Named Data Networking for Large-Scale Scientific Data and its Status on HEP

AFAD 2018, DCC Jan. 30, 2018

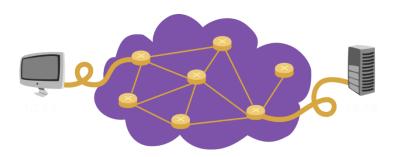
Huhnkuk Lim
Division of Supercomputing
Korea Institute of Science & Technology Information (KISTI)

Contents

NDN Overview

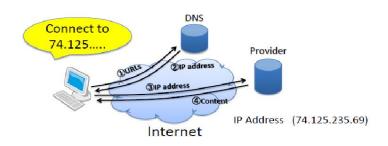
NDN Application SW for Large-scale
 Climate Data

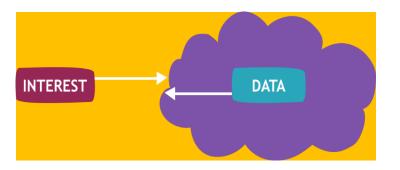
R&D Status on NDN Construction for HEP


Summary

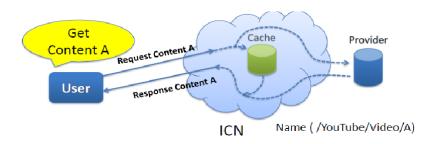
Why Data-centric Networking?

- The primary goal of communication (our concern) is data (content) itself, not connection to a host/server
- Current internet is a host (location)-centric communication model
- After identifying a host or server, identification of data (content) is always done later
- ICN architecture focus on data itself (object), not a host (method)
- Fewer steps are needed (i.e., put an unique name into datacentric networks and get a corresponding data, without identification of source/destination)
- Data-centric networking is more suitable in the datadriven world


Current Internet vs NDN


Named Data Networking (NDN) is one instance of (ICN: Information Centric Networking)

Internet Protocol


- Host centric comm. model
- Source/destination IP addresses needed
- Focus on delivering packets from source to destination
- Inefficiency in Security, mobility, QoS and scalability, etc.

Named Data Networking (NDN)

- Data centric comm. model
- Unique data names needed
- Focus on the what (goal) not the where (host)
- To reduce inefficiency due to hostcentric networking in current Internet

NDN Philosophy & Feature

- NDN philosophy
 - Focus on Data (i.e., content name), not Host (i.e., location: IP address)
 - Redesign internet in a data-centric approach
- NDN architecture features
 - Unique and hierarchical name
 - Connectionless communication model
 - Name-based forwarding
 - Mobility and multicasting function are designed in architecture itself
 - Securing content itself, not securing communication channel like IP
 - Traffic reduction using In-network caching: Multiple duplicated data requests can be satisfied from nearby NDN router (cache: CS)

DATA Drop from CS or NACK NDN router Upstream Forwarding **Content Store** Forward INTEREST-Table (CS) Interest/Data (FIB) forwarding Pending procedure in NDN cache Interest Table architecture Forward ··DATA Lookup hit (PIT) Lookup miss Downstream

interest

Using unique data name without source/destination IP addresses

Two Types of NDN Packets

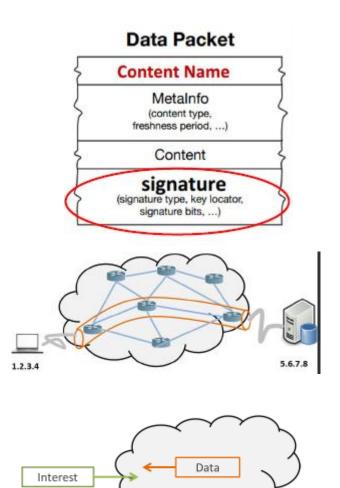
Interest Packet

Data Packet

Content Name: Identifies the data I want to receive

Selector: identifier publisher, etc

Nonce

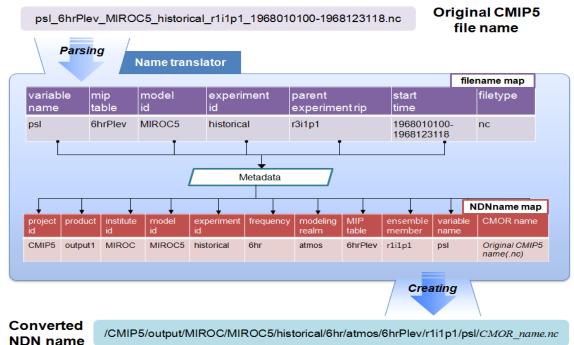

Content Name: Identifies the data in this packet

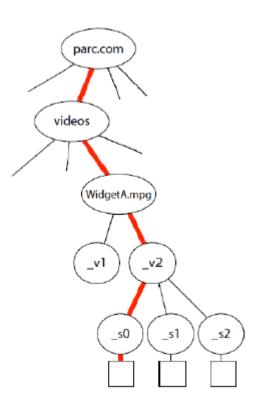
Signature: Required for all packets

Data

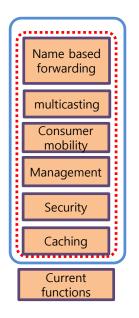
NDN-Security

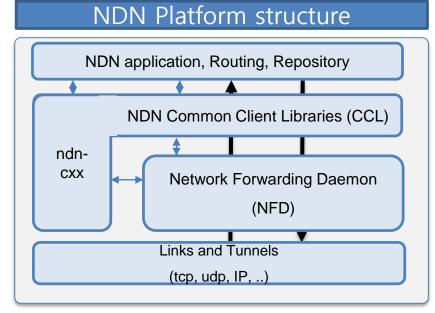
- Content-based Security in NDN
- Security is built into content itself
- Data packet has digital signature made by PKI (Public Key Infrastructure)
- signature securely binds together the tuple<name, data, publisher's key>
- On the other hand, current IP networks secures the channel between two end points
- Verifying Data integrity and authentication

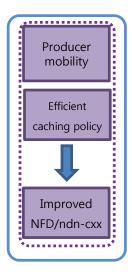



NDN - Naming

/parc.com /videos/widgetA.mpg /_v2/_s0


- Hierarchical
- Unique
- •Human-readable


Naming scheme is the most important piece of NDN architecture and still under research

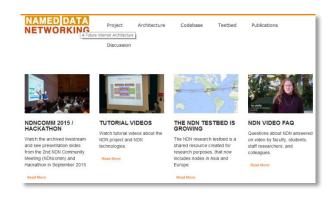


NDN Platform

NDN Platform ver. 0.1.0~0.5.1 (open source, Mar. 2017) NDN Platform ver. 0.5.1

- ✓ NDN-cxx v0.5.1- Software router and C library implementation (Released mar. 2017)
- ✓ NFD v0.5.1 NDN Forwarder Deamon
- ✓ NDN common client Libraries with TLV support
 - Python <u>PyNDN</u> now fully implemented in Python, with a preliminary feature set.
 - Javascript NDN-JS- with TLV support by default and user-selectable ndnb support.
 - C++ NDN-CPP- with TLV support by default and user-selectable ndnb support.
- ✓ NDN repository, NLSR, etc.

CCN Platform


- Developed by PARC over the past nine years
- > CCNx ver. 1.0

ICN (NDN) Application Area

- Content Delivery Applications (Streaming video, etc)
- IoT
- Healthcare
- Building management system
- Multiplayer online game
- Large-scale scientific data
 - Climate science data
 - HEP data
 - LIGO data

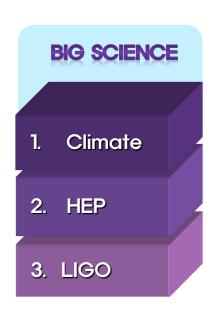
- Cisco reported important steps toward adoption of CCN into 5G (Feb. 2017)
- Hybrid CCN and its applications/solutions

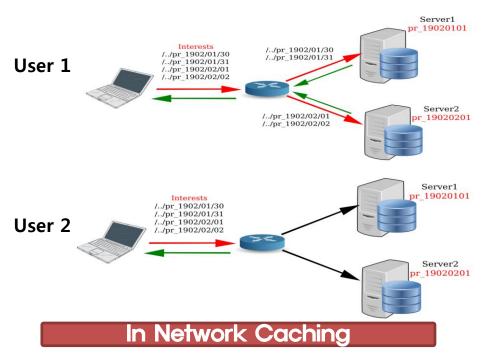
NDN webpage: http://named-data.net/

integration of heterogeneous networks. Cisco

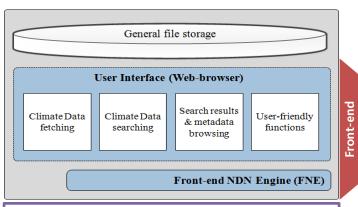
NDN Overview

NDN Application SW for Large-scale Climate Data


R&D Status on NDN Construction for HEP

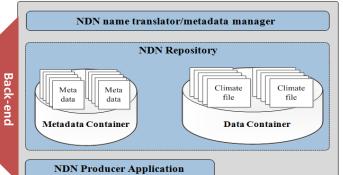

Summary

Why NDN for Large-scale Scientific Data

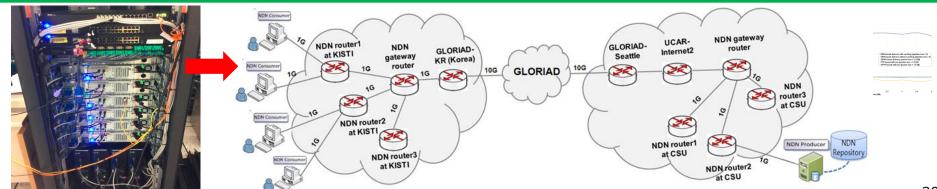

- ESGF (P2P file fetching system): long latency/corrupted data occur from globally distributed data centers
- Climate data file searching, fetching, management and security based on data-centric networking
- Location independent climate data fetching
- Remove redundant traffic using symmetrical forwarding /in network caching and reduce total amount of traffic in whole network

NDN Application SW for Climate Science

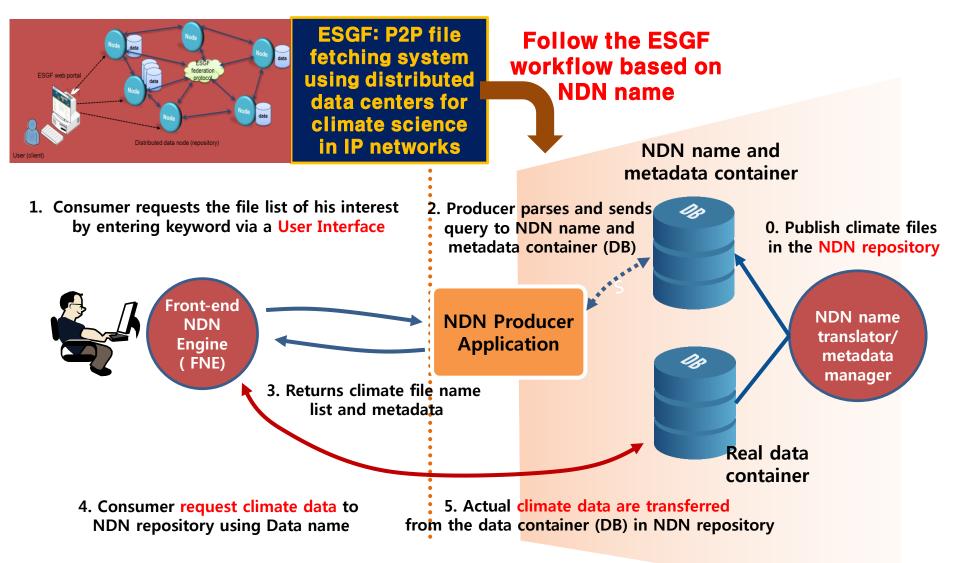
- NDN name based CMIP5 data file/ metadata searching
- NDN name based CMIP5 data file fetching
- User interface (searching/fetching)


NDN app. SW (consumer)

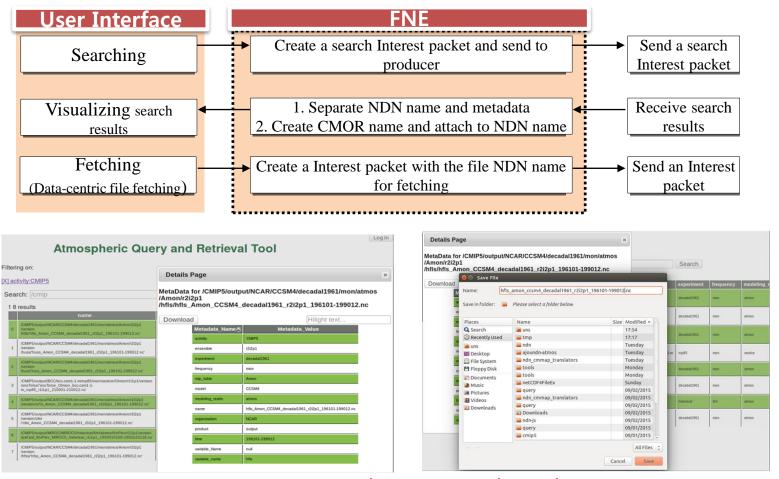
Climate science NDN
App. SW and first global
Testbed establishment



- Name translation and metadata management
- Establishment NDN repository
- Process/response of Interest packets


NDN app. SW (producer)

- Using Korea-US global NDN testbed, climate data file fetching experiment: justification of using NDN for large-scale scientific data
 The leading-edge technology on ICN app. SW for Scientific data
 - √ H. Lim, A. Ni, D. Kim, Y. Ko, S. Susmit, and C. Papadoplous, "Named Data Networking for Big Science: Lessons Learned from Establishing a Testbed", completed 2nd revision in Computer Communications, Jan. 2017.

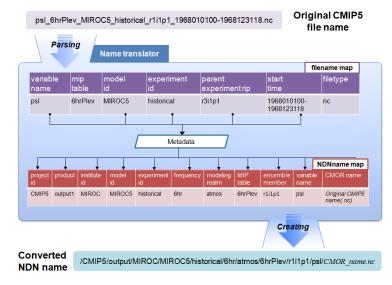

NDN testbed established between Korea and US

NDN based Climate Science **Application Workflow**

UI & Front-end NDN Engine (FNE) in Front-end System

- Using it, a consumer search potential climate data files (CMIP5 files)
- A consumer fetches the desired file with a target data name from the NDN network.

Screenshots of user interfaces; a) climate data (CMIP5) file searching and metadata browsing; b) climate data (CMIP5) file fetching


Components in Back-end System

Name translator

✓ To convert original climate data file flat name to a hierarchical NDN name format (using one of DRS rules)

Metadata manager

- ✓ To extracts the metadata sets from each climate data file and manages them
- ✓ To provide detailed information for climate data files to consumers

<Name conversion procedure>

NDN repository

- ✓ Data container to store CMIP5 files and to support data fetching
- ✓Name/metadata container to store converted NDN names and their metadata sets separately

NDN producer application

- ✓ For an search Interest packet, it finds the corresponding data name carried in the Interest packet from the name/metadata container.
- ✓ It sends the NDN names and their metadata sets to the requesting consumer.

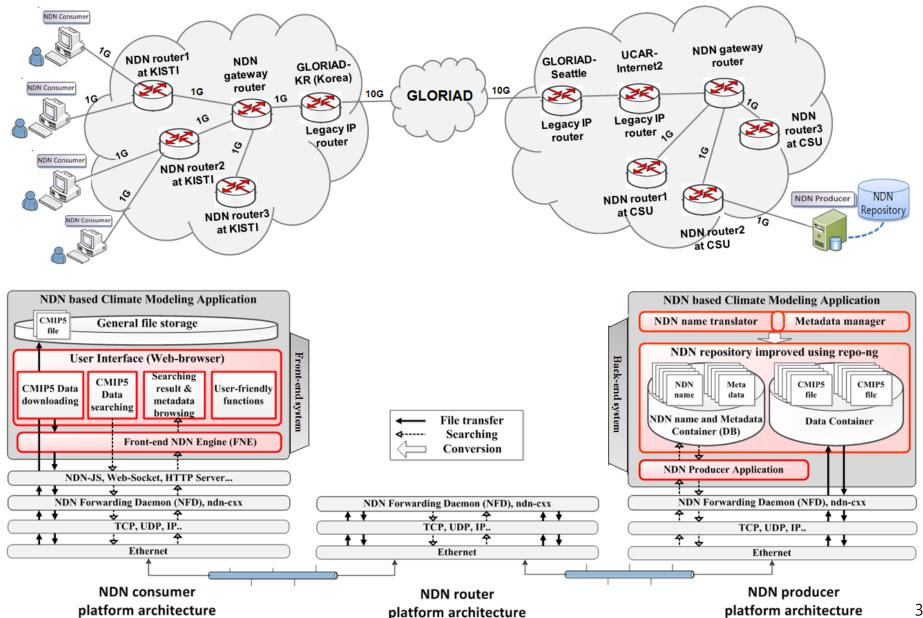
Name Conversion Rule

- Name conversion rule is based on *Data Reference Syntax (DRS)*
- Original climate file name (Flat names)

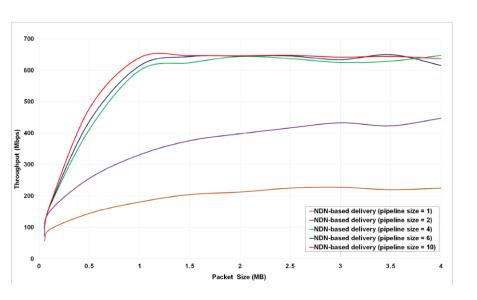
```
(a) Original CMIP5 data file name format (CMOR name)

<variable name>_<MIP table>_<model>_<experiment>_<ensemble member>[_<temp
oral subset>][_<geographical info>].nc

psl_6hrPlev_MIROC5_historical_rli1p1_1950010100-1950123118.nc
```


NDN climate data name (Hierarchical names)

```
(b) Converted NDN name format


<activity>/<product>/<institute>/<model>/<experiment>/<frequency>/<modeling rea
lm>/<MIP table>/<ensemble member>/<variable name>[/<CMOR name>.nc]

/CMIP5/output1/MIROC/MIROC5/historical/6hr/atmos/6hrPlev/r1i1p1/psl[/<CMOR name>.nc]
```

NDN Testbed for climate science and its consumer/producer architecture

Climate Data Fetching Without TCP Tunning

-NDN-based delivery with caching (pipeline size = 6)
-NDN-based delivery without caching (pipeline size = 6)
-NDN-based delivery (packet size = 1.5 kB)
-ESGF-based delivery (packet size = 1.5 kB)
-HTTP-based delivery (packet size = 1.5 kB)

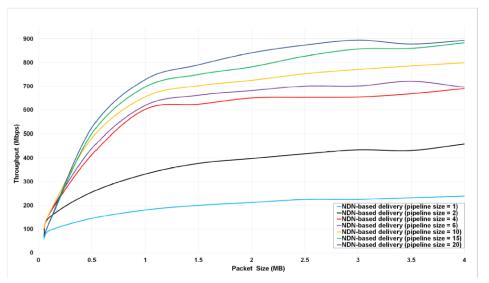

100
0 0.5 1 1.5 2 2.5 3 3.5 4
Packet Size (MB)

Figure 5: Throughput as a function of packet size for NDN-based delivery with different pipeline sizes.

Figure 8: Throughput as a function of packet size for NDN-based delivery and classical delivery techniques (HTTP, FTP, and ESGF-based).

- For the climate modeling application, throughput no longer improved by a pipeline size greater than 6.
- For the NDN-based delivery with caching, intelligent data retrieval from the local distributed caches leveraged approximately 4.5-6.5 times the throughput improvement over the 1.5 MB packet size compared to conventional delivery techniques (FTP/HTTP/ESGF),

Climate Data Fetching with TCP Tunning

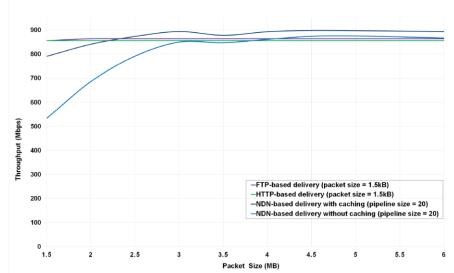


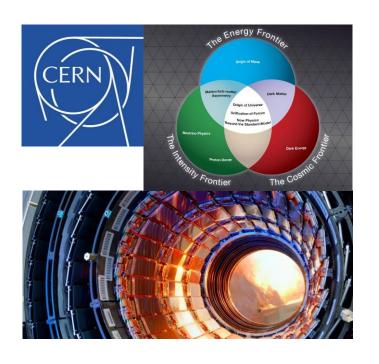
Figure 9: Throughput as a function of packet size for NDN-based delivery with different pipeline sizes (with TCP tunning).

Figure 10: Throughput as a function of packet size for NDN-based delivery and HTTP/FTP-based deliveries (with TCP tunning).

- With TCP tunning, an improved end-to-end throughput could be achieved in the overlay-based NDN testbed including legacy IP routers.
- the throughput of NDN-based delivery saturated at 900 Mbps over a pipeline size of 20 and a packet size of 3 MB
- For the NDN-based delivery with caching, intelligent data retrieval from the local distributed caches leveraged approximately 50 Mbps the throughput improvement over the 3 MB packet size compared to classical delivery techniques (FTP/HTTP)

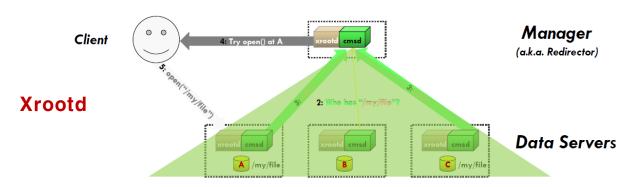
NDN Benefits for Large-scale Scientific Data

- Named data-driven
 - Just data name is needed without location information
- In network caching
 - High caching ratio of static scientific data improves throughput and user latency
- Security
 - Secure scientific data itself by signing of publisher
- Symmetrical forwarding
 - Allows multicasting and remove redundant traffic in whole networks
- No perceptible transport
 - Control of interest rate between NDN routers
 - no end-to-end transport control
- Mobility in architecture itself

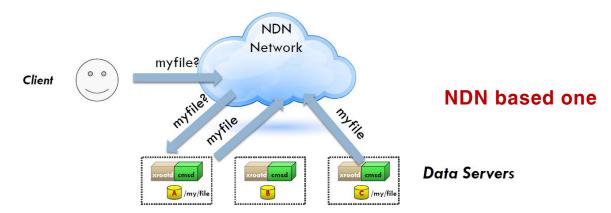

NDN Overview

NDN Application SW for Large-scale Climate Data

R&D Status on NDN Construction for HEP


Summary

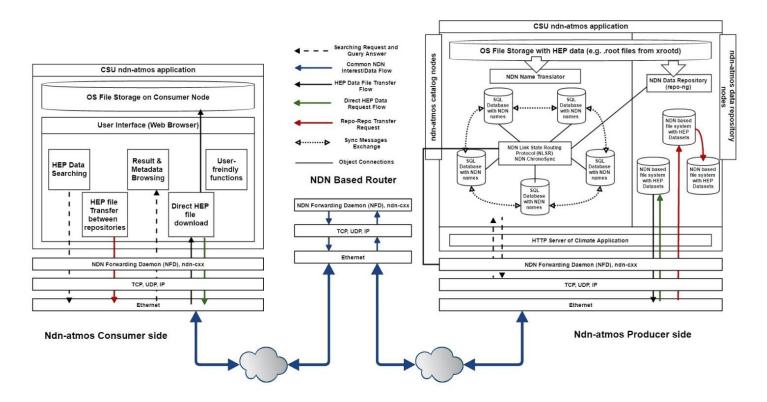
Challenges in High Energy Physics



- The data-intensive science and LHC community are going to face major issues in nearest future.
- By 2018 LHC already handles the
 ~ 1 Exabyte of scientific data and will
 handle more by 2023.
- Data complexity is increasing together with the data size.
- LHC is a network of nearly 500 sites that responsible for different tiers in scientific data production.

Xrootd and NDN-based One

- Manager (Redirector) discovers the actual location of the data and redirects the client to the appropriate site.
- Single point of failure of the manager



- NDN enables users to do location-independent data searching/fetching through data-centric communication model, not host-centric one
- By transferring the duties of manager to NDN network, it also reduce the number of steps that system will need eventually serve the data.
- By combining the two steps it increase overall performance and robustness of the system

Activities on NDN Construction for HEP

- KISTI attempts to make the NDN-based application SW for dark matter research data in particle physics
- CSU is working on their client side improvements like fixing metadata. CSU is targeting to make their application and NDN data repository more integrated into OS.
- Northeastern university starts to leading the SANDIE (HEP/LHC) project together with Caltech and CSU.
- Fermi lab is expected to collaborate with the SANDIE project

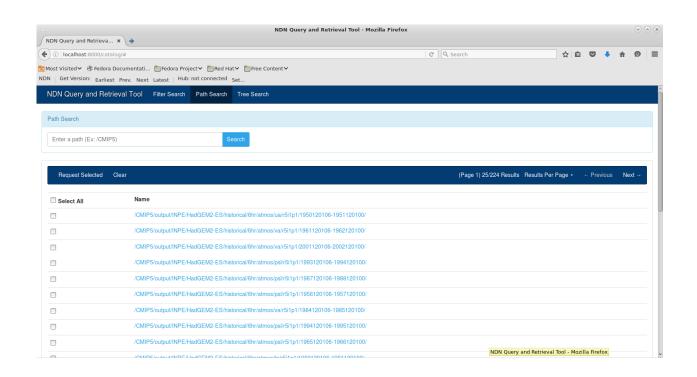
NDN-based HEP Application Structure by CSU

- **NDN Name Translator:** for converting various file names into NDN naming form. After translation it is stored at one of the catalogs nodes and then shared with other nodes.
- NDN Data Repository (repo-ng): NDN-based file system for storing actual data files.
- NDN-based HEP Catalog: the actual system that enable users to search and discover scientific data names (name translator and SQL database with NDN names)
- **UI:** user interface with such features like file searching, selecting, and fetching.
- NDN Link State Routing (NLSR): intra-domain routing protocol for NDN
- NDN ChronoSync: synchronization protocol for the data names list in all catalogs of one network.
- Repo-Repo Transfer Request: for transferring data file between two different data repositories in time when needed. It is utilized through application UI.

HEP Data Name Translation in NDN-based HEP Application

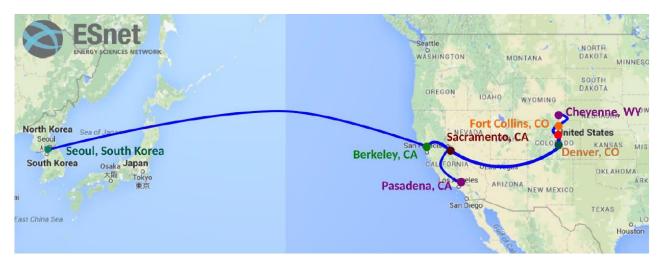
To translate HEP data into database, chain of directories was created inside the file system based on the full name of HEP file.

Full name of HEP file: /RunIISpring15DR74/LQLQToTopMu_M-900_TuneCUETP8M1_13TeV_pythia8/AODSIM/Asympt25ns_MCRUN2_74_V9-v2/60000/A8710B21-6A09-E511-8F86-02163E012AA9.root		
Its representation in file /home /home/hep_data	e system: / home/hep_data/mc/	/home/hep_data/mc/RunIISpring15DR74 /home/hep_data/mc/RunIISpring15DR74/ LQLQToTopMu_M-900_TuneCUETP8M1_13TeV_pythia8
	Etc	

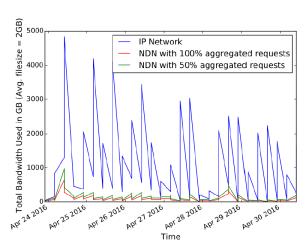

The 'mc' inside path is an important part of translation procedure. It's playing the role of trigger when translator read the path to the actual HEP data file.

/home/hep_data/mc/RunIISpring15DR74/ LQLQToTopMu_M-900_TuneCUETP8M1_13TeV_pythia8/AODSIM/Asympt25ns_MCRUN2_74_V9-v2/60000/A8710821-6A09-E511-8F86-02163E012AA9.root

All information before 'mc' will be removed with 'mc'. The rest part will be utilized by translator and will be added to the database.

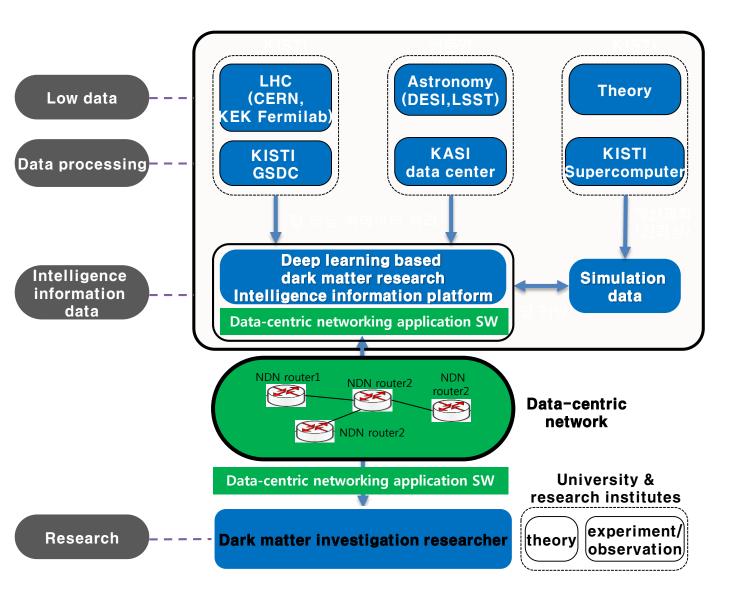

/RunIISpring15DR74/ LQLQToTopMu_M-900_TuneCUETP8M1_13TeV_pythia8/AODSIM/Asympt25ns_MCRUN2_74_V9-v2/60000/A8710B21-6A09-E511-8F86-02163E012AA9.root

UI in NDN-based HEP Application



- NDN-based HEP application by CSU currently contain HEP translation tool and publish HEP files with the ability.
- HEP share the same data discovery and retrieval method as climate data, but HEP translator itself requires additional minor configuration to be used.
- HEP use the same User Interface for climate data, it uses xrootd filenames to translate them into NDN name

Global NDN Testbed Established by KISTI and CSU for Large-scale Scientific Data



- 10G testbed (courtesy of ESnet, UCAR and CSU, and KISTI)
- Currently ~50TB of climate data, ~20TB of HEP data
- Bandwidth peaks 5000GB/10minut es (64Gbps)
- With 100% aggregation bandwidth drops to 8.2Gbps
- With 50 % aggregation bandwidth drops to 13.2Gbps

Bandwidth Reduction with NDN

R&D Project Plan on Data-centric Networking SW for Dark Matter Research Efficiency by KISTI

- Creative
 Association
 Project (CAP)
- KISTI & KASI & 10 universities
- KISTI: R&D on deep learning SW algorithm & data centric networking SW
- Planned to submit a proposal to NST (Mar. 2018)

SANDIE Project

Software Defined Network-Assisted Named Data Network for Data Intensive Experiments (SANDIE)

is a Data-Intensive Science project for high energy physics that combine NDN and SDN

Project initiated by: Northeastern Univ., Caltech and Colorado State Univ.

SANDIE aims to do

- Lay groundwork for NDN-based data distribution and access system for data-intensive science fields.
- Benefits data-intensive science communities from lowered cost, location independent data access using data-centric networking
- Engages next generation of scientists in emerging concepts of future Internet architecture for data-intensive applications
- Advance, extend and test the NDN paradigm to encompass most of data-intensive science applications

Summary

NDN Overview

- One instance of ICN that is redesigned in a clean-slate approach (Interest/Data packet)
- Focus on WHAT (content data) not WHERE (host)
- Caching, security for data, mobility, and multicasting in architecture itself
- NDN Platform (ver ~0.5): NDN-cxx, NFD, Node.js, NDN-ccl, repo-ng, nlsr
- loT, healthcare, scientific data app., 5G (Cisco reported its adoption, Feb. 2017)

NDN application SW for large-scale climate data

- A differentiated NDN app. SW for climate science (Front-end system/back-end system) by KISTI
- Establishment of first intercontinental NDN testbed between US and Korea using it
- Leading edge technology on data-centric networking based large-scale climate data searching/fetching

R&D status on NDN construction for HEP

- KISTI is are moving to make an NDN app. SW for HEP dark matter data
- CSU is working on their client side improvements like fixing metadata in ndn-atmos.
 They are also targeting to make their application to cover NDN-based climate and HEP data searching/fetching simultaneously.
- Northeastern univ. start to leading a SANDIE (HEP/LHC) project together with Caltech and CSU.
- SANDIE is a Data-Intensive Science project for high energy physics that combine NDN and SDN.