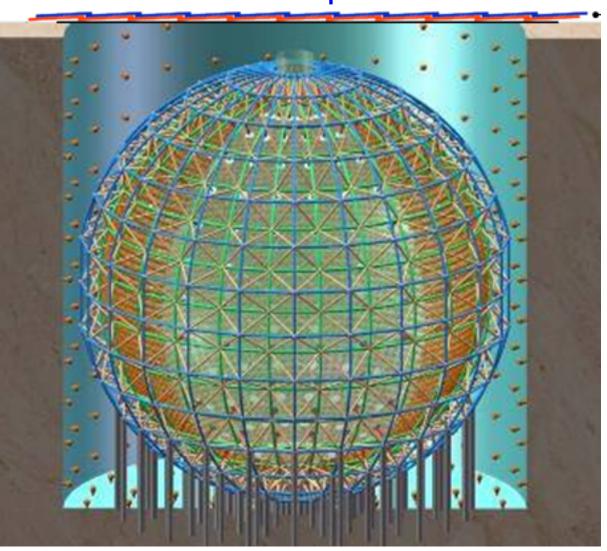


The Status of the R&D of the 20 inch MCP-PMT in China

Sen QIAN (钱森), On Behalf of the MCP-PMT Workgroup

Institute of High energy Physics, Chinese Academy of Science

qians@ihep.ac.cn 29th. Jan. 2018



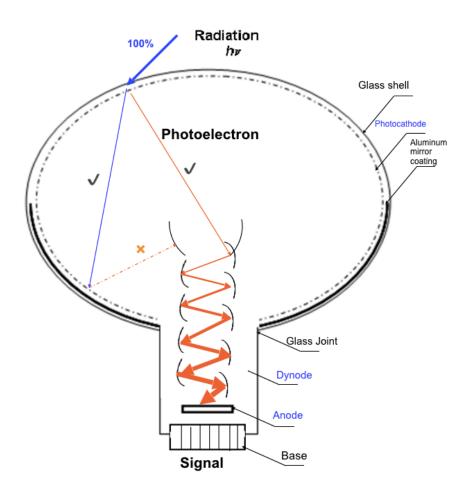
AFAD

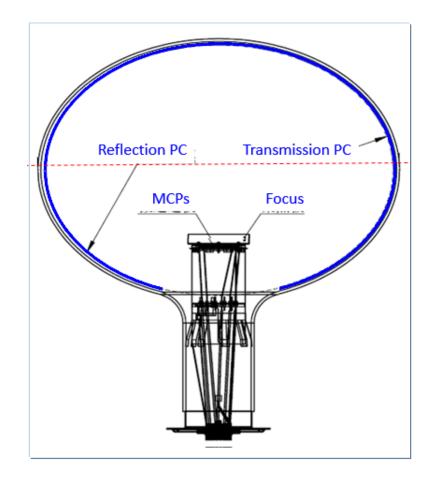
Asian Forum for Accelerators and Detectors

O. The Neutrino Experiment in China

> JUNO Experiment

Daya Bay Experiment




Generation 1: DayaBay: ~3,000 8-inch Dynode-PMTs from Hamamatsu

Generation 2: JUNO: ~20,000 20-inch PMTs from Where?

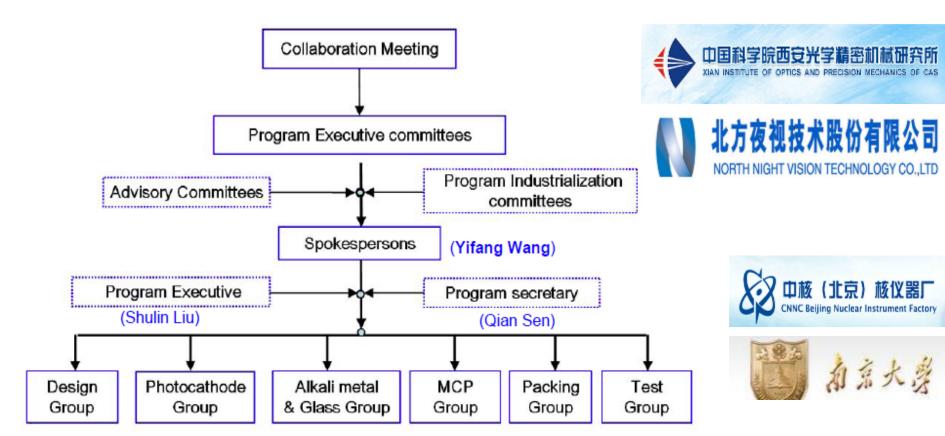
1.1 the design of the MCP-PMT in 2009

Photon Detection Efficiency (PE)= QE_{Trans} * CE

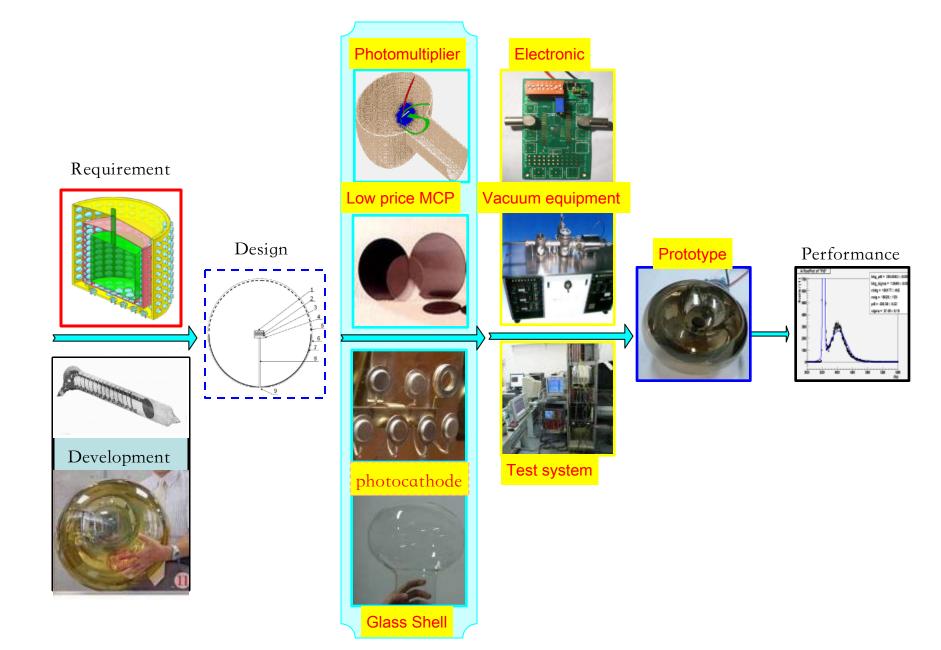
Dynode:(PE)= QE_{Trans} * CE

= 20% * 70% = 14% (2009)

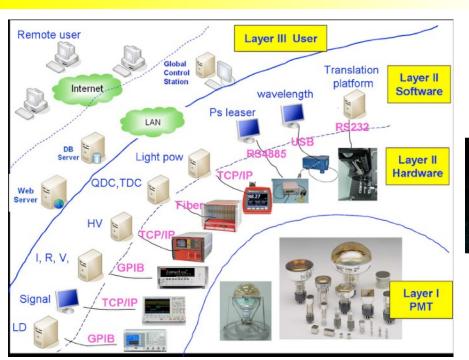
= 30% * 90% = 27% (2015)

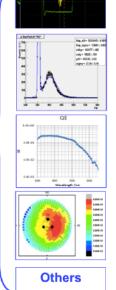

Dynode:(PE)= QE_{Trans} * CE = 27% * 100% = 27% (2016)

1.2 Project team and Collaborators (2011)

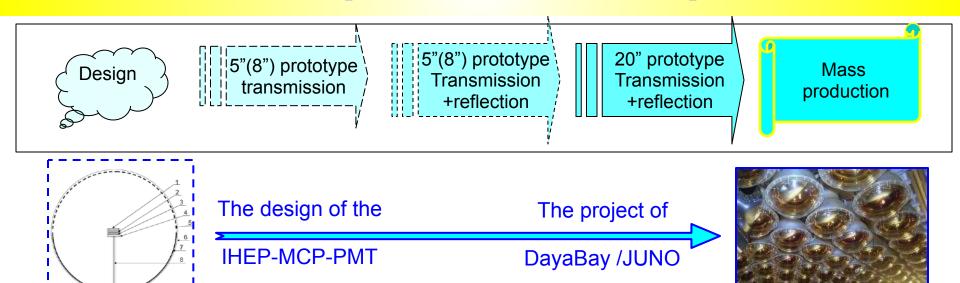


effort by Yifang Wang;


Microchannel-Plate-Based Large Area Photomultiplier Collaboration (MLAPC)


1.3 The R&D plan of MCP-PMT (Roadmap—Technology) (2009)

1.4 The Large PMT evaluation Lab in IHEP



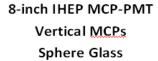
- Anode Pulse Rise Time;
- Pre/Late/After Pulse;
- > Dark Count
- ➤The Single Photoelectron Spectrum;
- ➤The voltage distribution (BASE);
- ➤The Supply voltage;
- ➤ Typical Gain Caracteristic;
- ➤ Anode Dark Current
- ➤Spectral Response;
- Wavelength of Maximum Response;
- Cathode Sensitivity: Luminous(2856K);
- —Quantum efficiency with λ
- Photocathode efficiency Area;
- Photocathode efficiency Uniform;
- ➤The position of the Sb, K, Cs;
- ➤The linearity of the PMT
- Magnetic characteristics;
- ➤Transit Time Spread (FWHM)

1.5 The R&D plan of MCP-PMT (Roadmap —time)

Outline

> 1. The new design of the MCP-PMT for JUNO; (2009-2011)

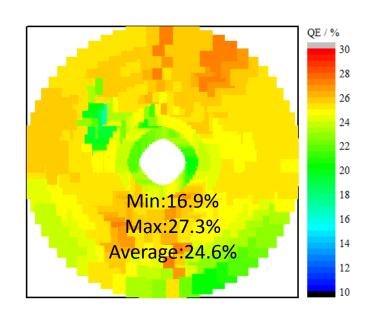
the 4 π design; the MCP-PMT collaboration group; roadmap;

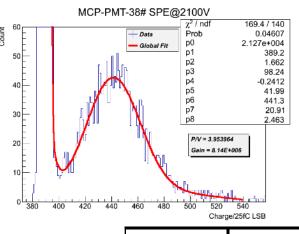

2. The MCP-PMT prototypes production; (2012-2015)

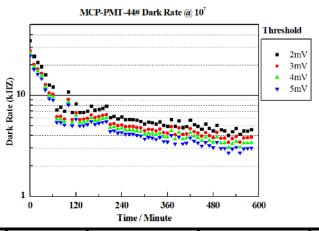
the 8 inch prototypes; the 20 inch prototypes; the high PDE;

3. The Mass production and Batch test; (2016-2017)

the mass production, the batch test system;


> 2.1 8" prototypes with normal performance--2013

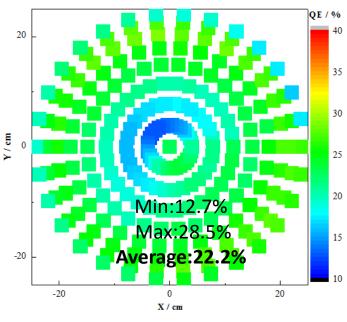


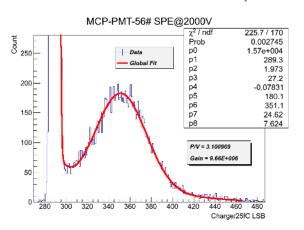


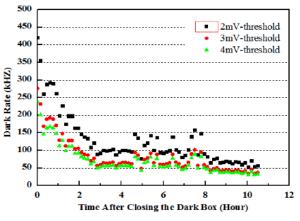
8-inch IHEP MCP-PMT Horizontal MCPs

	2	3	200/ 4	500%/	.,	18.40%	20.00%/	停止
				ľ	Ĭ			
t market	Ynydroles a	n la sandard		and a second	بہــــــــــــــــــــــــــــــــــــ		والمعاول والمالين والمالين	All company of the
,		., .,,	1		1 /	N-4- () (V	, ,,,	1
					# /			
					17			
					Ħ			
**************		-0.00-0000		1		and a		
) 河量	- Andrew Space	当前	平均	Tomake,	"最水"。	nmilly / mills	标准偏差	计数
1	,		平均	ti Olins	最小 900ps	100		28
测量	1(3):	当前	平均 13.9 25.1			**************************************	标准偏差	

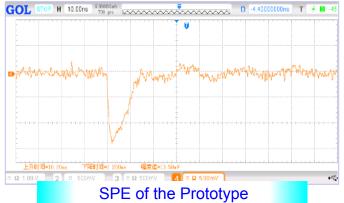
HV	Gain	P/V	Rise Time	Fall Time	Dark rate @1E7 Gain(0.25PE)
2100V	~1E7	~4	~1.3ns	~8.8ns	~3kHz

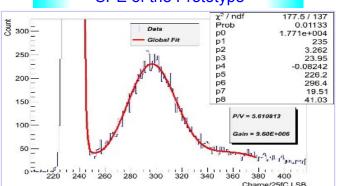

2.2 20" prototypes with normal performance--2014



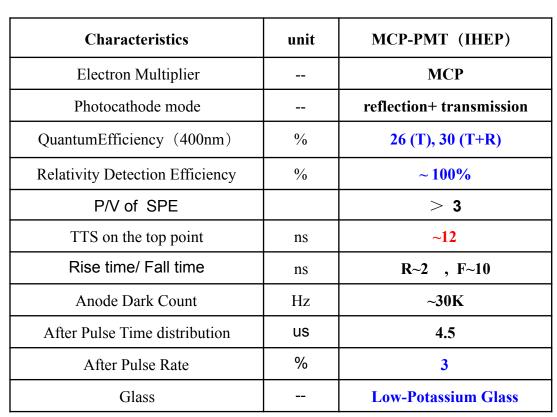


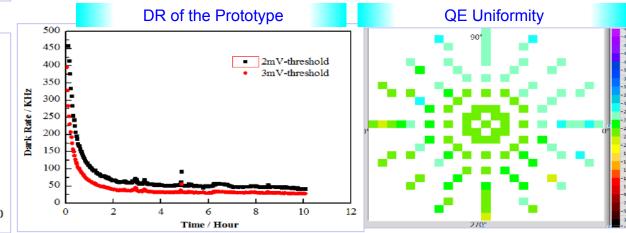
20-inch IHEP MCP-PMT Horizontal MCPs Ellipsoidal Glass




1	50/	2	500♥/	3	4		*	-24.602	20.0	08/	停止	£	2	-481¢
	1						-	.n.M			٠	~	~ ^	
•		-					1	/**	W**		-			
2	2~~~		····	بالمسيرة	_		ľ		سد					
5		-				V	-							
					/] -	下降时	间(1):	1.2ns	S	
ľ							T			上升时 原度(1			ns	

HV	Gain	P/V	Rise Time	Fall Time	Dark rate @1E7 Gain(0.25PE)
2000V	~1E7	~3	~1.2ns	~15ns	~50kHz


2.3 20" prototypes with HCE performance--2015


Waveform of the Prototype

	TTS of the Prototype
2000 E 1800 E 1600 E 1400 E	hist_spe_time
1200 = 1000 = 800 = 400 = 400 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 1000	X ² / adi 901.9 / 28
200	10 20 30 40 50 60 70 80 Single P.E. Transit Time / ns

2.4 The Order of the PMTs for JUNO (the end of 2015)

Specification in the Contracts

Characteristics	unit	MCP-PMT (NNVC)	R12860 (Hamamatsu)
Detection Eff.(QE*CE*area)	%	27%, > 24%	27%, > 24%
P/V of SPE		3.5, > 2.8	3, > 2.5
TTS on the top point	ns	~12, < 15	2.7, < 3.5
Rise time/ Fall time	ns	R~2 , F~12	R~5, <7; F~9, <12
Anode Dark Count	Hz	20K, < 30K	10K, < 50K
After Pulse Rate	%	1, <2	10, < 15
Radioactivity of glass	ppb	238U:50 232Th:50 40K: 20	238U:400 232Th:400 40K: 40

15000 MCP-PMT (75%)

Contract for JUNO

Signed with NNVT

on Dec.16, 2015

Outline

> 1. The new design of the MCP-PMT for JUNO; (2009-2011)

the 4 π design; the MCP-PMT collaboration group; roadmap;

2. The MCP-PMT prototypes production; (2011-2015)

the 8 inch prototypes; the 20 inch prototypes; the high PDE;

➤ 3. The Mass production and Batch test; (2016-2017)

the mass production, the batch test system;

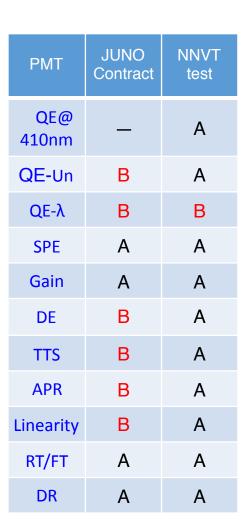
3.1 The 20 inch MCP – PMT production line (2016)

- 2 units were working already in 2015;
- **6** units were ready on the summer 2016;

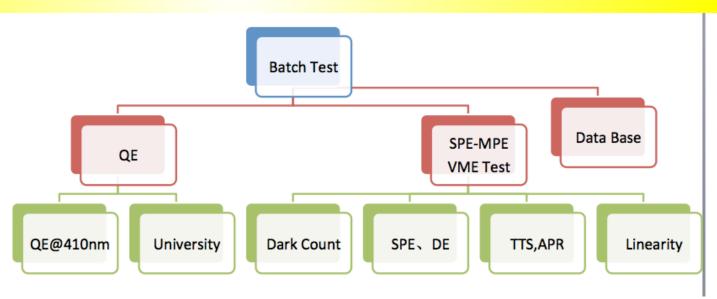
14 units were ready on the winter 2016;

One Unit could produce 3PMTs in Two days;

- —> 22 Units for the mass production;
- —> 33 PMTs / 1 day (1PMT need 2 days);



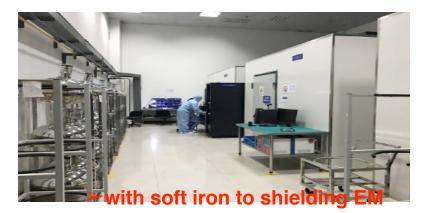
The celebration for the 20 inch MCP – PMT production line (2016)


Aim: 1PMT need 2 days total 33 pic/day; 30 pic PMTs (OK!) /day

3.2 The Batch test platform (2016.10-2017.02)

A: will be test 100% one by one;

B: will be test 10%~20%, part of them.

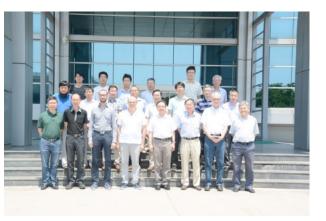


QE sub-system

- **≻**Equipment: 2 pic;
- **>**Time: 0.5h / PMT;
- ➤One Day: 30 PMTs;
- ➤Test Ratio: 100%;

SPE Batch Test sub-system

- **≻**Equipment: 2+1 Dark Room;
- -> 1 dark room = 32 PMTs
- ➤ One Day: 30 PMTs;
- ➤Test Ratio: 100%;


3.3 The MCP-PMT International Evaluation (2017)

20 inch Micro-channel Plate Photomultiplier Tube International Evaluation on 28th.May 2017

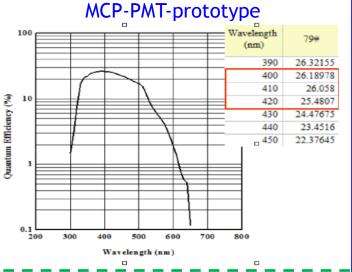
- —> The production line and testing procedures and equipment are world-class with unique capabilities.
- —> The design of the MCP-PMT has acquired a patent of invention and intellectual property rights.

The MCP-PMT Review Committee

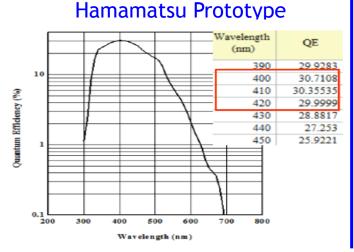
	Name .	Company	Signature
Chairman	Weiguo Li	IHEP	Weigno <
Member	Paolo Lombardi	INFN	Pou Zhi
Member	Bayarto Lubsandorzhiev	INR	chows-
Member	Demarteau Marcel	ANL	Mount
Member	Gioacchino Ranucci	INFN	Growe Run
Member	Zizong Xu	USTC	7765
Member	Jiawen Zhang	IHEP	级家文

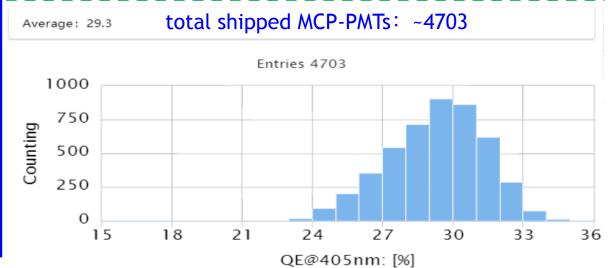
3.4 The transport by road for the MCP-PMT to JUNO

finish-336 1 2017.5.15 28.95% 336 finish-648 2 2017.6.14 29.36% 312 finish-1008 3 2017.7.4 29.47% 360 finish-1344 4 2017.7.26 28.83% 336 finish-1680 5 2017.8.24 29.01% 336
finish-1008 3 2017.7.4 29.47% 360 finish-1344 4 2017.7.26 28.83% 336 finish-1680 5 2017.8.24 29.01% 336
finish-1344 4 2017.7.26 28.83% 336 finish-1680 5 2017.8.24 29.01% 336
finish-1680 5 2017.8.24 29.01% 336
finish-2016 6 2017.9.12 29.09% 336
finish-2351 7 2017.9.25 29.62% 336
finish-2687 8 2017.10.09 29.79% 336
finish-3023 9 2017.10.26 29.35% 336
finish-3360 10 2017.11.08 29.17% 336
finish-3696 11 2017.11.22 29.92% 336
finish-4031 12 2017.12.21 29.35% 335
finish-4366 13 2018.01.21 29.28% 336
finish-4703 14 2018.02.23 29.48% 337

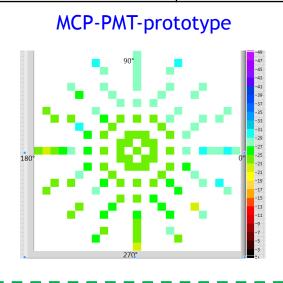

> 3.5 the MCP-PMT parameters Test in NNVT for JUNO

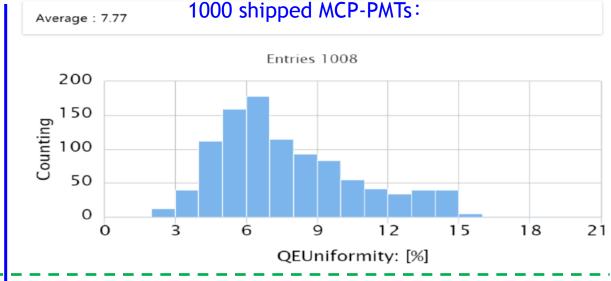
PMT Parmaeters	JUNO Contract	data in Contract	NNVT test	Prototype	mass production
单波长QE@410nm	Α	≥ 26.5%	Α	~ 26%	?
均匀性(QE Uniformity)	В	≤ 15%	Α	≤ 10%	?
频谱响应曲线(QE-λ)	В	300nm ~ 650 nm	B(50%)	300nm ~ 650 nm	?
单光子探测(SPE-P/V)	Α	≥ 2.8	Α	~ 5.6	?
能量分辨率(SPE-ER)	Α	≤ 40%	Α	~ 41%	?
增益(Gain)	Α	1E+07	Α	1E+07	?
高压(HV)	А	≤2800V	Α	~ 1780V	?
探测效率 (DE) @405nm	D	?	۸	~ 26%@405nm	?
探测效率 (DE) @420nm	В	≥ 24%@420nm	Α	?	?
暗计数率(DR)	Α	≤30KHz	Α	~ 30KHz	?
渡越时间涨落(TTS)	В	≤ 15ns	Α	~12ns	?
后脉冲率(APR)	В	≤5%	Α	~ 2.5%	?
非线性(Linearity)<10%	В	≥ 1000pe	Α	~ 1000pe	?
信号波形(RT)	Α	≤2ns	Α	~ 1.2ns	?
信号波形(FT)	Α	≤ 12ns	Α	~10.2ns	?

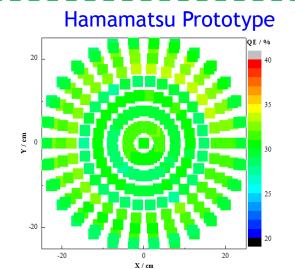

A: will be test 100% one by one; B: will be test 10%~20%, part of them.

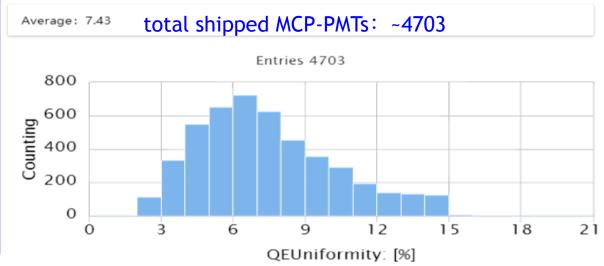

3.5.1 The Quantum Efficiency @ 405nm

PMTs	Hamamatsu	MCP-PMT prototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
QE @ 405nm	30%	26%	29.5%	29.2%	29.3%

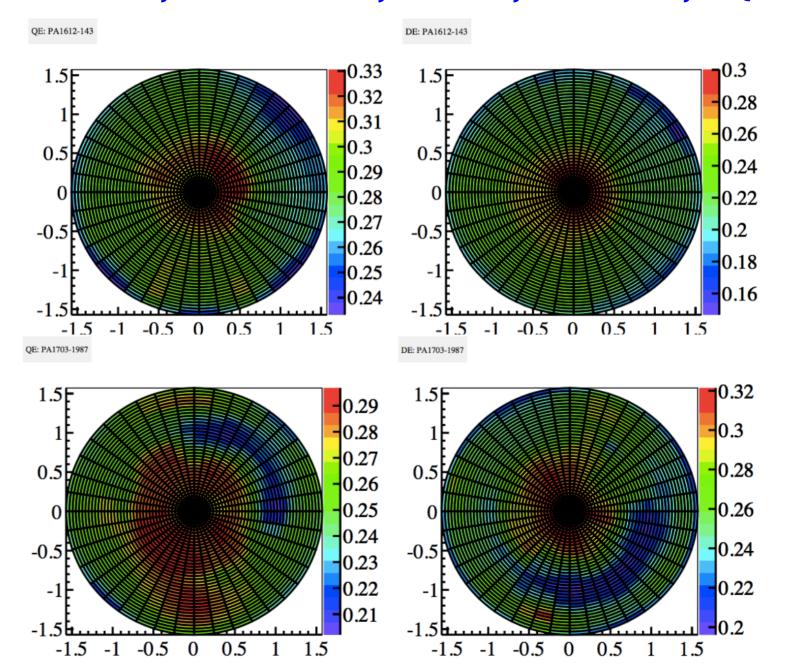


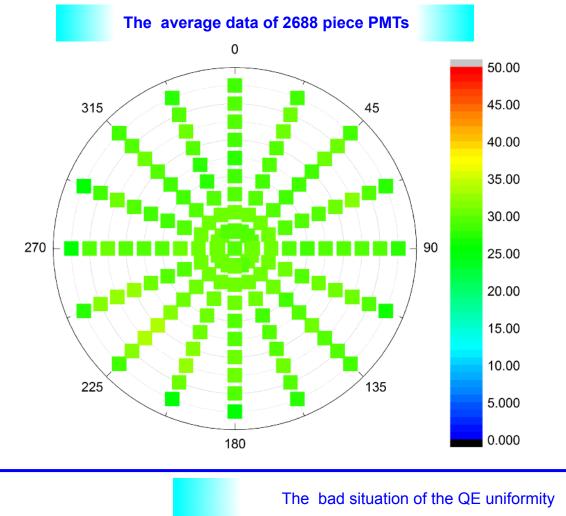


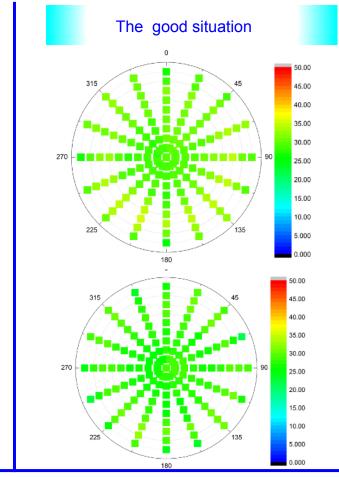


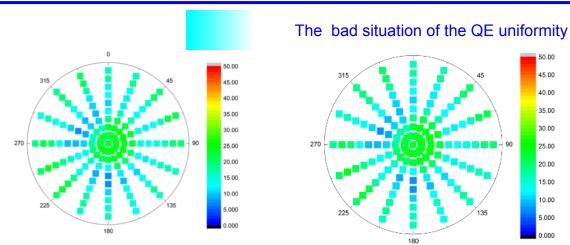

3.5.2 The Uniformity of the Photocathode

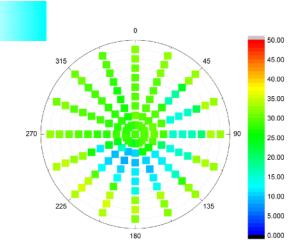
PMTs	Hamamatsu	MCP-PMT prototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
Uni-QE @ 410nm	< 10%	< 10%	8.1%	7.8%	7.4%



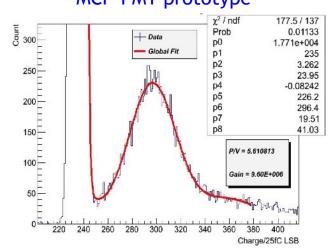


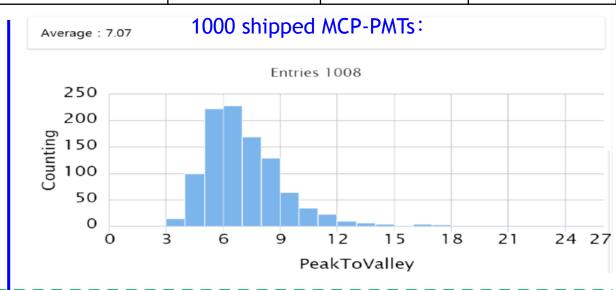



the Uniformity of the DE is mainly affected by the uniformity of QE

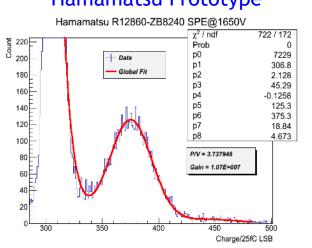


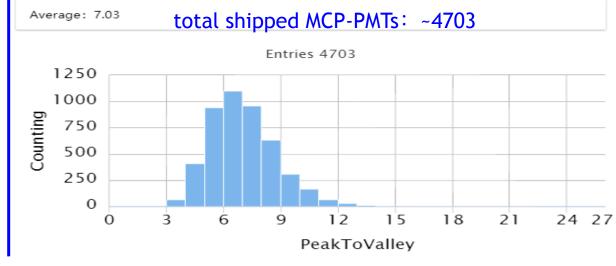
the Uniformity of the Detection Efficiency in FanYa

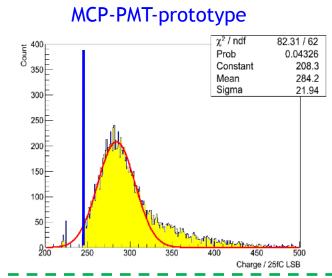


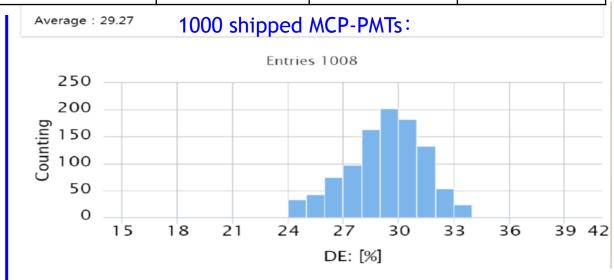


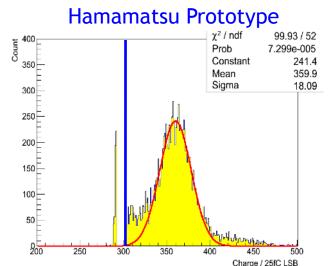
3.5.3 The P/V of the SPE


PMTs	Hamamatsu	MCP-PMT prototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
SPE @ Gain~1X10^7	3.7	5.6	8.2	7.1	7.0


MCP-PMT-prototype

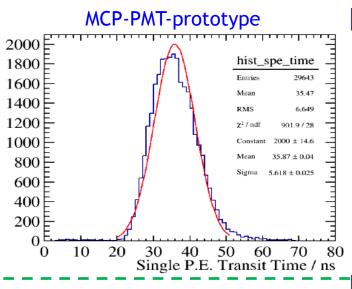

Hamamatsu Prototype

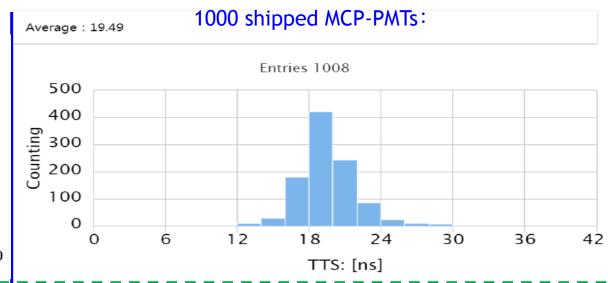


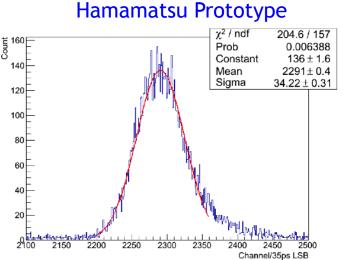


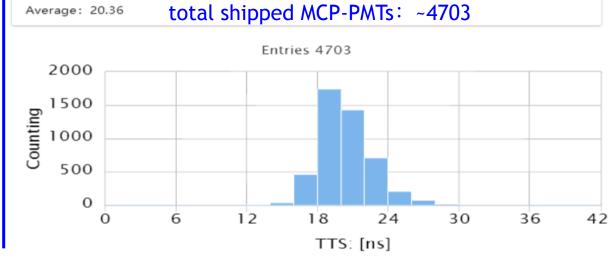

3.5.4 The Relativity Detection Efficiency of SPE @ 405nm

PMTs	Hamamatsu	MCP-PMT prototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
DE @ Gain~1X10^7	27%	26%	28.9%	29.3%	29.3%








3.5.5 The TTS (FWHM) @ Gain~1X10^7

PMTs	Hamamatsu	MCP-PMTprototype	~300 MCP-PMTs	~1000 MCP-PMTs	~4703 MCP-PMTs
TTS @ FWHM	2.8 ns	13.2 ns	19.2 ns	19.5ns	20.4ns
TTS @sigma	1.19 ns	5.62ns	8.17ns	8.30ns	8.64ns

Summary of the MCP-PMT R&D process

```
≥2009: the design of the MCP-PMT;
```

```
≥2012: 8"MCP-PMT prototype without SPE;
```

➤ AFAD 2013, Russia,

≥2013: 8"prototypes with normal performance;

```
QE ~ 25%@410nm; CE ~ 60%; P/V of SPE> 2.0;
```

>AFAD 2014, Australia,

≥2014: **20**" prototypes with normal performance;

```
QE ~ 25%@410nm; CE ~ 60%; P/V of SPE> 2.0;
```

>AFAD 2015, Taiwan, China.

≥2015: 20" prototypes with HDE performance;

QE ~ 26%@410nm; CE ~100%; P/V of SPE> 3.0;

➤ AFAD 2016, Japan.

≥ 2016: for the high QE DE improvement;

The mass production line preparation;

>AFAD 2017, China.

≥2017: Mass production; Bunch Test;

➤ AFAD 2018, South Korea.

≥2018-19: Mass production; Bunch Test;

Thanks!

谢

谢

Thanks for your attention!

Any comment and suggestion are welcomed!