Status report from Tokyo Tier2 at ICEPP

Tomoe Kishimoto

ICEPP, The University of Tokyo

Jan. 29 2017

International Center for Elementary Particle Physics

√ Main projects in ICEPP

ATLAS experiment at LHC

MEG experiment at PSI (μ→eγ rare decay)

R & D for ILC

- ✓ ATLAS-Japan group
 - 17 institutes and ~150 members
 - Tokyo Tier2 is the only WLCG site in ATLAS-Japan

ICEPP regional analysis center

- √ Resource overview
 - Support only ATLAS VO in WLCG (Tier2) and provide ATLAS-Japan dedicated resources (local use)
 - Hardwares are leased, and are replaced in every three years
 - ~10000 CPU cores including service instances and ~10 PB disk storage (T2 + local use)
 - ▶ 18.11HS06/core (Intel Xenon E5-2680 v3)

Single VO and uniform architecture

- ✓ Operation team
 - H.Sakamoto (will retire in next Mar.),
 J.Tanaka, T.Mashimo, N.Tomoaki,
 T.Kishimoto, N.Matsui

4th system (2016-2019)

WLCG pledge

		CPU [HS06]	DISK [TB]	(*)LOCALGROUPDISK [TB]
2017	Pledge	34,000	4,000	_
	Deployed	111,268	4,000	1,000
2018	Pledge	40,000	4,800	_
	Deployed	111,268	4,800	1,000

(*) Grid disks for ATLAS-Japan group

- √ Tier2 resources
 - The current system (4th system) satisfies 2018
 WLCG pledge
 - New system will be provided for 2019–2021
 - (Need to migrate 5.8 PB data to the new system...)

Site status in ATLAS

- √ Fraction of # of completed jobs for the last year:
 - Production: 4.0% (Tier2) 2.2% (All)
 - Analysis: 6.3% (Tier2) 4.1% (All)
 - ← Good contributions

- # of ATLAS-J authors ~ 150 # of ATLAS authors ~ 3000
- √ > 99% site availability has been achieved using the
 4th system (for 2 years)

CE and batch system update

✓ Migration from "CREAM+Torque/Maui" to "ARC+HTCondor" has been completed

HTCondor pool occupancy

- ✓ Introduced dynamic partitioning for single- and multicore jobs
 - Improvement of CPU utilization was observed
 - (Reported at AFAD2017, see backup)

SE and database update

- ✓ Disk storage is managed by DPM, and its database is MySQL
- ✓ Previous configuration of SE:

 No redundancy in MySQL database..., risk of producing dark data

MySQL replication

- √ Semi-synchronous replication in MySQL has been implemented
 - Master server is replicated to slave server automatically
 - → Can use slave server as new master server when a trouble occurs in master server
 - Daily backup from slave server (takes ~10 mins)
 - → No impact on master server performances

- Fusion-IO ioDrive has been attached for database spaces to reduces time for maintenances
- Binary log increases by 8GB per day

ATLAS data management monitor

Transfer efficiency: source is Tokyo

File deletion efficiency

Downtime for the database upgrade

√ No issues have been observed after the database upgrade

International network status

- √ SINET5 is a NREN in Japan
 - 2016 Mar.: **20 Gbps for London and 100 Gbps for LA** become available
 - 2016 Apr. : LHCONE peering for EU sites
 - ► ICEPP CERN latency improved by 30%
 - 2016 Sep.: LHCONE peering for US sites

ICEPP and KEK use common LHCONE VRFs in SINET since 2016 Sep.

Data transfer with other site

Total transfer volumes last year

Europe: 4.2 PB (67 %)

North America: 2.0 PB (32 %)

Asia: 94 TB (2%)

Europe: 2.6 PB (64 %)

North America: 1.3 PB (31 %)

Asia: 206 TB (5%)

Status of IPv6 migration

- √ Long pause due to problems of main switch firmware...
 - The firmware was fixed last year, and our procedure/ experience for IPv6 filtering have been matured

- ✓ IPv6 migration plan:
 - 1.Enable the dual stack mode of perfSONARs (done)
 - 2.Enable LHCONE peering via IPv6, need to discuss with SINET and University network team (by end of Aug. 2018)
 - 3.Enable the dual stack mode of storage system (by end of Dec. 2018)

perfSONAR is a key tool to measure IPv6 performances

PerfSONAR measurements

- ✓ Data measured by PerfSONARs are also stored to ELK stack for good visualization
- ✓ Latency tests with ATLAS Tier1s:

- IPv6 tests are stable so far, but differences of performance are expected since LHCONE peering for IPV6 is not ready yet

- ◀ □ ▶ ◀ ♬ ▶ ◀ ≣ ▶ ● ● ● ♥ Q ♡

13

PerfSONAR measurements

Summary

- √ Tokyo Tier2 with the 4th system is running
 - Providing enough computing resources for ATLAS
 - > 99% site availability is achieved
- ✓ Migration from Torque/Maui to HTCondor has been completed
- √ Redundancy in MySQL database has been implemented
 - Reduced the risk of producing dark data
- ✓ International network connectivity has been improved thanks to Japanese NRENs (SINET and JGN)
- ✓ IPv6 migration is ongoing
 - PerfSONARs are IPv6 ready, tests are working well

Backup

CPU utilization

There was a pbs_server crush

	November 2016				December 2016			
	week1	week2	week3	week4	week1	week2	week3	week4
Static partitioning (Torque/Maui)	_	98.8%	91.5%	95.6%	97.7%	79.7%	99.6%	90.5%
Dynamic partitioning (HTCondor)	-	99.4%	97.0%	98.3%	99.1%	90.4%	99.5%	97.9%

Test jobs (e.g. ops job) are overcommitted in HTCondor system

- Improvement of CPU utilization has been observed thanks to the dynamic partitioning.
- HTCondor is stable so far.

Tier2 configuration

Non-grid computing nodes

18