

PandaX-4T Dark Matter Detector

Jingkai Xia

(Shanghai Jiao Tong University)

On behalf of PandaX Collaboration

AFAD2018, January 28 -31, Daejeon

1/30/2018

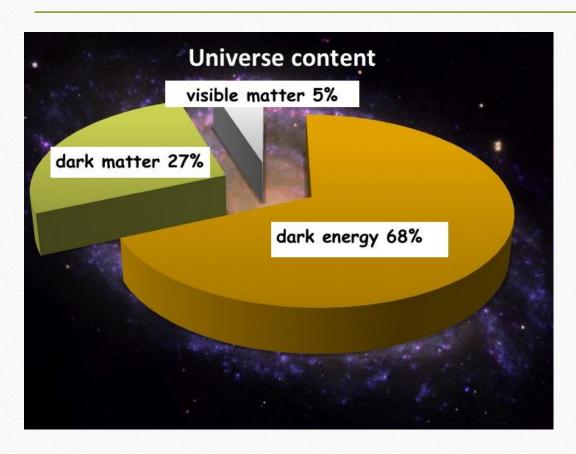
Outline

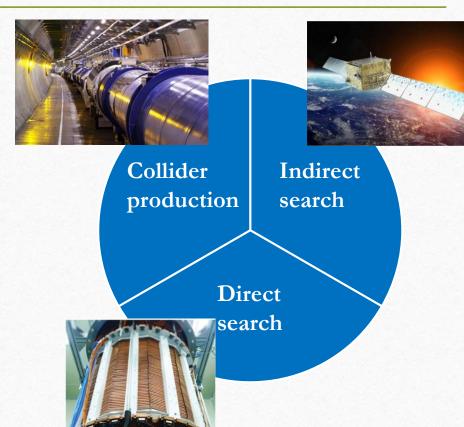
- Dark Matter direct detection
- PandaX program in China
- PandaX-4T detector R&D
- Summary

AFAD2018, January 28 -31, Daejeon

1/30/2018

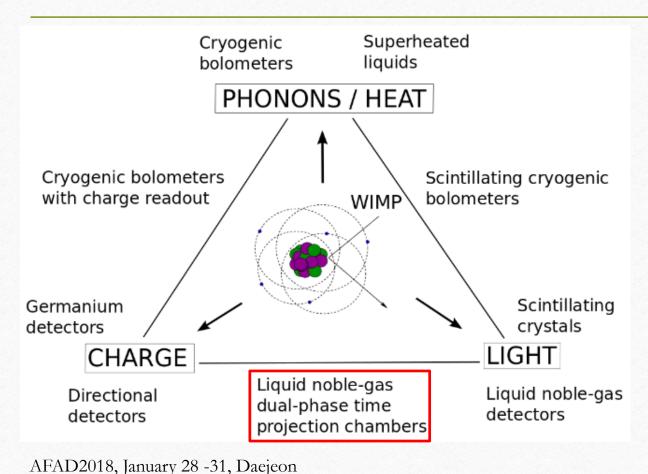
Outline

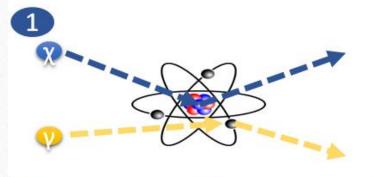

- Dark Matter direct detection
- PandaX program in China
- PandaX-4T detector R&D
- Summary

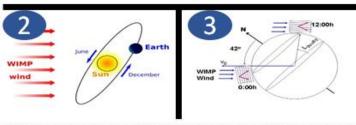

AFAD2018, January 28 -31, Daejeon

1/30/2018

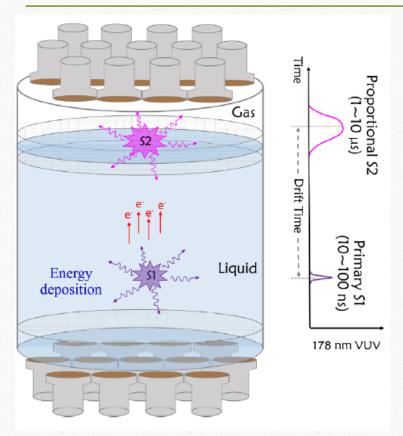
Detect Dark Matter in universe

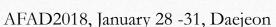

AFAD2018, January 28 -31, Daejeon

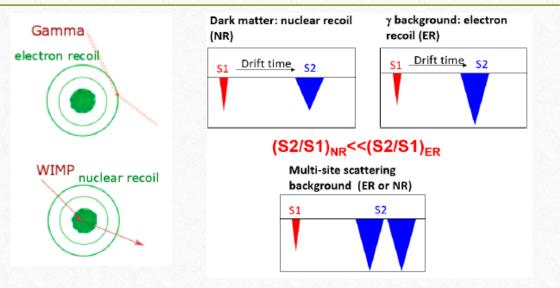

1/30/2018



Direct detection technologies


- 1. Nuclear recoils (γ/e⁻ electron recoils)
- 2. Annual modulation (3% variation)
- 3. Diurnal directional modulation


1/30/2018



Dual-phase Xenon TPC

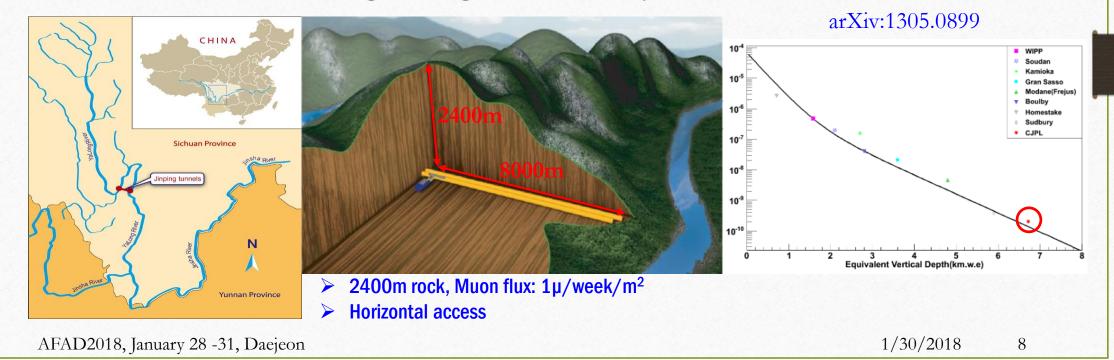
Advantages:

- 1. Excellent self-shielding of liquid Xenon;
- 2. 3D positon reconstruction and fiducialization;
- 3. Good nuclear/electron recoil discrimination with S2/S1 ratio.

1/30/2018

Outline

- Dark Matter direct detection
- PandaX program in China
- PandaX-4T detector R&D
- Summary

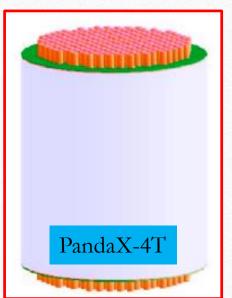

AFAD2018, January 28 -31, Daejeon

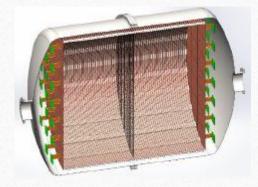
1/30/2018

PandaX program

- PandaX: Particle and Astrophysical Xenon Experiments (started from 2009)
- Location: China Jin-Ping underground Lab (CJPL)

PandaX program


- Finished: PandaX-I, 2009-2014, 120kg, Dark Matter search
- Running: PandaX-II, 2014-2017, 580kg, Dark Matter search
- R&D: PandaX-4T(Dark Matter search), PandaX-III(0νββ, Shaobo's talk)



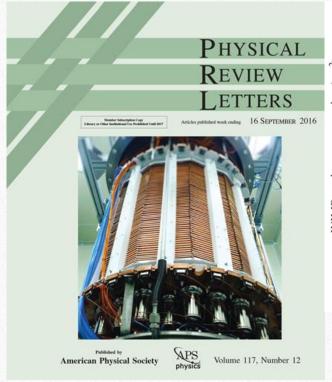
PandaX-I

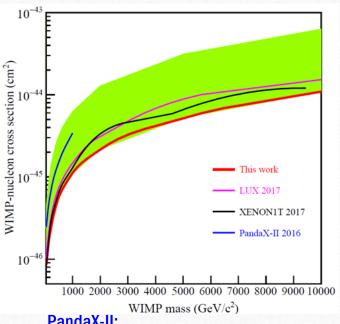
AFAD2018, January 28 -31, Daejeon

PandaX-III

1/30/2018

DM search by PandaX




Chinese team is catching up in hunt for dark matter By Adrian Cho | Aug. 26, 2014, 6:00 PM

PandaX-I:

- Completed after 54.0×80.1 kg-day exposure
- Data strongly disfavor all previously reported claims

AFAD2018, January 28 -31, Daejeon

PandaX-II:

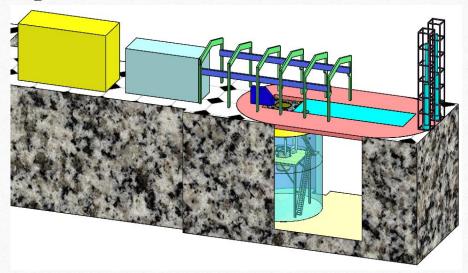
- Results from 54-Ton-Day Exposure published in 2017
- Most stringent limit for WIMP-nucleon cross section for mass >100GeV

1/30/2018

Outline

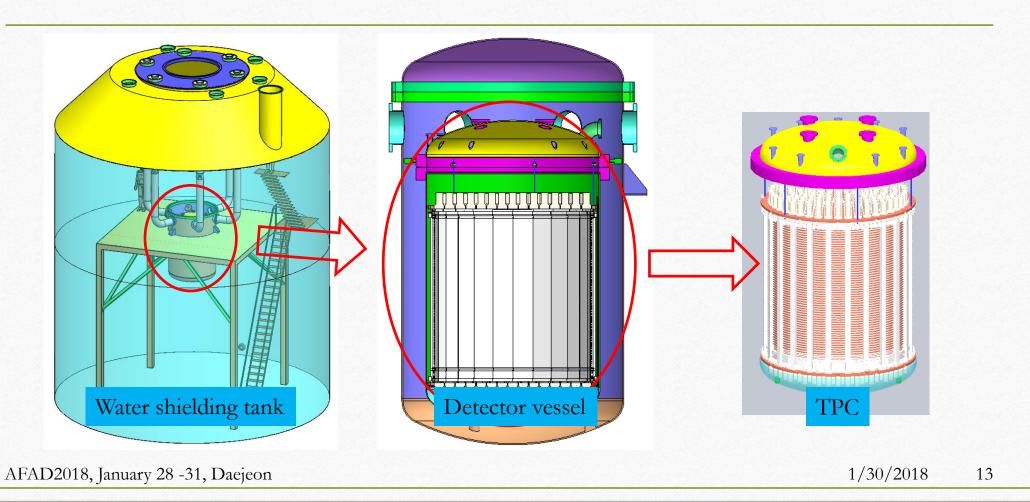
- Dark Matter direct detection
- PandaX program in China
- PandaX-4T detector R&D
- Summary

AFAD2018, January 28 -31, Daejeon


1/30/2018

PandaX-4T DM search experiment

- A 4-ton Xenon experiment is planed, to push the DM Spin-independent sensitivity down to $\sim 10^{-47}$ cm²
- Onsite assembling and commissioning: 2019-2020

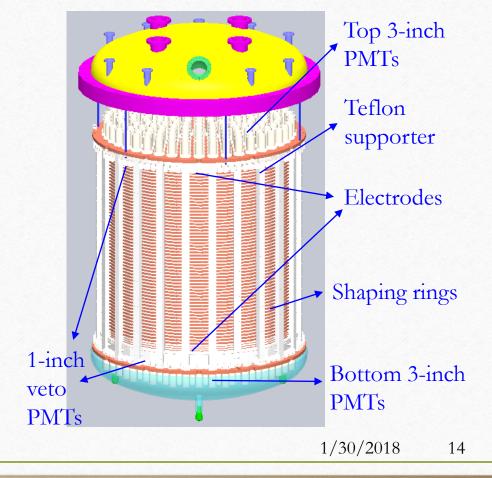


AFAD2018, January 28 -31, Daejeon

1/30/2018

PandaX-4T detector

Large scale TPC


- Characteristics:
 - > Sensitive region:

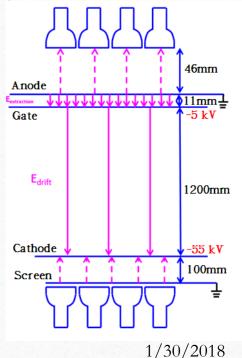
~4-ton Xenon

Drift region:

 $\Phi \sim 1.2 \text{m}, H \sim 1.2 \text{m}$

- Challenges:
 - > 1.2m-scale large and uniform electric field
 - High signal efficiency and low background
 - Large amount of Xe handling

AFAD2018, January 28 -31, Daejeon

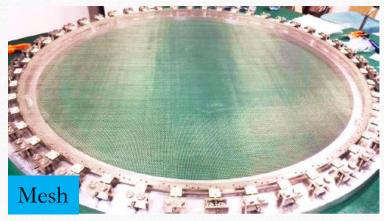

TPC-electric field

Strong and uniform electric field in a large volume
 -for better ER/NR discrimination, position and energy resolution

• Based on experience from PandaX-I&II

Drift Field (V/cm)	Design	Actual run
LUX	400	180
XENON1T	400	120
PandaX-II	400	400

- Four electrodes: anode, gate, cathode and screen
- Shaping rings for uniformity


AFAD2018, January 28 -31, Daejeon

TPC-electrodes and shaping rings

- Electrodes: Φ1.2m mesh and wire
- High light transparency (>85%)

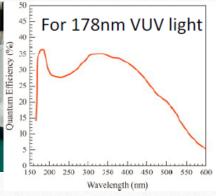
• Small deformation ~1mm

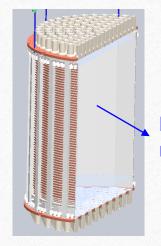
Copper shaping rings

• Electric field is shaped by shaping rings (deformation inside FV< 1%)

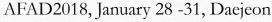
AFAD2018, January 28 -31, Daejeon

1/30/2018



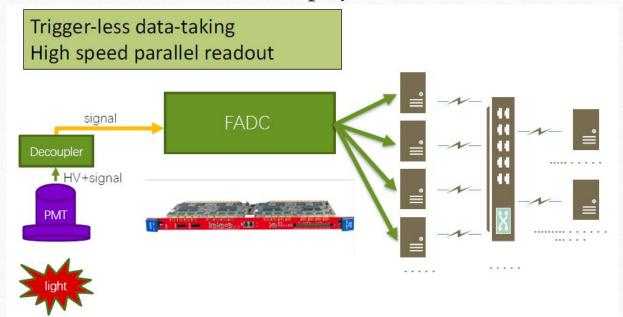

TPC-photon collection

- PMTs for signals: 3-inch Hamamatsu R11410
 - > 169 pieces in circular array@top
 - > 199 pieces in hexagonal array@bottom


• PTFEs with high reflectivity (>98%@178nm)

PTFE reflectors

Copper plates holding PMT arrays are also covered by PTFEs

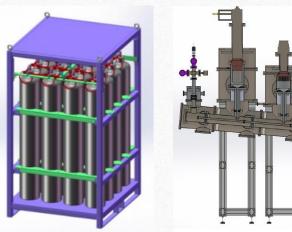

1/30/2018

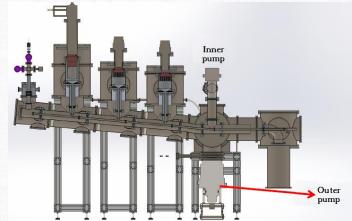
Electronics and DAQ

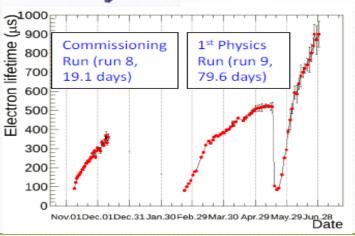
- 512 channels (including 3" PMT and 1" veto PMT)
- Calibration run 2GB/s, physics run 0.4GB/s

AFAD2018, January 28 -31, Daejeon

1/30/2018






Xenon Storage, Cooling and Purification

- Storage: 6 ton xenon
 - > 6 sets 4x4 (50kg, 40L)
 - Filling speed: 600-1000kg/day
- Cooling bus:
 - PandaX-II: one cold head (180W)
 - PandaX-4T: three cold heads (620W)
- Online purification
 - \triangleright Remove impurities (O2, H₂O)
 - Maintain a high electron life time

AFAD2018, January 28 -31, Daejeon

1/30/2018

Background Control

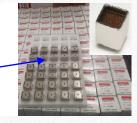
• Current background level at PandaX-II: 0.8 mDRU

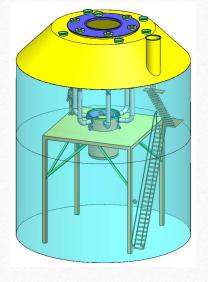
- For PandaX-4T, proposed background level:
 - Materials: 0.01 mDRU
 - ➤ natKr: 0.1 ppt
 - \geq 222Rn: 1 μ Bq/kg
 - Total ER background: 0.04 mDRU
 - Total NR background: 0.5 event/ton/year

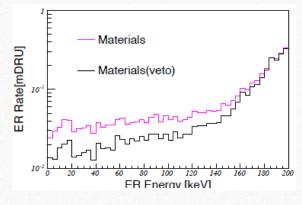
Ultra-low radioactivity measurement device

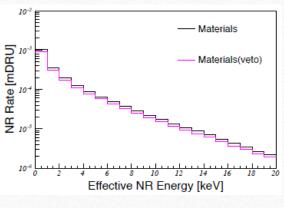
AFAD2018, January 28 -31, Daejeon

1/30/2018






Background Control


- 5m pure water shielding
- Low radioactive materials
 - Dobtaining the lowest 60Co in SS
- Veto PMTs outside TPC
 - Assume 60 keV_{ee} veto threshold
 - Suppress 60% ER bkg, 15% NR bkg

1/30/2018

21

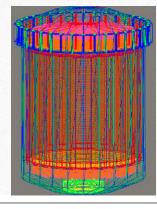
AFAD2018, January 28 -31, Daejeon

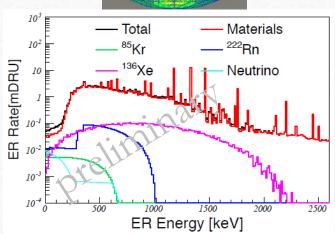
85Kr and 222Rn Control

• 85Kr level control

PandaX-II	Run 8	Run 9	Run 10
Kr level	$437 \pm 13 \text{ ppt}$	$44.5 \pm 6.2 \mathrm{ppt}$	$6.6 \pm 2.2 \mathrm{~ppt}$

- ➤ Distillation tower at CJPL -> natKr below 0.1ppt
- → natKr measurement system -> 0.1-0.01ppt sensitivity
- ²²²Rn level control
 - Current PandaX-II level: 8.6μBq/kg (primarily from plumbing)
 - Rn filtration/distillation plan in consideration
 - > Use Rn emanation measurement chamber to screen components
 - The goal is to reach 1μBq/kg




AFAD2018, January 28 -31, Daejeon

1/30/2018

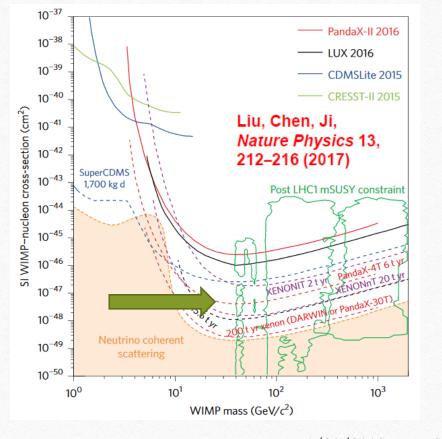
Background Simulation

AFAD2018, January 28 -31, Daejeon

Assuming $^{nat}Kr\sim 0.1~ppt,~^{222}Rn\sim 1~\mu Bq/kg$

Dark Matter Background with Veto			
Source	ER in mDRU	NR in mDRU	
Materials	0.0118 ± 0.0021	$0.00006 \pm\ 0.00006$	
$^{222}\mathrm{Rn}$	0.0114 ± 9.0012	-	
$^{85}{ m Kr}$	0.0053-20.0011	-	
¹³⁶ Xe	0.3023±0.0003	-	
Neutrino	0.0090 ± 0.0002	$0.00008 \pm\ 0.00004$	
Sum	0.040 ± 0.003	$0.00014 {\pm}\ 0.00007$	
2-year yield	832.2 ± 62.4	2.9 ± 1.5	
after selection	$2.1 {\pm} 0.2$	1.2 ± 0.6	

1/30/2018



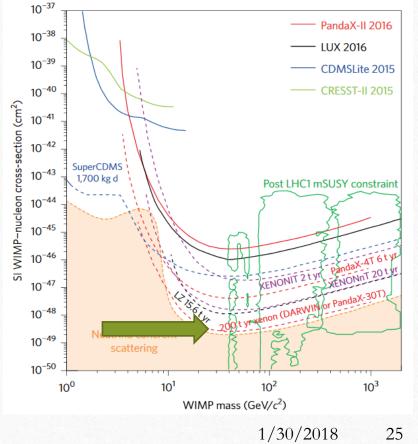
Expected Sensitivity

• With exposure reaching 6 ton-year

• DM SI sensitivity could reach $\sim 10^{-47} \text{cm}^2$

AFAD2018, January 28 -31, Daejeon

1/30/2018



Outlook-PandaX-30T

- To reach the neutrino floor with 200 ton-year exposure
- Diameter 2.4m
- Height 2.4m
- Sensitive volume: 30 ton

AFAD2018, January 28 -31, Daejeon

Summary

- PandaX-II has reached the world frontier of dark matter direct detection.
- PandaX-4T, a 4-ton Xenon detector, is under construction based on the successful experience of previous PandaX experiments.
- The sensitivity to SI DM could reach $\sim 10^{-47} \text{cm}^2$ with 6ton-year exposure.
- Future PandaX-30T is in proposal.

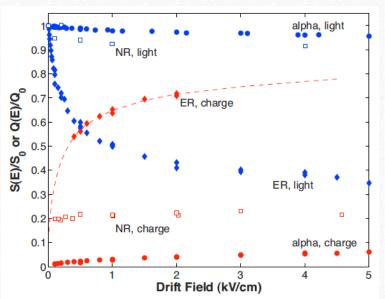
AFAD2018, January 28 -31, Daejeon

Thank you!

AFAD2018, January 28 -31, Daejeon

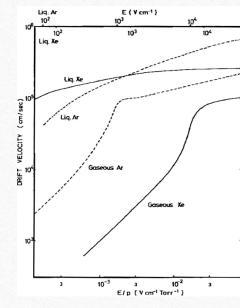
1/30/2018

backups


AFAD2018, January 28 -31, Daejeon

1/30/2018

Backup-effect of drift field

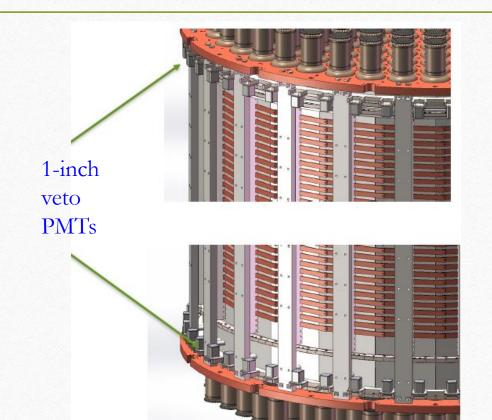


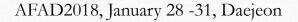
Field dependence of scintillation and ionization yield in LXe for 122 keV electron recoils (Ers), 56.5 keV_r nuclear recoils (NRs) and 5.5 MeV alphas, relativeto the yield with no drift field (*Aprile et al., 2006*).

AFAD2018, January 28 -31, Daejeon

Energy resolution and collected charge for 570 keV gamma rays in LXe as a function of electric field (Aprile, Mukherjee, and Suzuki, 1991a).

Electron drift velocity in gaseous and liquid xenon and argon, as a function of reduced electric field (Pack *et al.*,, 1962; Miller *et al.*,, 1968; Yoshino *et al.*,, 1976).


1/30/2018



Veto volume

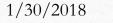
- Xenon in skin area: 0.5 ton
- Suppress gamma background
 - Compton scatter in skin area
 - > 50% veto efficiency
- 1-inch R8520 PMTs
 - > 72 top and 72 bottom

Xenon purity measurement

1. 目标

• 测量氙中杂质气体至<0.1PPT

2. 主要技术措施


- 低温冷阱法
- 高性能RGA (Hiden)
 - 灵敏度比SRS的RGA提高200倍

3. 目前状态

- 系统净化。
- · Hiden-RGA调试中

HAL RC RGA 301 #15741 / CO2 / Kr84 / Xe129 / Xe131 / Xe136

AFAD2018, January 28 -31, Daejeon

Background level in PandaX-II

Item	Run 9 (mDRU)	Run 10 (mDRU)
⁸⁵ Kr	1.19 ± 0.20	0.20 ± 0.07
¹²⁷ Xe	0.42 ± 0.10	0.021 ± 0.005
^{3}H	0	0.27 ± 0.08
²²² Rn	0.13 ± 0.07	0.12 ± 0.06
²²⁰ Rn	0.01 ± 0.01	0.02 ± 0.01
ER (material)	0.20 ± 0.10	0.20 ± 0.10
Solar ν	0.01	0.01
¹³⁶ Xe	0.0022	0.0022
Total	1.96 ± 0.25	0.79 ± 0.16

AFAD2018, January 28 -31, Daejeon

1/30/2018

