincere thanks to LOC and WG conveners of AFAD2018 and KAERI colleagues and supervisors for their allowance of this talk, and also to following friends, references, and former supervisors:

PAL & POSTECH: Prof. W. Namkung, Prof. I. S. Ko, and Prof. M. H. Cho,

SPring-8: Prof. T. Shintake (now at OIST)

KEK: Prof. K. Yokoya and Prof. H. Matsumoto

PSI: Dr. S. Reiche, Dr. M. Pedrozzi, Dr. H. Braun, and Dr. T. Garvey

DESY: Dr. K. Floettmann, Dr. S. Schreiber, Director R. Brinkmann,

Prof. J. Rossbach, and Dr. Y. Chae,

APS: Dr. M. Borland and Prof. Kwang-Je Kim

LANL: Dr. B. Carlsten

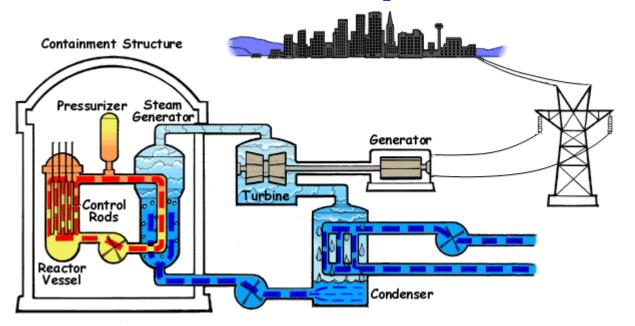
Indiana University: Prof. S. Y. Lee

INFN: Dr. M. Ferrario

Jefferson Lab: Dr. A. Hutton, Dr. H. Areti, and Dr. S. Benson

Duke University: Prof. Y. Wu

Idaho State University & IAC: Prof. D. Wells & A. Andrews


RTX: Mr. Pikad Buaphad, Dr. K. B. Song, H. D. Park, and Mr. S. Y. Ryu

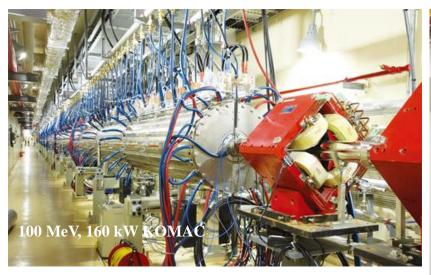
SANKEN @ Osaka University: Prof. T. Majima and Prof. J. Yang

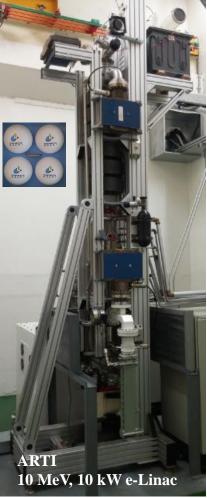
Korea Atomic Energy Research Institute (KAERI) for R&D Nuclear Energy

- ☐ KAERI is the first national laboratory in Korea (established in 1959)
- ☐ Employees are about 3000 (2nd largest national lab. in Korea).
- □ Annual R&D funding is about 600 M\$ (~ 6000 억원).
- □ In 2007, the Korea Institute of Radiological & Medical Sciences (KIRAMS, 한국원자력의학원, 원자력병원) was separated from KAERI.

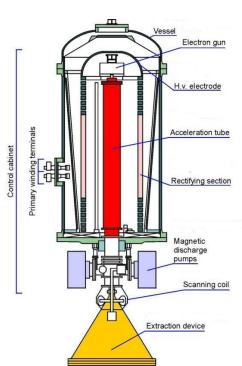


- ☐ KAERI is an R&D leading institute to construct 24 nuclear reactors in Korea.
- ☐ KAERI has a multi-purpose 30 MW research reactor (HANARO) in 1995.





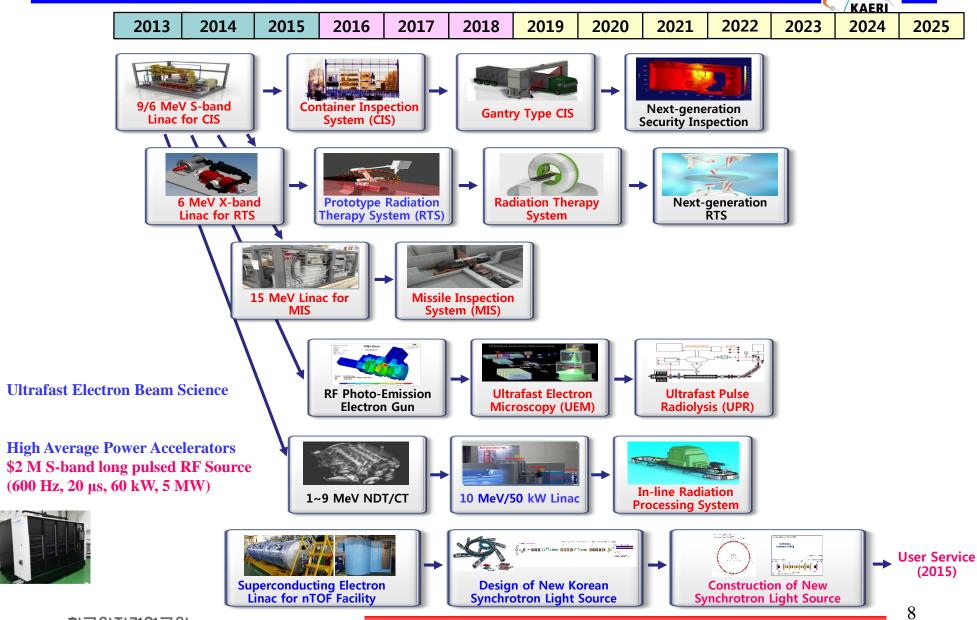
☐ KOMAC: Protron, HANARO: Neutron, DIAC: Ion, ARTI: Electron Linacs



- \square ARTI has a 30 MeV, 500 μ A (maximum H⁻ \rightarrow H⁺ at Carbon) Cyclotron.
- ☐ A new 2.5 MeV 100 kW Electron Accelerator will be installed at ARTI by 2018.
- ☐ A new 10 MeV 30 kW Electron Accelerator will be installed at ARTI by 2018.

ELV-8, **Height** ~ **6.3** m

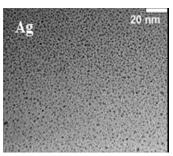
2.5 MeV, 100 kW Accelerator (EB-Tech)


30 MeV, 500 μA Cyclotron

Machine parameter	Specification
Minimum beam energy	9 MeV
Nominal beam energy	10 MeV
Maximum Beam energy	11 MeV
Minimum average beam current	0.1 mA
Maximum average beam current	3 mA
Range of pulsed beam current	30 mA - 440 mA
Range of pulse repetition frequencies	30 Hz - 600 Hz
Length of electron window in scanning direction	3000 mm
Minimum scan width at electron window (power density)	150 mm
Maximum scan width at electron window (10% under-scan)	2700 mm
Maximum average beam power at 10MeV	30 kW

10 MeV, 30 kW e-Linac

KAERI's Roadmap for Electron Accelerators


Applications of RF Electron Linacs

- **◆ ERP Market**
- ◆ \$200 M / Year
- ♦ 14% Growth / Year

EBP

Electron Beam Processing

- ♦ RTS & Diagnostic Market
- ◆ \$3 B / Year
- ◆ 16% Growth / Year

- ◆ Security, CIS, & NDT Market
- ◆ \$500 M / Year
- ◆ 30% Growth / Year

CIS/NDT Container Inspection

System

RF Electron
LINACs

ARF

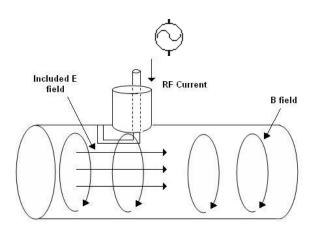
Advanced Research Facility

Radiation Therapy System

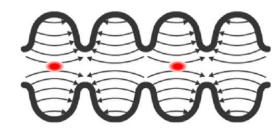
- ◆ Ultrafast Electron Diffraction (UED)
- ◆ Ultrafast Electron Microscopy (UEM)
- ◆ Ultrafast Pulse Radiolysis (UPR)
- ◆ Light Source Facility (Synchrotron, XFEL)

RF Accelerator

To avoid arcs and to get a higher gradient, RF accelerators are used.


RF electric field supplies an acceleration by Lorentz force:

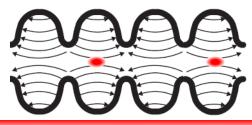
$$\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$


L-band: $f \sim 1.5$ GHz ($l \sim 10$ cm) S-band: $f \sim 3$ GHz ($l \sim 5$ cm) C-band: $f \sim 5$ GHz ($l \sim 3$ cm)

X-band: $f \sim 9-12$ GHz ($l \sim 1.5$ cm)

RF power source (ex, klystron, magnetron)

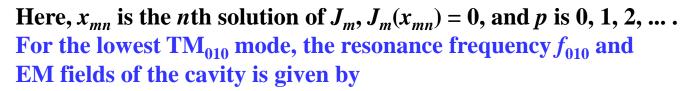
Courtesy of Fermilab



continuous acceleration in an RF cavity

motion of positive bunches in a TESLA type π -mode SW SRF cavity

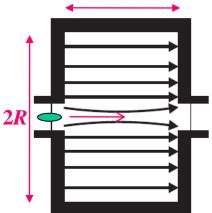
180 deg. later

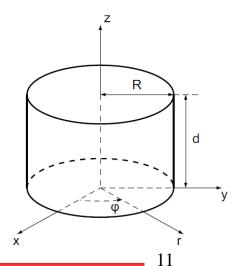

Resonance Frequency of an RF Cavity

If a charged beam crosses an RF cavity at t, then an acceleration by the RF cavity is $Gd\cos(2\pi f_{\rm rf}t + \phi_0)$, where G is gradient of the cavity, d is length of the cavity, ϕ_0 is the initial RF phase, $f_{\rm rf}(\sim f_{010})$ is RF frequency. In this case, the longitudinal electric field E_z and resonance angular frequency ω_{mnp} of the TM_{mnp} mode is given by

$$E_z(r,\varphi,z,t) = E_0 J_m(kr) \cos(m\varphi) \cos\left(p\pi \frac{z}{d}\right) \cos(\omega t)$$

$$\omega_{mnp} = \frac{1}{\sqrt{\epsilon\mu}} \sqrt{\frac{x_{mn}^2}{R^2} + \frac{p^2 \pi^2}{d^2}} \qquad k^2 = \epsilon \mu \omega^2 - p^2 \pi^2 / d^2$$

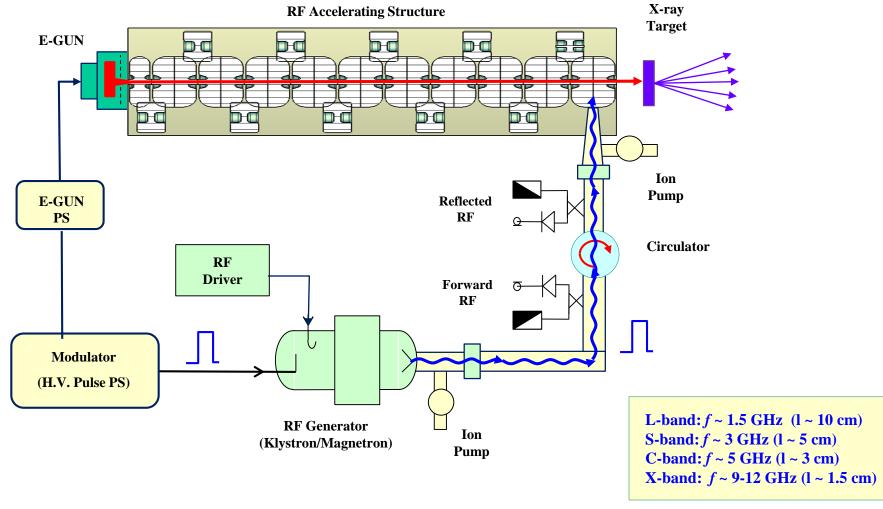

$$f_{010} = \frac{c}{2\pi} \cdot \frac{2.405}{R} \equiv \frac{\omega_0}{2\pi}$$


$$E_z(r, z, t) = E_0 J_0 \left(\frac{x_{01}r}{R}\right) \cos(\omega_0 t);$$

$$B_{\varphi}(r, \varphi, t) = \sqrt{\epsilon \mu} E_0 J_1 \left(\frac{x_{01}r}{R}\right) \sin(\omega_0 t)$$

$$d \sim v \cdot \frac{\lambda_{rf}/2}{c} = \beta \cdot \lambda_{rf}/2 \text{ for } \pi \text{ mode SWRF cavity}$$

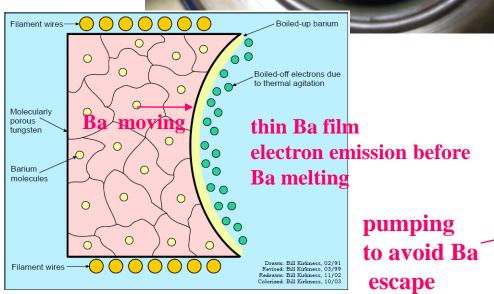
Note that m,n,p are the number of nodes of the mode in the φ,r,z direction. See Resonant Cavities in J.D. Jackson's Classical Electrodynamics.

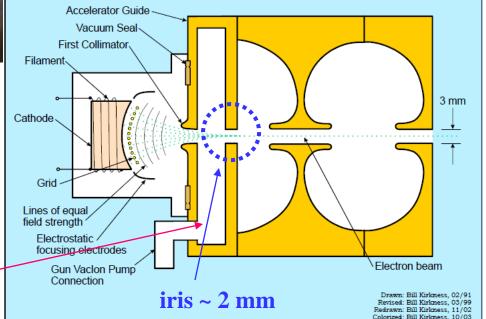


Main Components for RF Electron Linac

Whole 6 MeV Linac ~ \$1 M & Structure Only ~ \$0.1 M

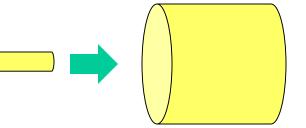
Ex. of Themionic Emission - 20 kV DC gun


DC Gun from Varian Medical Linac

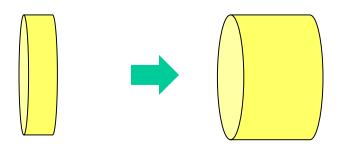


Gun for Varian Medical Lianc

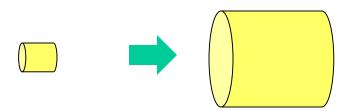
- Cathode : W+Ba dispenser cathode
- Working Temperature : 600 700°C
- Max DC Gap Voltage ~ 20 kV
- Max Gun Gradient ~ 1 MV/m
- Cathode Diameter : ~ 11 mm
- Beam Energy at Gun Exit ~ 20 keV
- Price ~ \$14,000 (brand-new)


Space Charge Force - Lengthening & Broadening

$$F(r) = \frac{Nq^2}{2\pi\epsilon_0 l\gamma^2} \frac{1 - \exp\left(-\frac{r^2}{2\sigma^2}\right)}{r} \qquad F_{\parallel} = \frac{3}{\pi} g \frac{N_{\rm b} q^2}{\epsilon_0 l_{\rm b}^3 \gamma^2} z \qquad g = 1 + 2\ln\frac{b}{a}$$


$$F_{||} = \frac{3}{\pi} g \, \frac{N_{\mathrm{b}} q^2}{\epsilon_0 l_{\mathrm{b}}^3 \gamma^2} \, z$$

$$g = 1 + 2\ln\frac{b}{a}$$

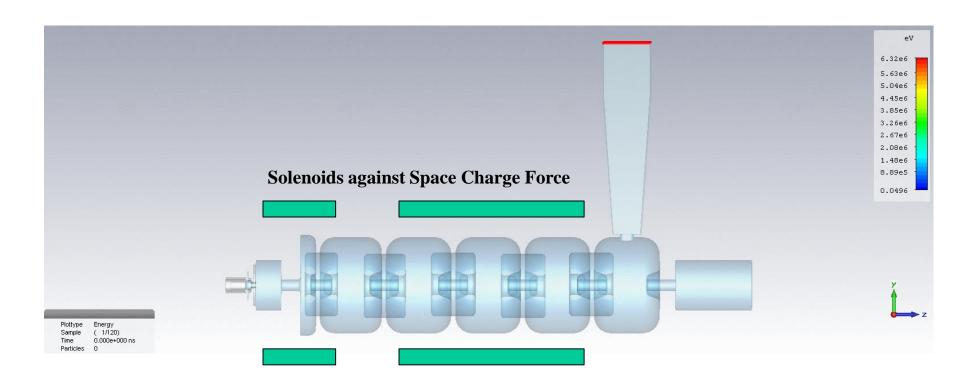

under a low energy, a high charge, a long bunch length and a small transverse beam size

transverse beam size broadening is generated due to the transverse space charge force.

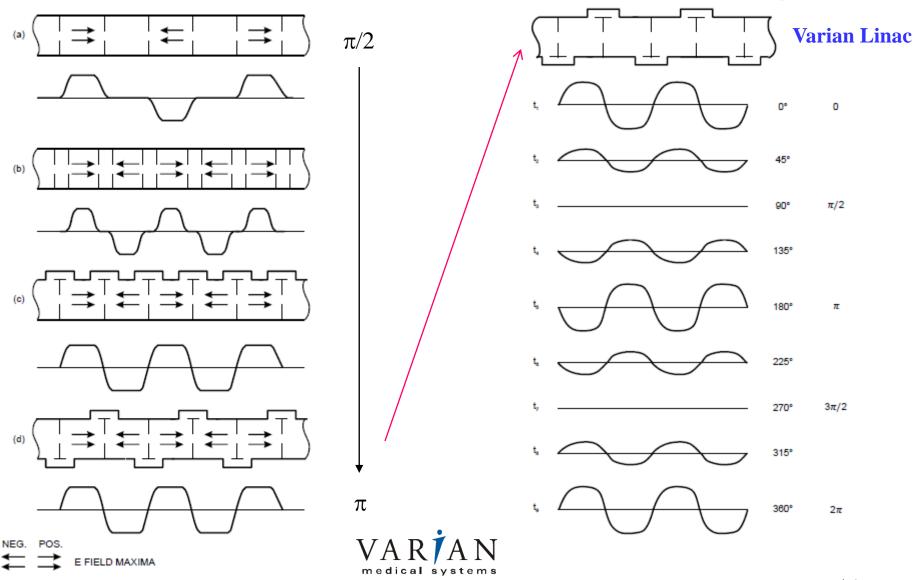
under a low energy, a high charge, and a short bunch length but large transverse beamsize

bunch length lengthening is generated due to due to the longitudinal space charge force.

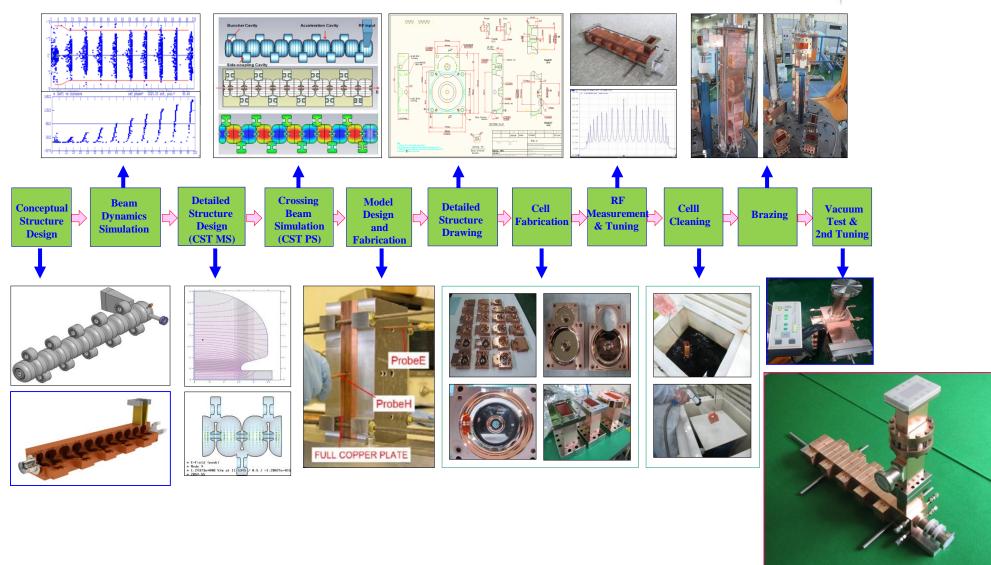
under a low energy, a high charge, a short bunch length and a small transverse beam size


bunch length lengthening & transverse beam broadening are generated due to the longitudinal and transverse space charge forces.

Electron Beam Motion in RF Linac


CST PS Simulation

Courtesy from Pikad Buaphad 6 MeV 2998 MHz Electron Linac


Coupling Cells in Standing Wave Accelerator

Fabrication Processes of S-band Linac Structure

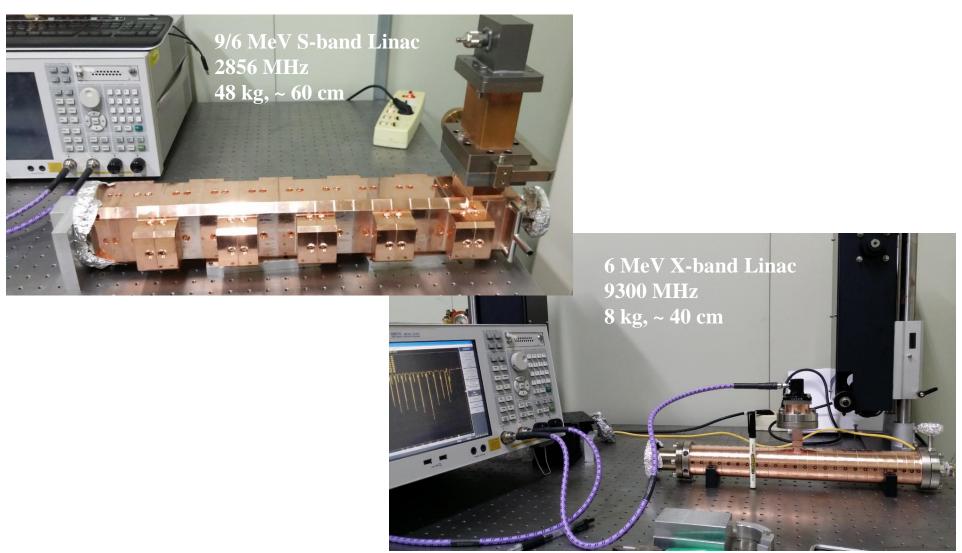
S-band & X-band Cells with 10 nm Roughness

Diamind turning technology is used to obtain 10 nm range surface roughness! KAERI & RTX are main customers.

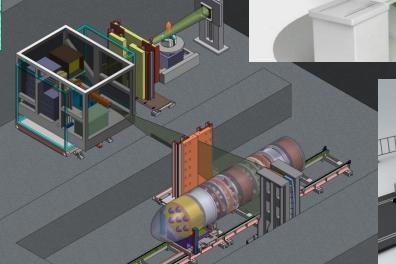
하동정밀

S-band & X-band Cells with 10 nm Roughness

Diamind turning technology is used to obtain 10 nm range Surface Roughness! KAERI & RTX are main customers.

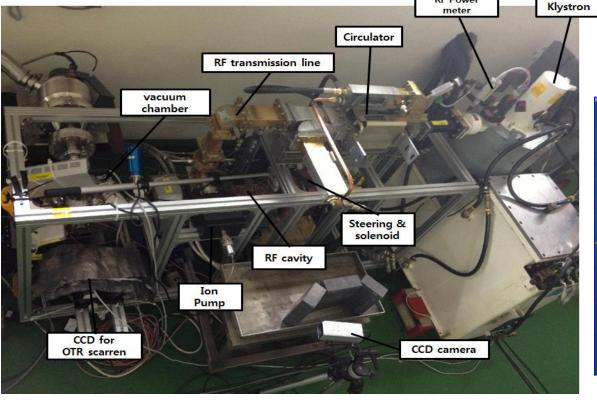

Mirror like surface!

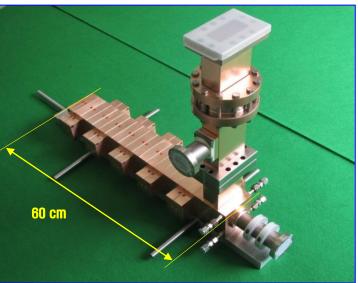
S-band & X-band Linac Structure after Brazing


KAERI's RF Electron Linac Projects

- □ 9/6 MeV Dual Energy S-band (= 2856 MHz) Linac Project for Container Inspection.
- **□** 15 MeV S-band Linac Project for Missile Inspection System
- ☐ 6 MeV S-band Conventional Radiation Therapy System
- ☐ 6 MeV X-band (= 9.3 GHz) Linac Project for CyberKnife
- ☐ 6 MeV X-band Higher Gradient Linac Project for Dual Head Gantry

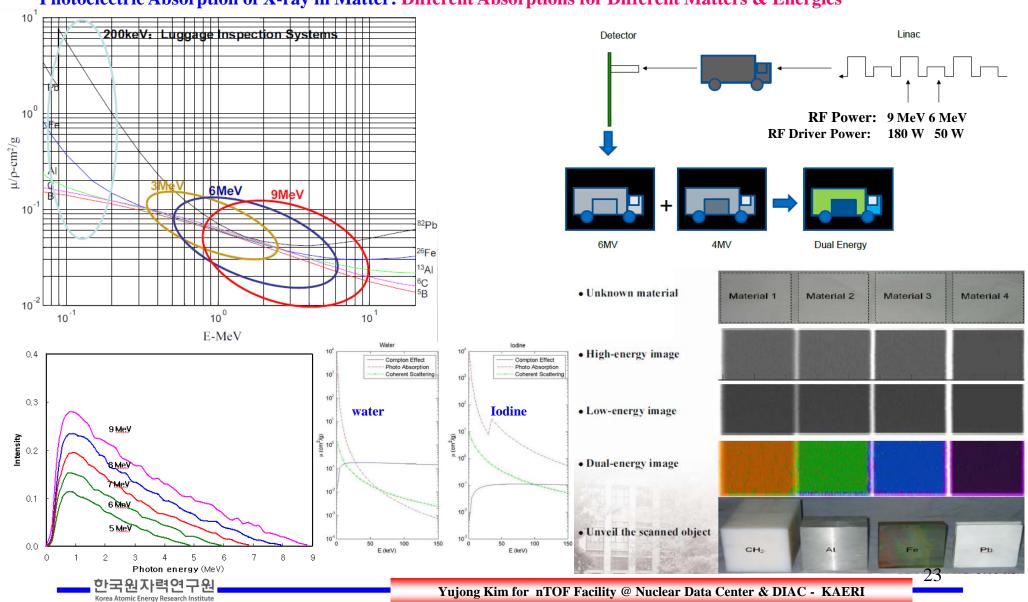
KAERI's 9/6 MeV S-band RF Electron Linac




RF Power

■ Spot size : < 2 mm Resolution

Dual-energy modeMaterials Discrimination



Dual Energy Screening

Photoelectric Absorption of X-ray in Matter: Different Absorptions for Different Matters & Energies

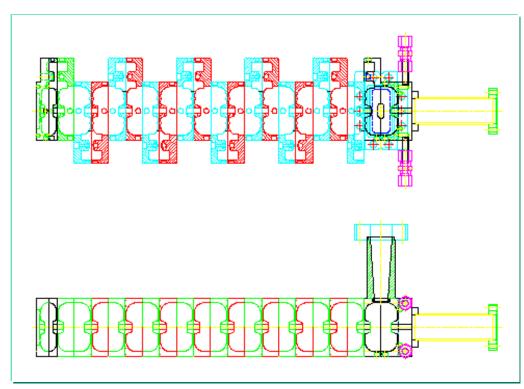
KAERI's 9/6 MeV S-band RF Electron Linac

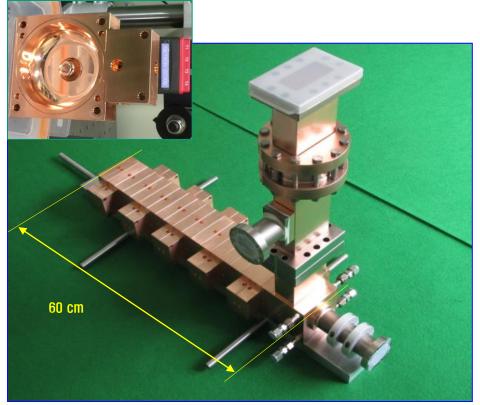
unload $Q_0 \sim 16000$

coupling beta ~ 2.1

RF power for 9 MeV ~ 5.5 MW

Central Frequency ~ 2856 MHz

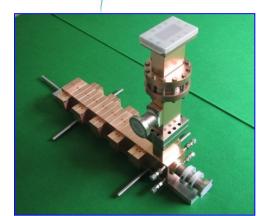

11 Cells for 9/6 MeV


One Bunching Cell

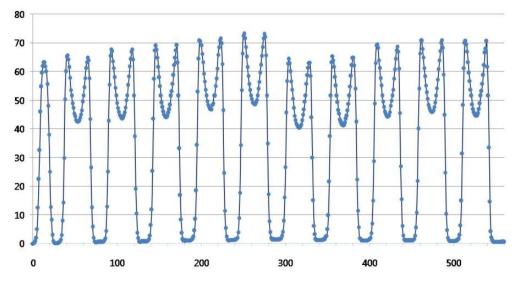
Length $\sim 0.6 \text{ m}$

Nosecone for a high gradient (15 MV/m)

Weight ~ 48 kg



KAERI's 9/6 MeV S-band RF Electron Linac


KAERI

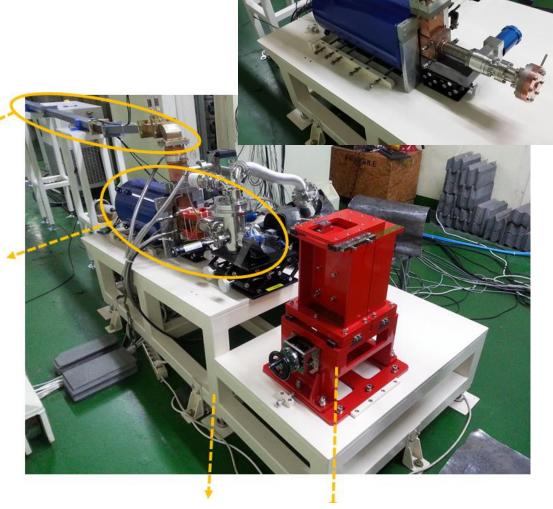
Central Frequency ~ 2856 MHz Unl
11 Cells for 9/6 MeV Ext
One Bunching Cell Cou
Length ~ 0.6 m Shu
Bore Radius ~ 4 mm RF
Cell Length ~ 26.24 mm
Nosecone for a high gradient (15 MV/m)

Unload $Q_0 \sim 16175$ External $Q_{\rm ext} \sim 7880.19$ Coupling beta ~ 2.053 Shunt Impedance $\sim 150~{\rm M}\Omega/{\rm m}$ RF power for 9 MeV $\sim 5.5~{\rm MW}$

Measured S₁₁ spectrum

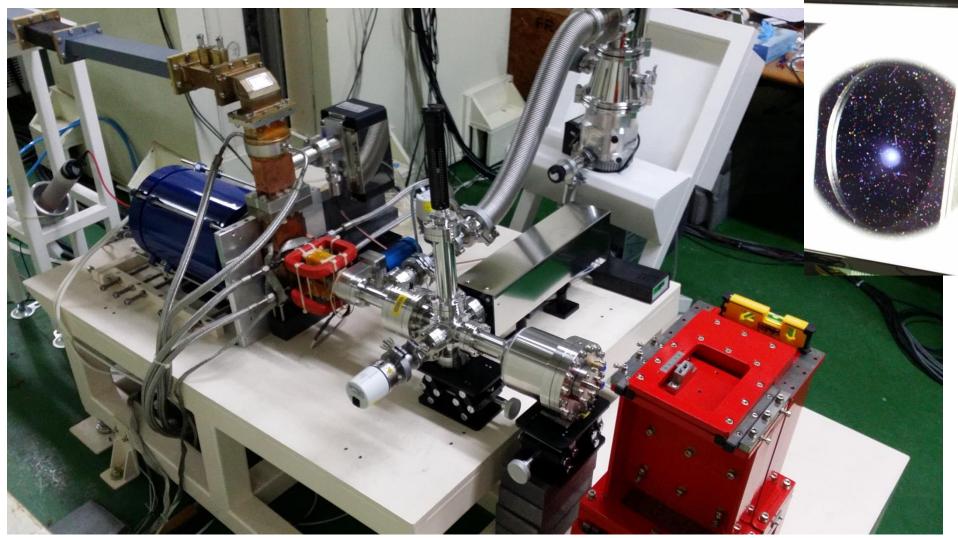
Measured E-Field distribution

Solenoids for S-band Linac - April 2014



RF Waveguide

9/6 MeV RF Electron Linac



Linac Girder

Collimator

S-band Linac - February 2015

S-band Linac - February 2015

9 MeV, 125 mA 100 Hz, 5 MW 19 kV

*P*_{ave}: 450 W

Beam spotsize on OTR

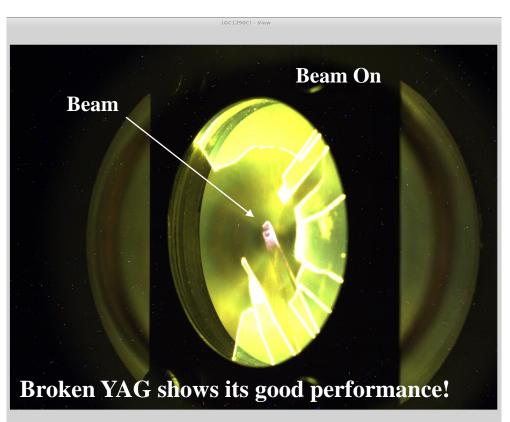
FW: 2.3 mm

FWHM: 0.89 mm

rms: 0.38 mm

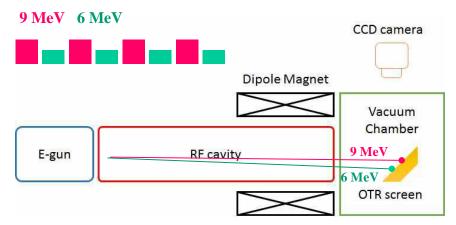
Powerful S-band Linac - February 2015

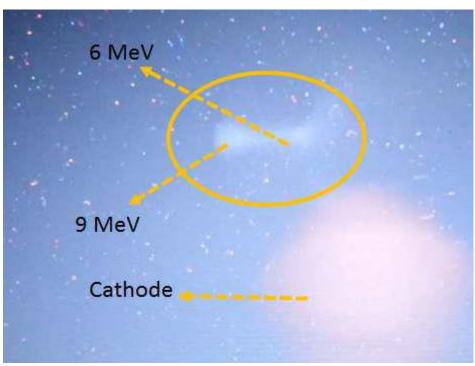
6 MeV, 175 mA 100 Hz, 3 MW 25 kV

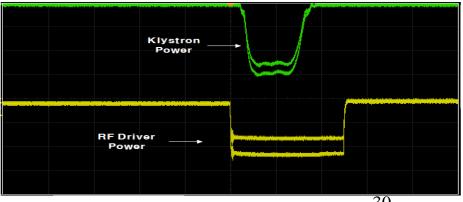

P_{ave}: 420 W

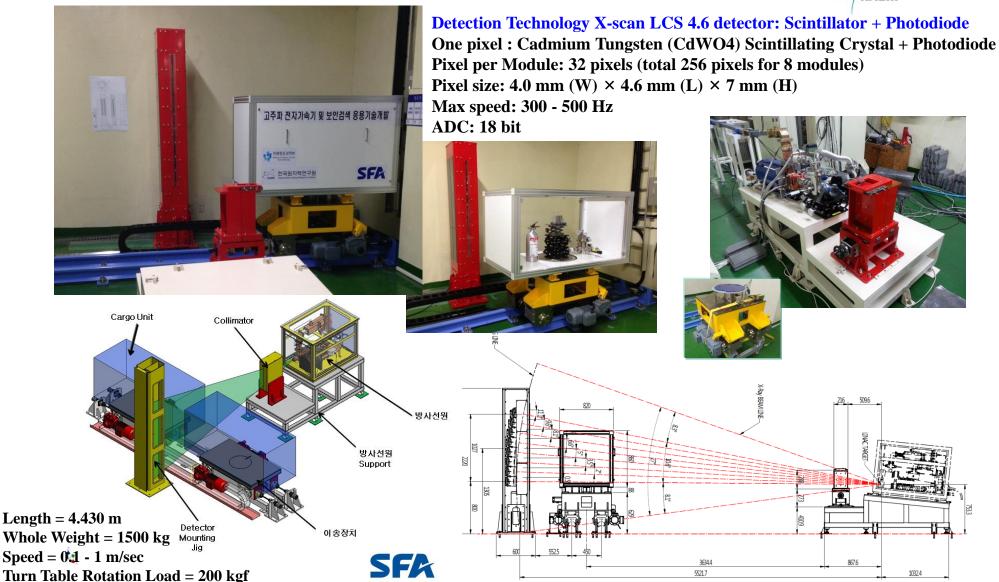
FW: 2.3 mm

FWHM: 0.89 mm


rms: 0.38 mm

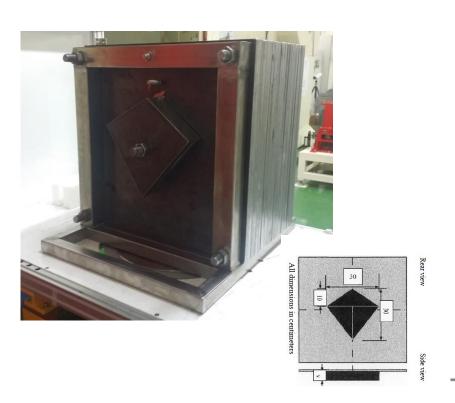



Pulse-to-Pulse 9/6 MeV Dual Energy Demo!

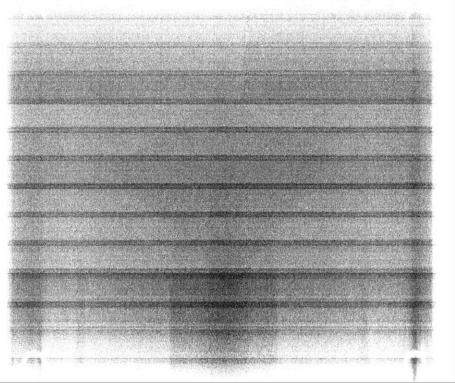


30

Moving System & Detector Array for CIS



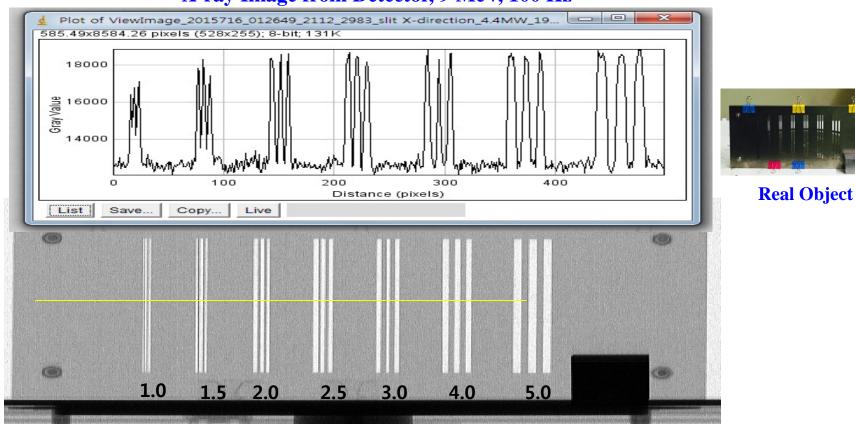
Penetration Test (June, 2015)



By using 380 mm steel plates with a 6 cm thickness diamond plate, we could find direction of the diamond shape (ANSI 42.46).

Real Objects (Steel 380 mm)

X-ray Image from Detector, 9 MeV, 100 Hz

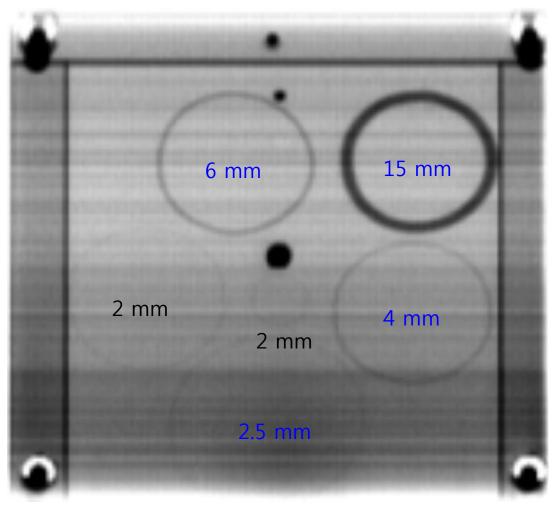


Spatial Resolution Test (June, 2015)

By using slits with various widths (1 - 5 mm) and a thickness of 10 mm, we could distinguish a slit with a width of 1 mm (ANSI 42.46).

X-ray Image from Detector, 9 MeV, 100 Hz

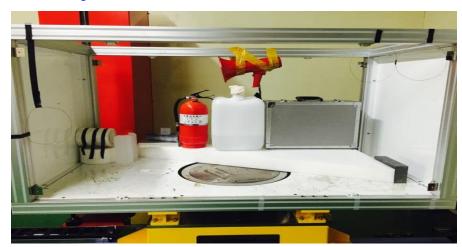
Contrast Test (June, 2015)

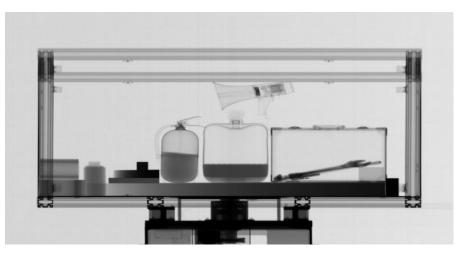


By using 150 mm steel plates with various thickness rings, we could distinguish a ring with a thickness of 2 mm (ANSI 42.46)

- 0.5 mm Ring (@ air)
- **2** mm Ring (@ 100 mm steel)
- **2.0** mm Ring (@ 150 mm steel)
- 4 mm Ring (@ 200 mm steel)
- 6 mm Ring (@ 250 mm steel)
- 15 mm Ring (@ 300 mm steel)

Contrast = 2/150 = 1.3%



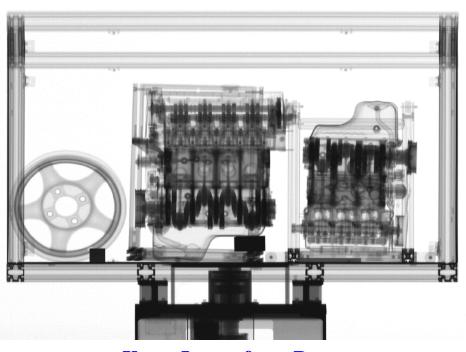


X-ray Image from Detector Arrays (June, 2015)

Real Objects

X-ray Image from Detector 9 MeV 19 kV @ gun, 100 Hz

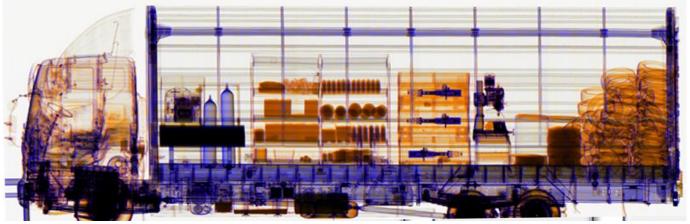
Our container inspection system was selected as one of Korean outstanding research 100 in 2016


컨테이너검색기 시제품 개발 2016년 국가연구개발 우수성과 100선에 선정

X-ray Image from Detector Arrays (June, 2015)

Car Engines and Wheel

X-ray Image from Detector



Our container inspection system was selected as one of Korean outstanding research 100 in 2016

컨테이너검색기 시제품 개발 2016년 국가연구개발 우수성과 100선에 선정

Pseudo-Color Image with Developed SW (June, 2015)

Blue: Inorganic

Orange: Organic

Our container inspection system was selected as one of Korean outstanding research 100 in 2016

Commercial CIS Vs. KAERI CIS

Parameters	Commercial CIS	KAERI CIS	Performance
Dual Beam Energy (MeV)	9/6	9/6	Same
Beam Spotsize (mm, FWHM)	2	0.9	Outstanding
Penetration Depth (mm, Steel)	380	380	Same
Spatial Resolution (mm)	-	1	Outstanding
Contrast (%)	1.7	1.3	Outstanding
Organic / Inorganic	0	0	Same

6 MeV X-band Linac for Medical

For the medical applications (CyberKnife & dual head gantry), we promised following

parameters:

RF Frequency ~ 9.3 GHz beam energy ≥ 6 MeV dose rate ≥ 500 cGy/min target spotsize ≤ 2 mm (FW)

To supply those parameters, we are developing new X-band electron linacs.

bunching cells: 10.5 cells with energy gains of 122 - 245 keV accelerating cells: 14 cells with 16 MV/m (coupler @ 14th cell)

gun gap voltage ~ 20 kV

peak current at gun exit ~ 100 - 200 mA

peak energy at linac exit ~ 6 MeV

beam capturing coefficient ~ 50%

average beam power ~ 167 W for 500 cGy/min

peak / average current at linac exit ≥ 50 - 100 mA / 28 μ A for 500 cGy/min

with a duty factor 0.0009

duty factor of L3 magnetron: ~ 0.0002 (2 MW) - 0.0008 (1.7 MW).

duty factor of CPI magnetron: ~ 0.0018 (1.5 MW)

Risks when we chose X-band RF Linac

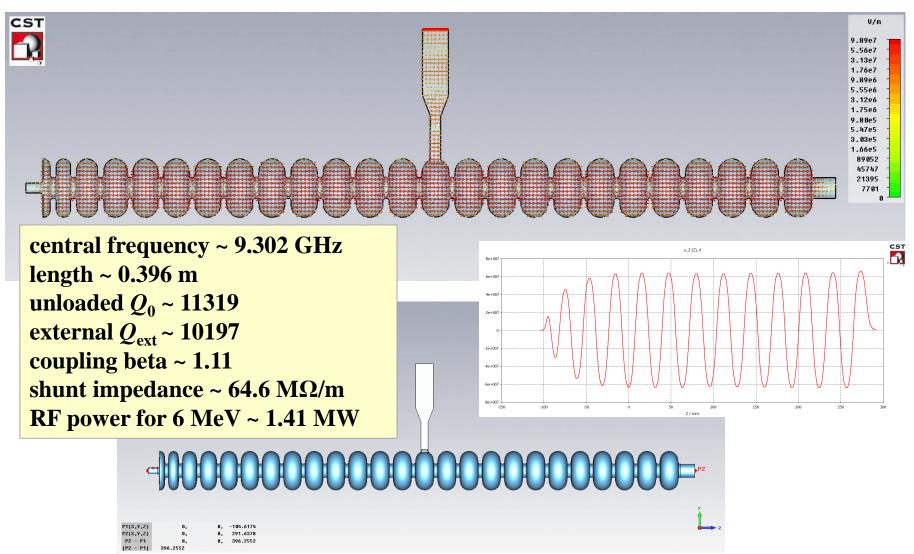
Only several laboratories around world could fabricate working X-band linacs.

Over all fabrication error should be smaller than 2 $\mu m \rightarrow$ too challenging!

Up to now, no company or laboratory made a working X-band RF linac!

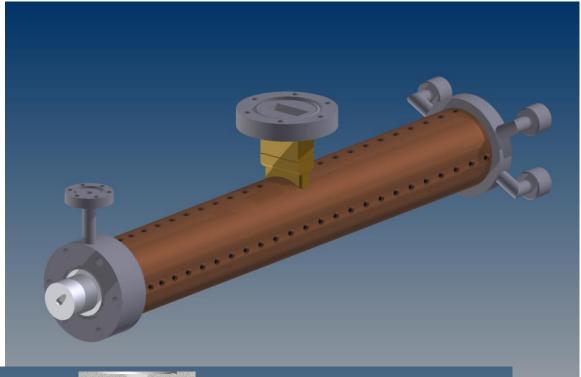
Many accelerator experts mentioned to us

"Impossible with KAERI's skills and technologies!"


And recommended us to fabricate it at other foreign countries.

However, after considering many things, we chose X-band RF linac and started to fabricate in Korea!

Current Status - 6 MeV X-band Linac

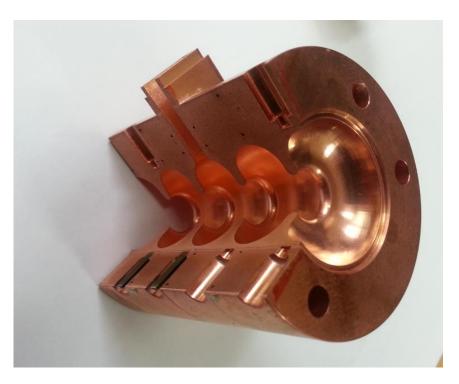

ISU & KAERI teams designed an X-band linac structure with 24.5 cells.

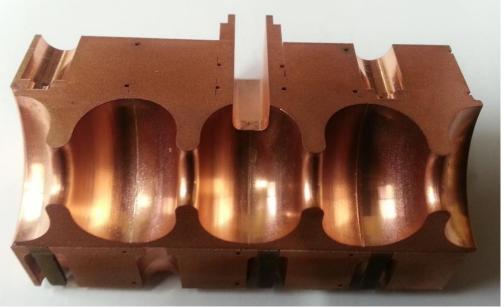


X-band Linac 3D Drawing

24.5 cells with 10 bunching cells central frequency ~ 9.302 GHz length ~ 0.396 m unloaded $Q \sim 11319$ coupling beta ~ 1.11 $R_{\rm sh} \sim 64.6~{\rm M}\Omega/{\rm m}$ Power for 6 MeV ~ 1.41 MW Cell length ~ 16.1 mm Radius ~ 14.2 mm Gradient ~ 17 MV/m Weight ~ 8 kg

X-band Linac Fabrication - Cells

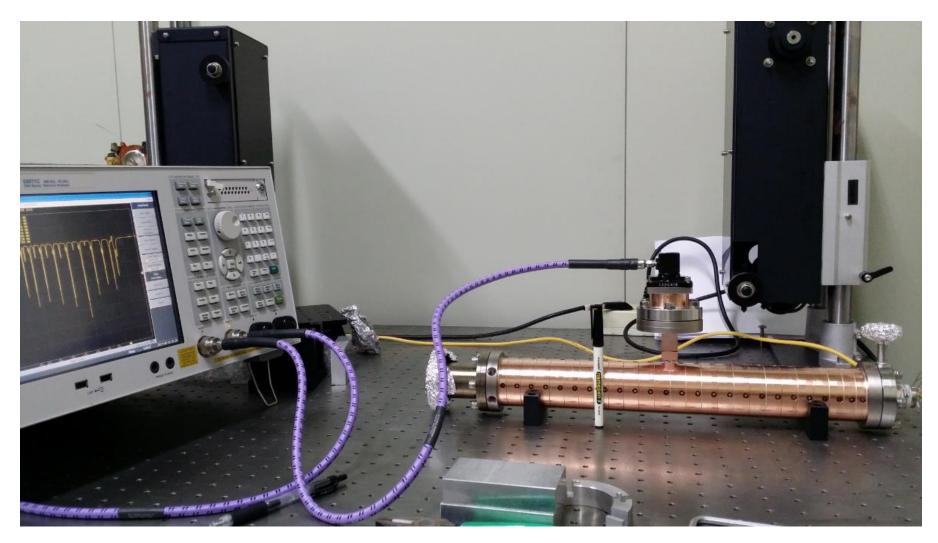

Cells for X-band linac



X-band Linac Fabrication - Brazing Test

Brazed coupler cell for X-band linac

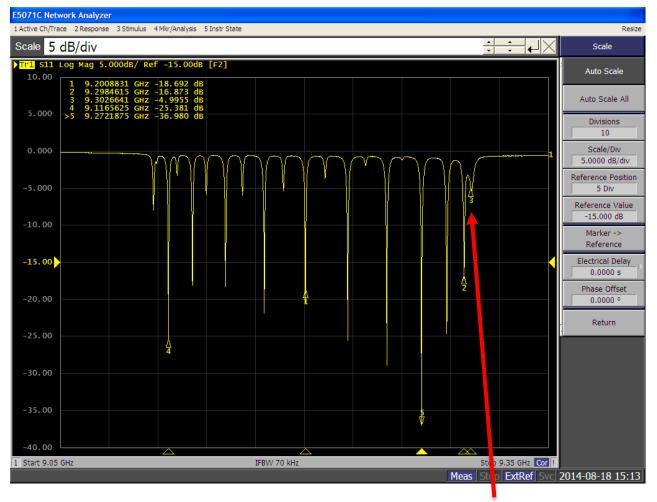
X-band Linac Fabrication - Tuners



Tuners for X-band linac

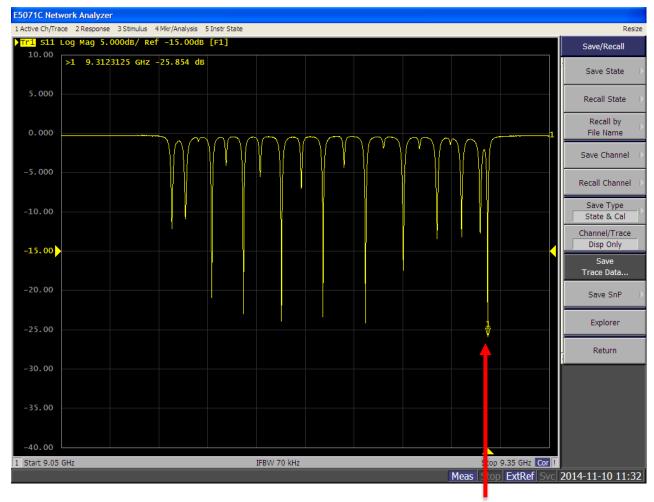
X-band Linac - Fabricated Linac

X-band Linac - CST Simulation



X-band Linac - Fabricated Linac

S11


Right After Fabrication π mode ~ 9.302 GHz with -5.0 dB

KAERI did Great Design & Fabrication!

X-band Linac - Fabricated Linac

S11

After Final Tuning @ Tempearture = 30 degree

KAERI did Great Tuning!

 π mode ~ 9312.31 MHz with -27 dB (0.29/ reflection)

(0.2% reflection)

6 MeV X-band Linac RF Magnetron

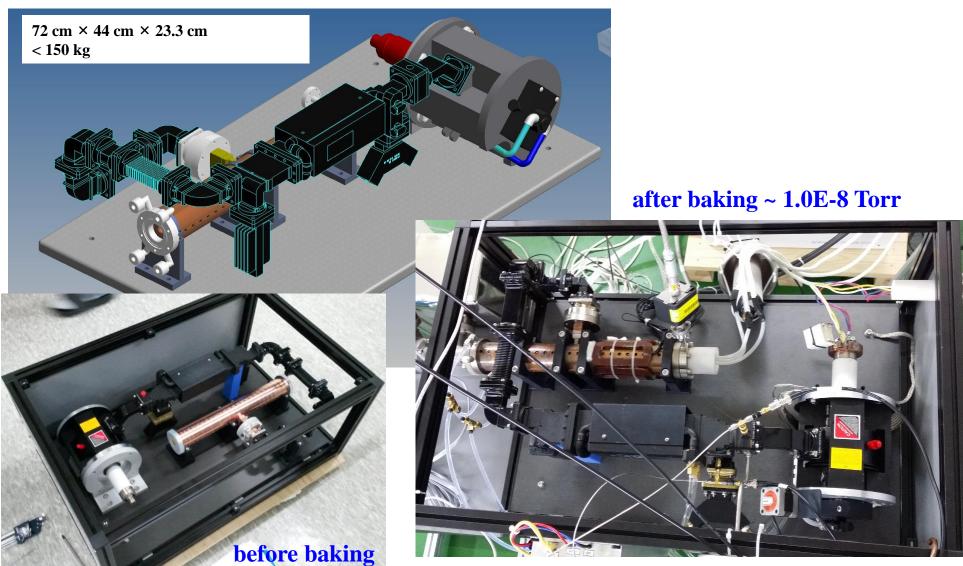
Required beam current depends on duty factor.

Duty factor of L3 PM1110X 1.7 MW magnetron: 0.0008

Bandwidth of PM1110X Magnetron (3 dB) ~ 0.2 MHz


Tuning Range = \pm 25 MHz

Automatic Frequency Controller (AFC) was developed by KAERI.


Performance Characteristics

Frequency	9.300 GHz, +/- 25 MHz
Peak Pulse Power output	
Average Power output	1,360 W (at .0008 duty)
Peak Anode Voltage	32-36 kV
Peak Anode Current	88 A
Average Anode Current	70 mA
Pulse Width	4.0 uSec
Duty Cycle 0.001	(typical operation at .0008)
Filament Voltage (standby)	10 V
Filament Current (standby)	15 A
Filament Voltage (oscillating)	2 V (back down required)
Warm-up time	300 Sec.
Load VSWR	1.2:1 (max)

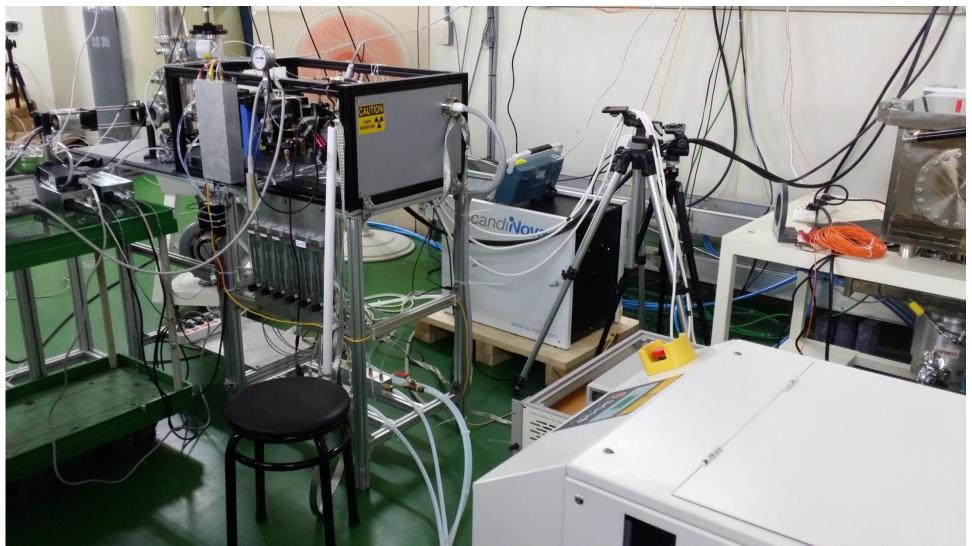

Photo of Assembled X-band Linac

Photo of Assembled X-band Linac

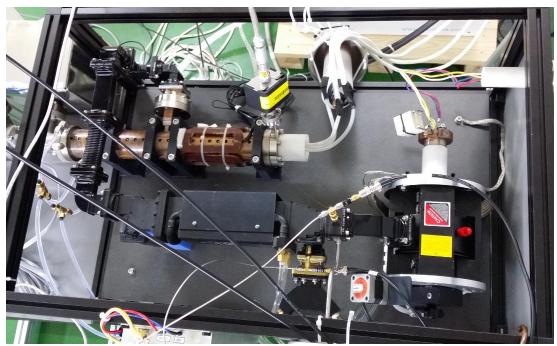

RF Condition with 2.1 MW

11 Nov 2014 5:53 PM

We could finish RF condition only with one day!

File Control Setup Trigger Measure Analyze Utilities Help

1st Beam from X-band Linac - Nov. 14th, 2014


We could get the first beam from the 6 MeV X-band linac on November 14th, 2014!

2.1 MW full power, 4 μ s, 2 Hz,

Vacuum ~ 1.0E-8 Torr

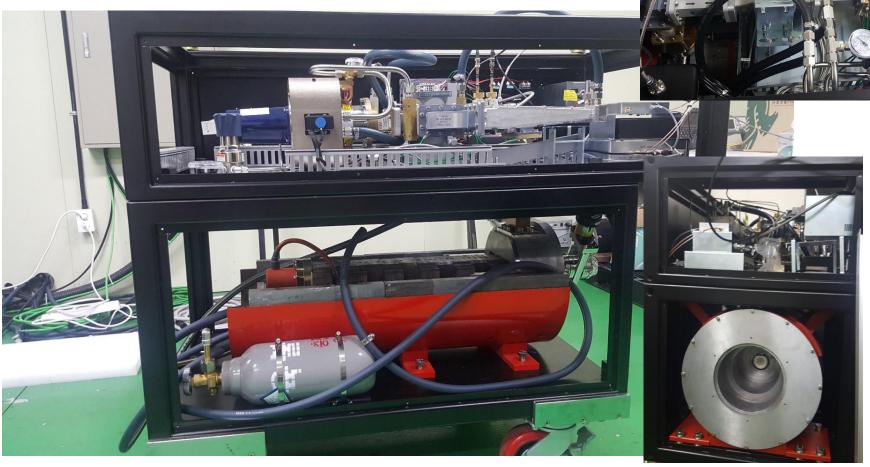
Our X-band design worked!

Our Technologies were transferred to RTX

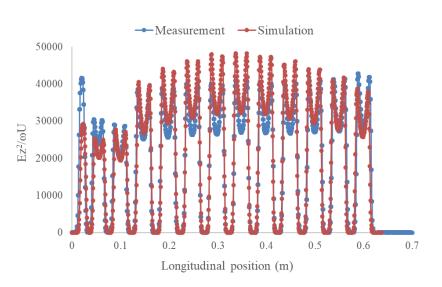
RTX (http://www.irtx.co.kr) Radiation Technology eXcellence

Non-destructive Test (NDT) System for Missile (LAROEN)

2 Systems (9 MeV, 6 MeV 2856 MHz Linac) in 2015


1 System (6 MeV 2998 MHz Linac) in 2016

Our Technologies were transferred to RTX



New 9/6 MeV European S-band Linac for CIS

European S-band for a cheaper and low power magnetron (3.1 MW e2v MG6062)

111	888			10.00
7.11				
and the same		CONTRACTOR OF		
1111 1111111			 	
1111 1111111				
	X 8.4	4.4		(1111)
111	2.0		1000	11111
111	A		2111	151613

Radiation Technology eXcellence

Parameter	CST Simulation	Measurement
Frequency (MHz)	2998.72	2998.14
Shunt impedance (M Ω /m)	87	90
Unloaded Quality factor	16007	14095
Loaded Quality factor	5995	5201
Beta coupling	1.67	1.71

KAERI - 10 MeV 10 kW Electron Irradiation Facility

Toriy KIU-147A Klystron for 10 MeV 10 kW Linac

Peak RF Power: 6 MW

Average RF Power: 25 kW

Pulse Width: 16 µs

Max Repetition: 300 Hz

Cathode Voltage: 57 kV Cathode Current: 300 A

RF Frequency: 2856 MHz

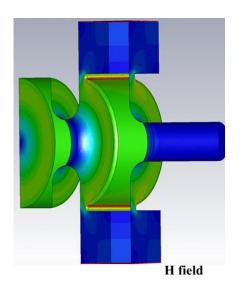
Price ~ 0.3 M\$

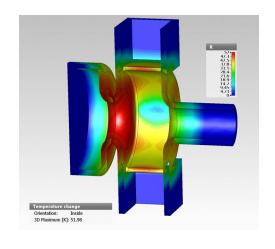
Operated Time: 4225 Hours (Lifetime: 3000 Hours)

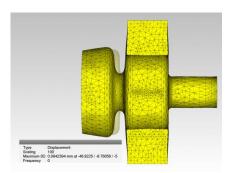
502

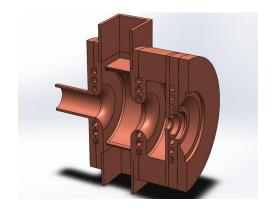
Reoperation in 2018

인국임지력연구원 KAERI

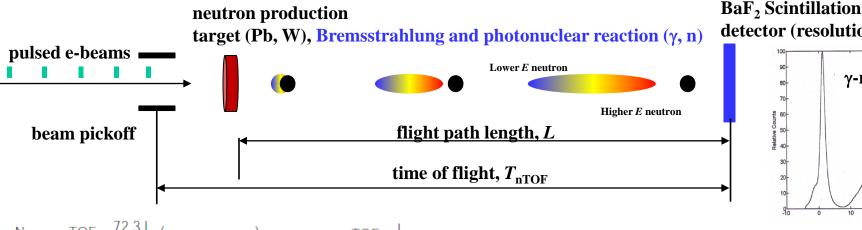

인국원지력연구원 KAERI

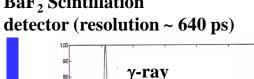

KAERI's Design of S-band RF Gun for UEM




□ 1.6 Cell RF-gun with Operation Frequency 2856 MHz, π -mode

☐ Mode Separation of 15.5 MHz




For Ultrafast Applications (UED, UEM)

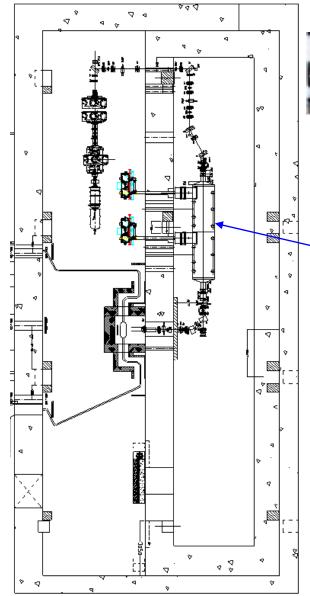
RF parameters	Value
Frequency at π -mode (MHz)	2856
$\Delta f = f_{\pi} - f_0 \text{ (MHz)}$	15.5
Gun length (m)	0.14
Unloaded quality factor, Q_0	13837
External quality factor, $Q_{\rm ext}$	12125
Shunt impedance, $R_{\rm sh}$ (M Ω /m)	21.3
External coupling coefficient, $\beta_{\rm ext}$	1.14
RF pulse length, τ_{RF} (μs)	4
Peak electric field (MV/m)	120
RF input power (MW)	10
Repetition rate (Hz)	120

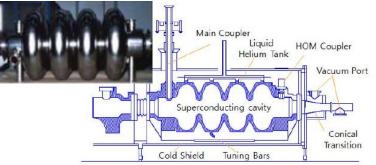
KAERI neutron Time Of Flight (nTOF)

energy and energy-resolved neutron cross-sections To measure construction materials of fusion and fission reactors and to find handling processes of waste from reactors, we may use the nTOF technology.

neutron

Neutron TOF =
$$\frac{72.3 \, L}{\sqrt{E_n}}$$
 (non-relativistic) γ -ray TOF = $\frac{L}{c}$ c is velocity of light
 E_{xample} : L= 20m TOF $_{\gamma}$ = 67 ns E_n = 1 MeV TOF $_n$ = 1.5 μ s
 E_n = 100 MeV TOF $_n$ = 150 ns


$E = m_n c^2$	1 -1
_ ···n-	$\sqrt{1-\left(\frac{v}{c}\right)^2}$


Flight Path Length (m)	Neutron Energy (MeV)	TOF-Y (ns)	TOF n (ns)	Wrap Around 1.8 µs (keV)	Wrap Around 3.6 µs (keV)	ΔE (keV)
10	1	33	722	161.34	40.33	3
	2		511			8
	10		230			87
	20		164			244

$$\Delta E/E = \Delta T_{\text{detector}}/T_{\text{nTOF}}$$

A longer path gives a longer $T_{\rm nTOF}$ and a better energy resolution if neutron intensity is sufficient. 60

Linac for KAERI nTOF Facility - SRF Linac Area

Fundamental resonant frequency	352 MHz				
Cavity material	Nb-coated copper				
Number of cell	4-cell per cavity				
Q_0	3.4×10 ⁻⁹ at 6 MV/m, 4.5				
R/Q	500				
Freq. tuning range	50 kHz (maximum)				
Active length	1.7 m				

352 MHz CERN SPS Superconducting Linac

- Operated max gradient: 7.8 MV/m
 - \rightarrow 6 MV/m \times 1.7 m \times 2 Cavities = 20.4 MeV

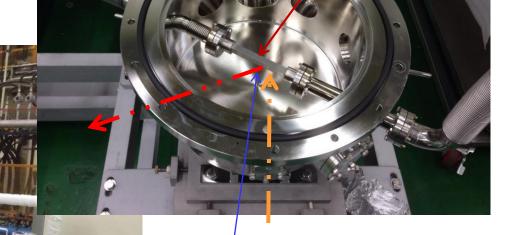
 $E_{\rm max} \sim 20~{
m MeV}$

 $P_{\rm max,ave} \sim 100 \; {\rm kW} \; {\rm for} \; E = 20 \; {\rm MeV} \; {\rm and} \; I_{\rm ave} = 5 \; {\rm mA}$

 $Q \sim 0.4 \text{ nC}$

Bunch Length ~ 20 ps

Status of Liquid Lead Target


KAERI

Mo-tube

Fabricated & under testing at VITZRO TECH

ammunum

Molybdenum (Mo)-tube

ID: 1.4 cm x 1.4 cm

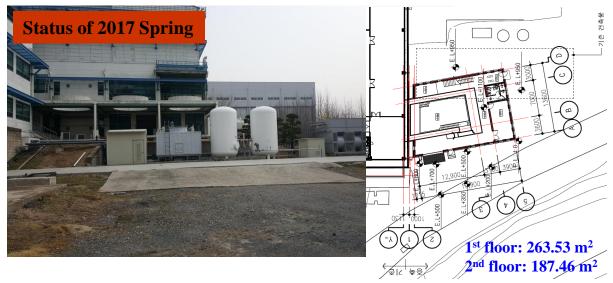
thickness: 0.5 mm

e-beam size: 5 mm (FWHM)

Gaussian shape

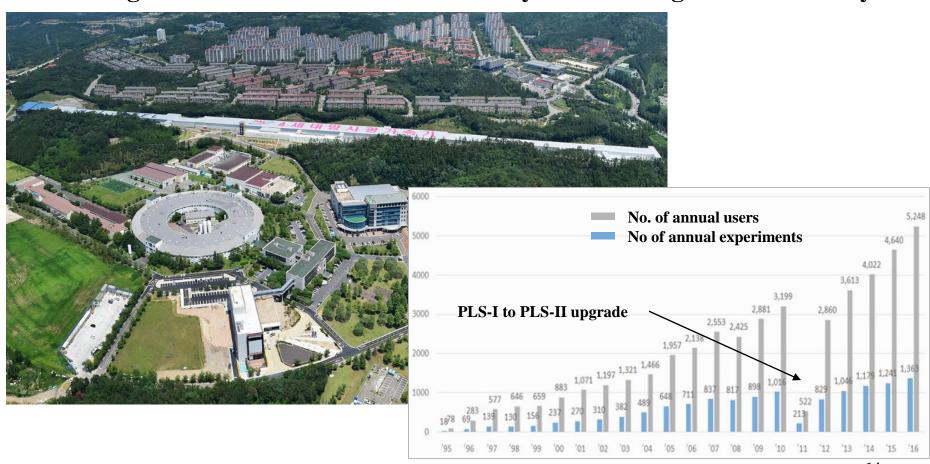
Neutron Beam Window (R = 3.5 cm, 1 mm thick, SS316)

Location of KAERI nTOF Facility



In 2018, construction of a new experimental building will be started

Accelerator and Target1st Floor and Basement of KAERI Engineering Building


nTOF Experimental Hall a Temporary Building was removed in 2016.

Status of Korean 3rd Generation Source, PLS-II

Since the PLS-II storage ring (3 GeV, 281.82 m) is the only 3rd generation light source in Korea, Korean users are struggling to get its beamtime due to rapid user overflow (~ 6000 users in 2017). Therefore, we have been considering construction of a new advanced synchrotron light source facility.

New Korean Synchrotron Light Source

We would like to use Ultimate Storage Ring (USR) concept for the new Korean advanced synchrotron light source facility. Its considering parameters and layout are followings (all things are not fixed yet).

Storage Ring

Ring Concept: Ultimate Storage Ring

Lattice Type: Multi-Bend Acromat (MBA)

Beam Energy ~ 5 GeV

Beam Current ~ 300 mA

Circumference ~ 2 km

Ring Diameter ~ 637 m

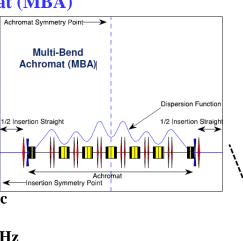
Natural Emittance ~ 10 pmrad

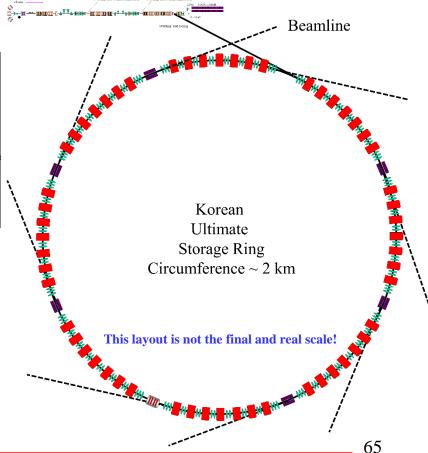
RF Frequency ~ 325 MHz

Injection Linac

Linac Type: Superconducting CW Linac

Max Beam Energy ~ 5 GeV


Bunch Repetition Rate: 1 MHz - 100 MHz Single Bunch Charge ~ 200 pC - 2 nC


Average Current ~ 0.1 mA - 100 mA

RF Frequency ~ 1300 MHz Max Gradient ~ 25 MV/m

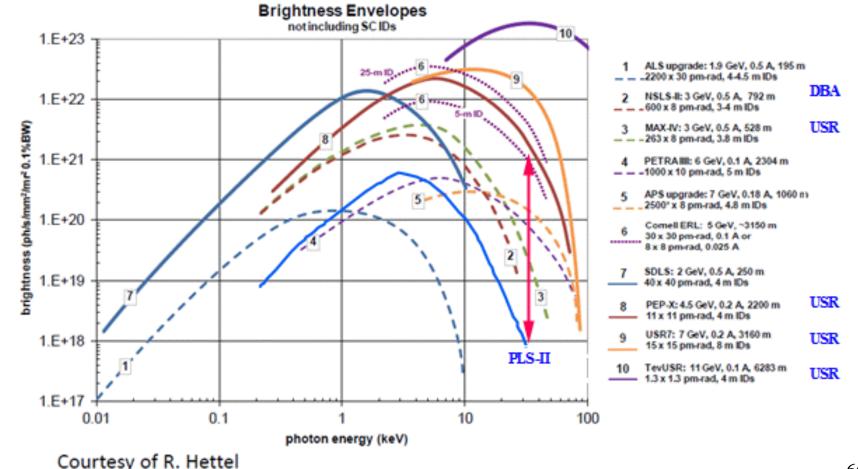
Linac Length ~ 320 m

Facility Area $\geq 1 \text{ km} \times 1 \text{ km}$ Total Budget < 1 B\$

Superconducting Injection Linac (320 m)

Milestone of New Korean Synchrotron Light Source

2018 - 2020: Design


2021 - 2023: Construction

2024: Commissioning

2025: User Service

한국원자력연구원

At hard X-rays, at least 100 - 1000 times brighter than PLS-II

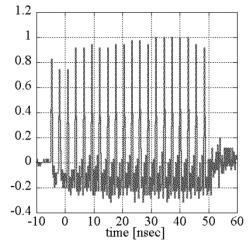
5 GeV Superconducting Injection Linac

Since we would like to operate the 5 GeV superconducting injection linac with a high repetition bunch rate, we may use the linac for various linac applications as well as storage ring injection by using fast switching yard kickers and multi-electron guns with a high speed gun driving laser from

Time-Bandwidth.

Injection Linac

Linac Type: Superconducting CW Linac


Max Beam Energy ~ 5 GeV No. of Operating Gun: 1 - 5

Bunch Repetition Rate: 1 MHz - 100 MHz Single Bunch Charge ~ 200 pC - 2 nC

Average Current ~ 0.1 mA - 100 mA

RMS Bunch Length: 50 fs - 50 ps

RF Frequency ~ 1300 MHz Max Gradient ~ 25 MV/m Linac Length ~ 320 m

KEK ATF Nd:YVO₄ laser from Time-Bandwidth

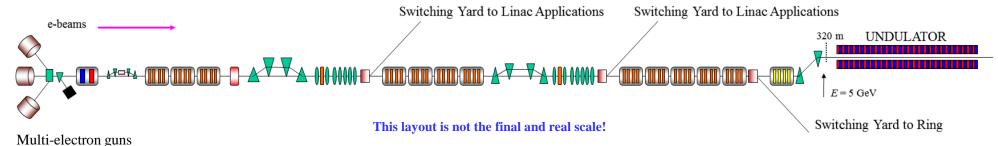
Max Repetition Rate = 357 MHz

Pulse Spacing = 2.8 ns

Energy per Pulse = several μJ

Laser Pulse $\approx 10 \text{ ps (FWHM)}$

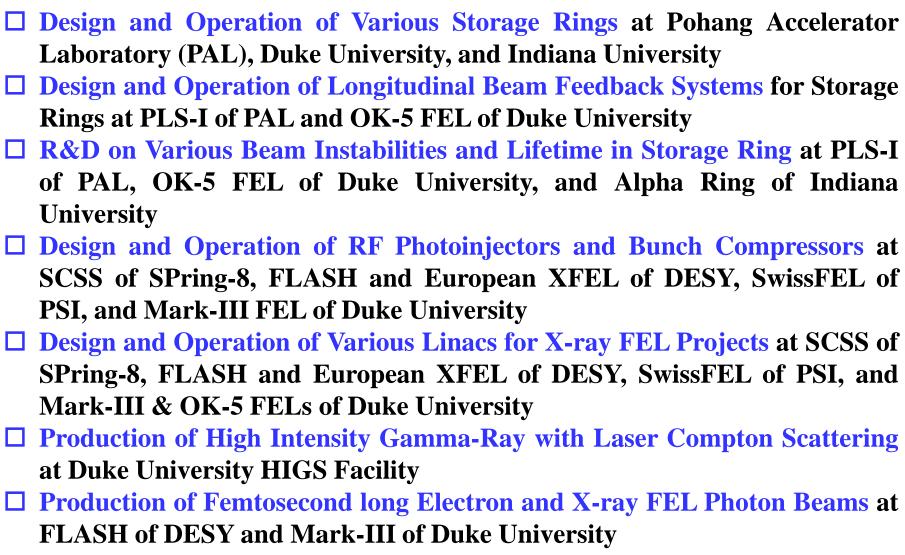
Wavelength = 266 nm


Max Single Bunch Charge $\approx 5 \text{ nC}$

Cathode Material: Cs₂Te

DESY FLASH has a similar operating laser.

We can use a similar Time-bandwidth Argos laser for our CW injector.


Structure of micro bunches, M. Kuriki et al., EPAC2004

*170171310170

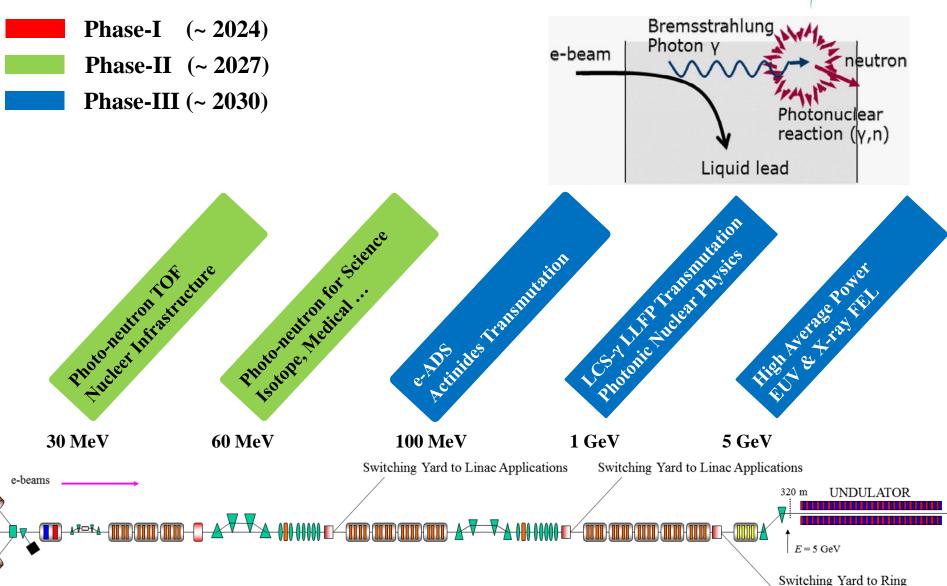
Our Experiences with Advanced Accelerators

Possible Applications with 5 GeV Linac

☐ Ultrafast Pulse Radiolysis Facility

After considering our experiences, we may choose following applications for our 5 GeV superconducting CW injection linac:

□ Medical Isotope Production Facility (99Mo, 47Sc, 67Cu, 11C, 13N, 15O, 18F, 123I)
 □ High Average Power Gamma-Ray Facility with Laser Compton Scattering (LCS)
 □ e-γ-n Complex for Science, Applications, and Nuclear Waste Transmutation
 □ High Average Power EUV and X-ray FEL Facility for Lithography and Basic Sciences


Switching Yard to Linac Applications

e-beams E = 5 GeVThis layout is not the final and real scale!

Switching Yard to Linac Applications E = 5 GeVSwitching Yard to Ring

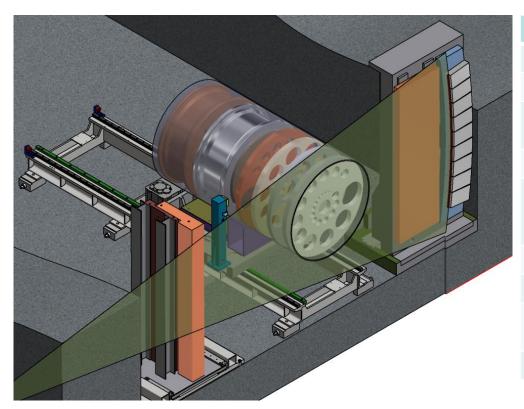
e-γ-n Complex with 5 GeV Linac

Summary

There are various growing user applications with MeV-range RF electron linacs.

KAERI has successfully developed various S-band electron linacs for CIS and NDT applications.

KAERI also has successfully developed a 6 MeV X-band electron linac for medical applications.

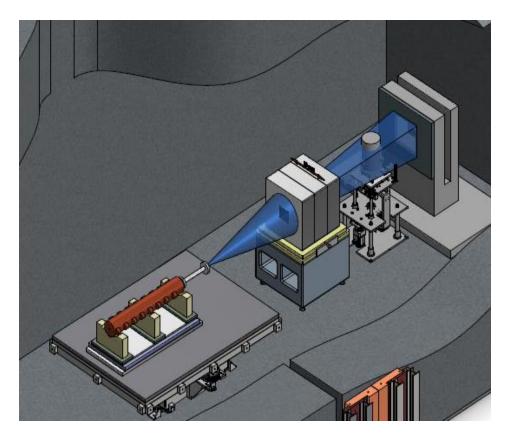

KAERI has transferred RF linac technologies to RTX and SEC.

In addition, KAERI has been working to construct a new nTOF facility with a 20 MeV superconducting electron linac.

Now KAERI is ready to develop advanced accelerator facilities for neutron Time Of Flight (nTOF), ultrafast electron beam sciences, soil-treatment system, and a new synchrotron light source.

Appendix - LDA for 15 MeV MIS

Parameters	Values			
Energy Range	Max. 15 MeV			
Scintillator	CdWO ₄			
Scintillator Thickness	>10 (mm)			
Resolution(Pitch)	0.8 x 1.2 (mm)			
Pixel Number /Active area	2112 pixels/1689.6 mm 192 pixels-153.6mm/module X 11 module			
Dynamic Range	> 75 dB			
A/D Resolution	> 16 bit			
Geometric Structure	Curved Shape			
Anti Crosstalk	Curved Shape			



국방과학연구소 www.dupc.re.kr 민군기술협력지원단

Appendix - FPXD for 15 MeV MIS

Paramters	Value	ETC
Energy Range	Max. 15 MeV	
Scintillator	DRZ plus	
Resolution(Pitch)	0.2 (mm)	Binning 0.4 (mm)
Pixel Number/ Active area	2048 x 2048 pixels 406.4 x 406.4 (mm)	
Dynamic Range	> 88 dB	
A/D Resolution	> 16 bit	
Frame rate	1 ~ 4 fps	Binning 4 fps

국방과학연구소 www.dupc.re.kr 민군기술협력지원단

Appendix - Performance of KAERI nTOF Facility KAERI

Facility	CERN n_TOF	CERN n_TOF Phase-2	LANL NSC	ORNL SNS	FZK VdG	ORNL ORELA	IRMM GELINA	ELBE	ELBE with SRF	KAERI
Pulse charge / nC	ca. 10 ³	ca. 10 ³	4·10³	3-104	0.01	ca. 100	ca. 100	0.08	1.8	0.4 nC
Power / kW	10	10	60	1000	0.4	8	7	5	40	1.36 kW
Pulse rate / s ⁻¹	0.4	0.4	20	60	2.5·10 ⁵	500	800	1.6·10 ⁶	5·10 ⁵	0.2 MHz
Flight path / m	183	ca. 20	60	84	0.8	40	20	4	4	≤ 12 m
n pulse length / ns	> 7	> 7	125	100-700	ca. 1	> 4	>1	< 0.4	< 0.4	20 ps
E _{min} / eV	0.1	0.1	1	0.1	10 ³	10	10	2·10 ⁵	5·10 ⁴	100 keV
E _{max} / eV	3·10 ⁸	3·10 ⁸	ca. 10 ⁸	ca. 10 ⁸	2·10 ⁵	5·10 ⁶	4·10 ⁶	7-10 ⁶	1·10 ⁷	7 MeV
Resol at 1 MeV / %	0.5	5	ca. 10	> 10	ca. 10	<1	< 2	ca. 1	ca. 1	≤ 1%
n flux dens / s ⁻¹ cm ⁻² (E decade) ⁻¹	10 ⁵	ca. 10 ⁷	ca. 10 ⁶	10 ⁶ -10 ⁷	ca. 10 ⁴	10 ⁴	4·10 ⁴	4·10 ⁵	3·10 ⁶	$\leq 10^5$

Total number of outgoing neutrons through Mo-tube: 4.05503E+11 #/sec