CMB probes on the correlated axion isocurvature peturbations

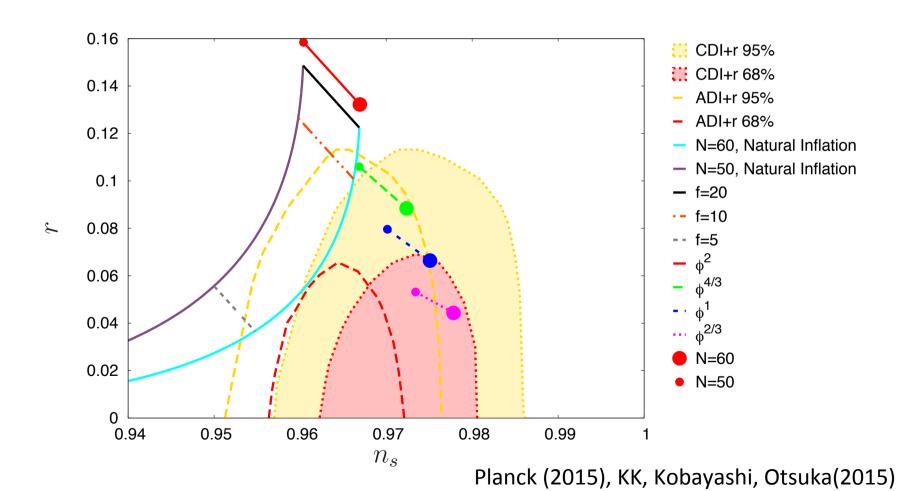
Kenji Kadota
IBS Center for Theoretical Physics of the Universe(CTPU),
Institute for Basic Science(IBS)

Based on:

- ➤ "CMB probes on the correlated axion isocurvature perturbation" (arXiv:1411.3974) KK, Jinn-Ouk Gong (APCTP), Kiyotomo Ichiki (Nagoya), Takahiro Matsubara (Nagoya)
- ➤ "Axion inflation with cross-correlated axion isocurvature perturbations"(arXiv:1509.04523) KK, Tatsuo Kobayashi (Hokkaido), Hajime Otsuka (Waseda).

- Motivations for cross correlations:
- Parameter precision
- > Concrete example (Analytical formula for cross-correlation)
- Conclusion

$$P = P_R + P_I + P_C$$



$P = P_R + P_I + P_C$

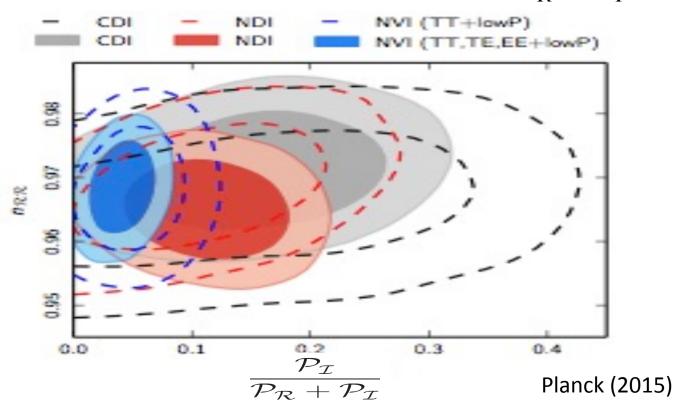
Planck (2015) 95% CL

Uncorrelated isocurvature mode:

$$\frac{P_I}{P_R + P_I} < 0.038$$

Cross-correlated isocurvature mode:

$$0.034 < \frac{P_I}{P_R + P_I} < 0.28$$



Cross correlation between curvature and isocurvature perturbation

(Polarski, Starobinsky (1994), Pierpaoli, Garcia-Bellido, Borgani (1999), Enqvist, Kurki-Suonio (2000), Bucher, Noodley, Turok (2001), Amendola, Gordon, Wands, Sasaki (2002), ...)

$$P = P_R + P_I + P_C$$

$$\mathcal{P}_X = A_X(k_0) \left(\frac{k}{k_0}\right)^{n_X - 1}$$

$$A_X = \begin{pmatrix} A_R & A_C \\ A_C & A_I \end{pmatrix} \qquad n_X = \begin{pmatrix} n_R & n_C \\ n_C & n_I \end{pmatrix}$$

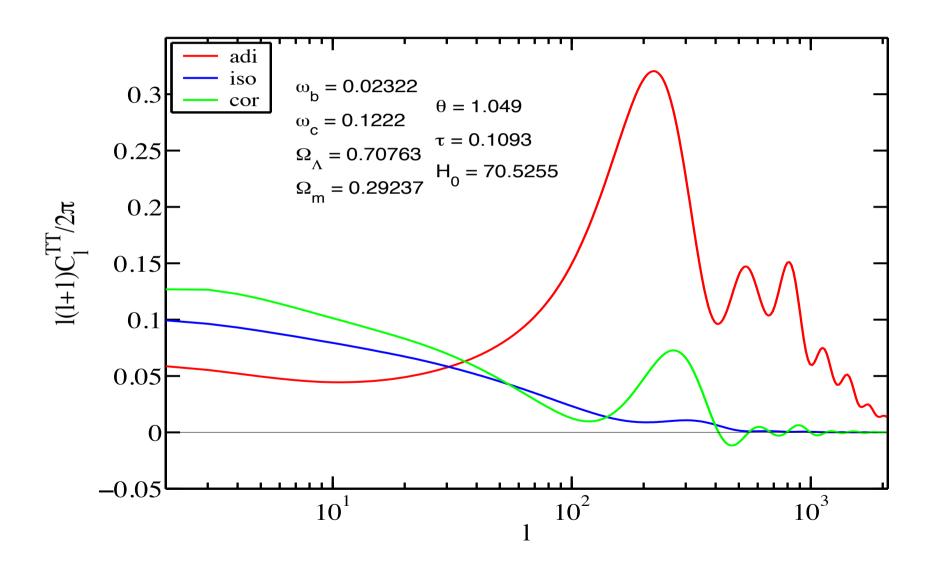
 χ : inflaton

a: energetically subdominant field (e.g. axion)

$$C_{R} \sim \int d^{3}k T_{\chi}(k) T_{\chi}(k) \langle \delta \chi(k) \delta \chi(k) \rangle$$

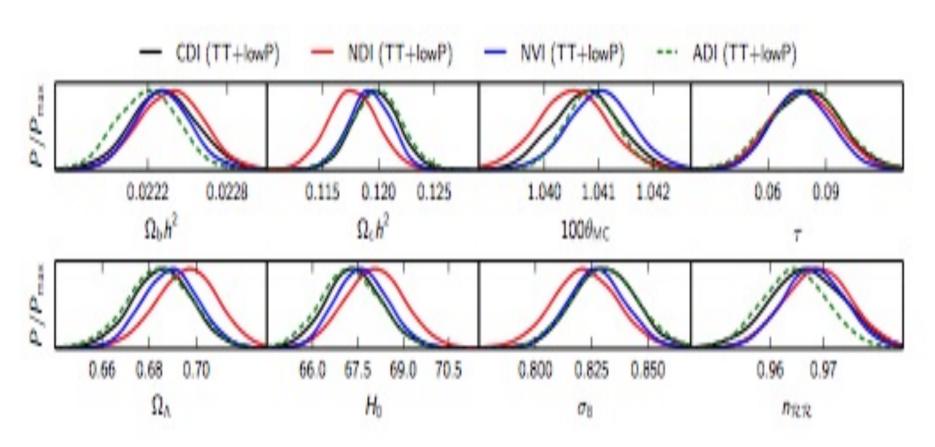
$$C_{I} \sim \int d^{3}k T_{a}(k) T_{a}(k) \langle \delta a(k) \delta a(k) \rangle$$

$$C_{C} \sim \int d^{3}k T_{\chi}(k) T_{a}(k) \langle \delta \chi(k) \delta a(k) \rangle$$



Robustness of the base ACDM model against different assumptions on initial conditions

Planck (2015)

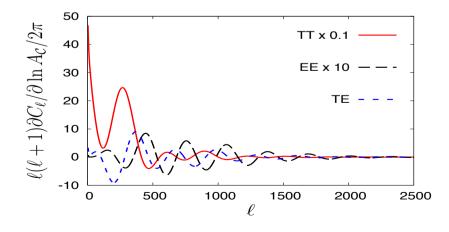


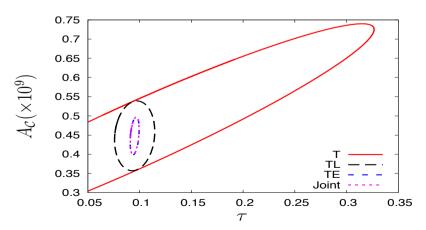
- Motivations for cross correlations:
- Parameter precision
- > Concrete example: Axion (analytical formula for cross-correlation)
- > Conclusion

How large does βc have to be, for the isocurvature parameters to be determined precisely by Planck? $\beta c \ge 0.1$

	T	TE	TL	Joint
$\beta_{\mathcal{C}} = 1$				
$\sigma(n_{\mathcal{I}})/n_{\mathcal{I}}$	33	13	21	12
$\sigma(A_{\mathcal{I}})/A_{\mathcal{I}}$	240	81	220	80
$\sigma(A_{\mathcal{C}})/A_{\mathcal{C}}$	65	11	20	11
$\beta_{\mathcal{C}} = 0.1$				
$\sigma(n_{\mathcal{I}})/n_{\mathcal{I}}$	110	39	65	38
$\sigma(A_{\mathcal{I}})/A_{\mathcal{I}}$	260	100	260	100
$\sigma(A_{\mathcal{C}})/A_{\mathcal{C}}$	230	76	170	74

Polarization Important!





KK, Gong, Ichiki and Matsubara (2014)

How much does β c affect the Λ CDM parameter estimations? 10% or more.

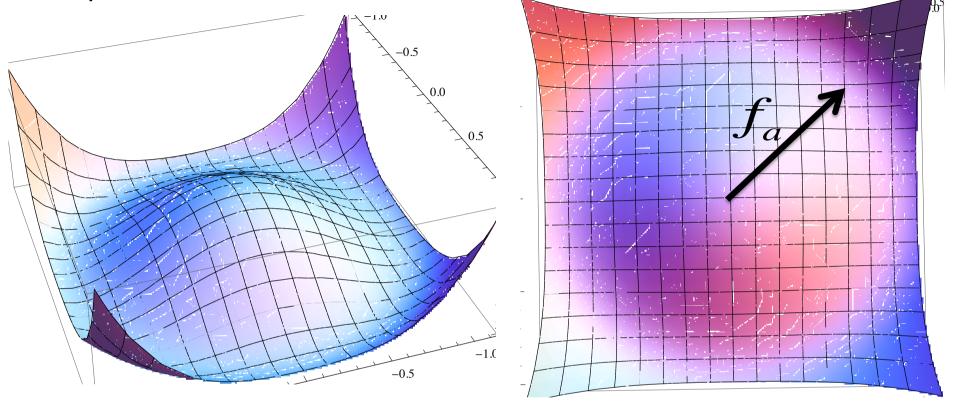
	Ω_{Λ}	$\Omega_m h^2$	$\Omega_b h^2$	$n_{\mathcal{R}}$	$A_{\mathcal{R}}$	au
$\beta_{\mathcal{C}} = 1$	1.1	1.1	1.0	1.4	0.97	0.94
$\beta_{\mathcal{C}} = 0.1$	1.1	1.1	1.0	1.4	1.1	1.1
No correlation	1.0	1.0	1.0	1.1	1.1	1.1

Normalized error $\sigma/\sigma_{\rm no~iso}$

KK, Gong, Ichiki and Matsubara (2014)

- ➤ Motivations for cross correlations:
- > Parameter precision
- > Concrete example: Axion (analytical formula for cross-correlation)
- > Conclusion

Example: Nambu-Goldstone boson



$$\phi = \frac{re^{i\theta}}{\sqrt{2}}, a = f_a\theta$$

Analytical Formula for βc in terms of axion parameters

- 1) Upper bound on βc in terms of axion parameters. Bc ~0.1 possible.
- 2) Implications: Spontaneous Symmetry breaking scale ~ Mp is desired

e.g. I:
$$V \sim g \frac{\chi \phi^4}{m_{pl}}$$
 $\frac{n_R + n_I}{2} = n_C$

$$\beta_C = \frac{P_C}{\sqrt{P_R P_I}} \sim g \sin(4\theta_0) \left(\frac{f_a}{m_{pl}}\right)^3 \left(\frac{m_{pl}}{H}\right)^2$$

e.g. II:
$$V_{\text{int}} \sim g \frac{\chi^m \phi^n}{m_{pl}^{m+n-4}}$$

$$\beta_C = \frac{P_C}{\sqrt{P_R P_I}} \sim g \sin(n\theta_0) \left(\frac{\chi_0}{m_{pl}}\right)^{m-1} \left(\frac{f_a}{m_{pl}}\right)^{n-1} \left(\frac{m_{pl}}{H}\right)^2$$

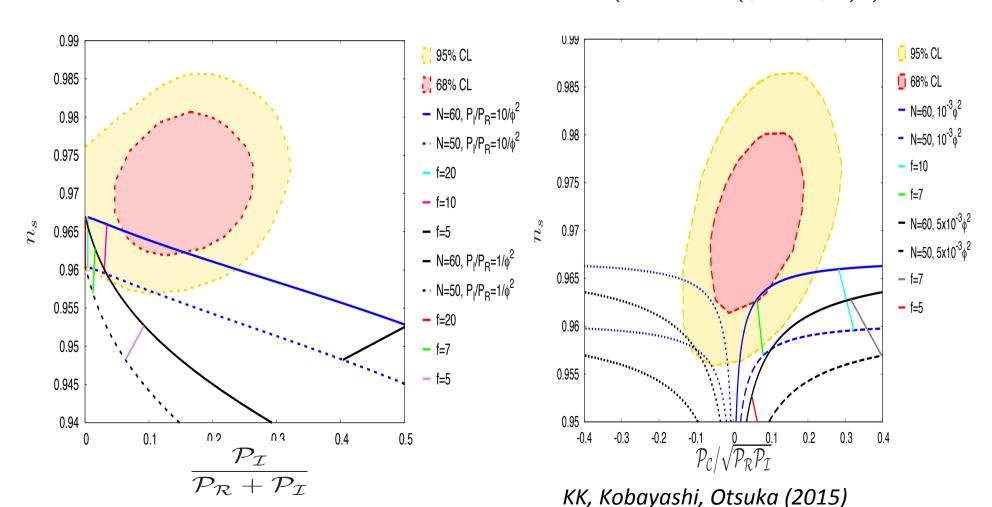
Concrete Example: Natural inflation (Freese, Frieman, Olinto (1990))

Adiabatic fluctuations:

Isocurvature fluctuations:

$$V_{\text{inf}} = \Lambda_1^4 \left(1 - \cos \frac{\phi}{f} \right)$$

$$V_{\text{int}} = \Lambda_2^4 \left(1 - \cos \left(\frac{\phi}{g_1} + \frac{\chi}{g_2} \right) \right)$$



Concrete Example:

Axion monodromy inflation (McAllister, Silverstein, Westphal (2008, 2010))

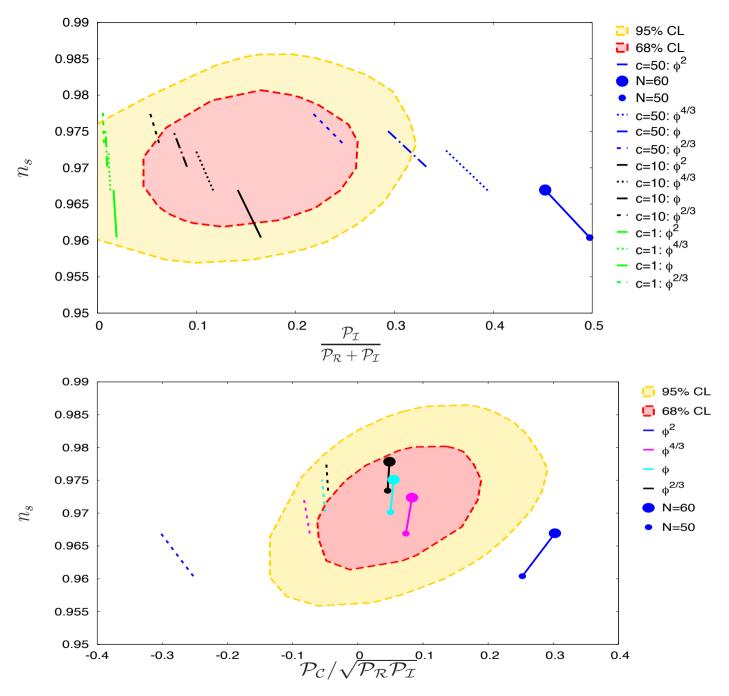
$$V = \mu_1^{4-p} \phi^p + \mu_2^4 \cos\left(\frac{\phi}{g_1} + \frac{\chi}{g_2}\right)$$

$$\frac{P_I}{P_R} \sim \left(\frac{\Omega_a}{\Omega_m}\right)^2 \left(\frac{1}{g_1 \theta_0}\right)^2 \left(\frac{p}{\phi_0}\right)^2$$

$$\beta_C \sim \frac{1}{g_1 g_2} \frac{\mu_2^4}{A_S} \cos(\psi_0 + \theta_0) \left(\frac{\phi_0}{p}\right)^2$$

KK, Kobayashi, Otsuka (2015)

p	N	g_1	g_2	μ_2^{4-p}/H^2	Ω_a/Ω_m	$\cos(\psi_0 + \theta_0)$	θ_0	$eta_{\mathcal{C}}$	$eta_{ m iso}$	n_s
2	55	10^{-2}	10^{-2}	6×10^{-7}	0.03	1/2	2	0.002	0.14	0.964
4/3	55	10^{-2}	10^{-2}	3×10^{-7}	0.03	1/2	2	0.001	0.1	0.97
1	55	10^{-2}	10^{-2}	4×10^{-7}	0.03	1/2	2	0.001	0.08	0.973
2/3	55	10^{-2}	10^{-2}	4×10^{-7}	0.03	1/2	2	0.001	0.05	0.976



KK, Kobayashi, Otsuka (2015)

Conclusion:

➤ CMB measurement perspectives: Polarization is very powerful to constrain the isocurvature cross-correlation.

ACDM parameter estimation can be affected by 10% or more.

> Cross-correlated isocurvature modes through a concrete example: Axion

Inflation model discrimination:

preferred for the monodromy inflation, disfavored for natural inflation.