

EXPLORING TOP QUARK FCNC FROM COLLIDER IN ASSOCIATION WITH FLAVOR PHYSICS

Yeo Woong Yoon (Konkuk U.)

@ CosPA15, 2015/10/15

In collaboration with C. S. Kim, Xing-Bo Yuan (Yonsei U.)

Based on 1509.00491

We are looking forward to seeing something new...

We are looking forward to seeing something new...

In flavor physics

We are looking forward to seeing something new...

In flavor physics

Z. Ligeti, talk @ 2015 Lepton-Photon Symposium

$$B o D^{(*)} au
u$$
 anomaly

$$B o D^{(*)} au
u$$
 anomaly $w^-/H^-
\overline{v}_{\tau}$ \overline{v}_{τ} $\overline{v$

$$\mathcal{R}(D) = \frac{\mathcal{B}(\overline{B} \to D\tau^{-}\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D\ell^{-}\overline{\nu}_{\ell})}, \quad \mathcal{R}(D^{*}) = \frac{\mathcal{B}(\overline{B} \to D^{*}\tau^{-}\overline{\nu}_{\tau})}{\mathcal{B}(\overline{B} \to D^{*}\ell^{-}\overline{\nu}_{\ell})}$$

$B o D^{(*)} au u$ anomaly

The difference with the SM is 3.9σ level.

$B \to D^{(*)} au u$ anomaly

not only SM but also MSSM

 $0.04\,\mathrm{GeV}^{-1}$, respectively. However, the combination of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ excludes the type II 2HDM charged Higgs boson at 99.8% confidence level for any value of $\tan\beta/m_{H^+}$, as illustrated in Fig. 21. This calculation is

Possible solutions for $B o D^{(*)} au u$ anomaly

$$\overline{B}\{\frac{b}{\overline{q}}\}D^{(*)}$$

$$O_{\rm SM}^{qb} = \bar{q}\gamma_{\mu}P_L b \; \bar{\tau}\gamma_{\mu}P_L \nu_{\tau}$$

$$O_R^{qb} = \bar{q} P_R b \; \bar{\tau} P_L \nu_\tau \; ,$$

$$O_L^{qb} = \bar{q} P_L b \, \bar{\tau} P_L \nu_\tau \,.$$

$$\mathcal{R}(D) = \mathcal{R}_{SM}(D) \left(1 + 1.5 \Re \left[\frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}} \right] + 1.0 \left| \frac{C_R^{cb} + C_L^{cb}}{C_{SM}^{cb}} \right|^2 \right)$$

$$\mathcal{R}(D^*) = \mathcal{R}_{SM}(D^*) \left(1 + 0.12 \Re \left[\frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}} \right] + 0.05 \left| \frac{C_R^{cb} - C_L^{cb}}{C_{SM}^{cb}} \right|^2 \right)$$

Crivellin, Greub, Kokulu (2012)

Very sizable C_L^{cb} is needed.

Possible solutions for $B o D^{(*)} au u$ anomaly

MSSM (2HDM II) charged Higgs Yukawa sector:

$$C_L^{cb} \qquad C_R^{cb}$$

$$\mathcal{L}_Y \supset -V_{cb}\bar{c} \left(\frac{m_c}{t_\beta} P_L - m_b t_\beta P_R \right) b H^+$$

Possible solutions for $B o D^{(*)} au u$ anomaly

MSSM (2HDM II) charged Higgs Yukawa sector:

$$\mathcal{L}_{L}^{cb} \qquad \mathcal{C}_{R}^{cb}$$

$$\mathcal{L}_{Y} \supset -V_{cb}\bar{c} \left(\frac{m_{c}}{t_{\beta}} P_{L} - m_{b} t_{\beta} P_{R} \right) b H^{+}$$

New term in 2HDM Type III : $ar{c}\xi_{ct}V_{tb}P_LbH^+$

 \rightarrow Large ξ_{ct} can explain $B \rightarrow D^{(*)} \tau \nu$ but causes large top-FCNC

FCNC

- The tree level FCNC is forbidden in the SM by GIM mechanism.
- The Observed FCNC processes are all severely suppressed:

Br(
$$B o X_s \gamma$$
) = (3.36 \pm 0.23) \times 10⁻⁴
Br($B_s o \mu^+ \mu^-$) = (2.8 $^{+0.7}_{-0.6}$) \times 10⁻⁹
Br($B_d o \mu^+ \mu^-$) = (3.9 $^{+1.6}_{-1.4}$) \times 10⁻¹⁰
 $\Delta m_{B_s} = (1.1691 \pm 0.0014) \times 10^{-11}$ GeV

NP models that have tree-level FCNC is dangerous.

FCNC

Even the loop contribution is strongly constrained by FCNC.

- Down type FCNC is severely constrained by the enhancement factor.
- UP type FCNC (top FCNC) is highly suppressed and therefore not much constrained by experiment.
- Top FCNC has still much room for NP. It must be explored by collider physics (direct search) or by flavor physics (indirect search).
- We focus on Higgs mediated top FCNC.

General 2HDM (Type III)

The 2HDM is the simplest extension of SM Higgs sector

$$\rho = \frac{\sum\limits_{i=1}^{n} \left[I_i \left(I_i + 1 \right) - \frac{1}{4} \, Y_i^2 \right] v_i}{\sum\limits_{i=1}^{n} \, \frac{1}{2} \, Y_i^2 v_i} \quad = 1 \quad \text{for } I_i = \frac{1}{2}, \, Y_i = 1 \, \text{(Doublet with Y=1)}$$

The 2HDM is well motivated by MSSM

$$g^u_{ij} \ \overline{Q_i} \widetilde{\phi}_1 u_j + g^d_{ij} \ \overline{Q_i} \phi_1 d_j + g^u_{ij,2} \ \overline{Q_i} \widetilde{\phi}_2 u_j + g^d_{ij,2} \ \overline{Q_i} \phi_2 d_j + \text{h.c.}$$

→ The tree level FCNC inevitably arises after SB and mass diagonalization

General 2HDM (Type III) in alignment limit

• We have 3 neutral Higgses and 2 charged Higgses. Other 3 are eaten by weak gauge bosons after SB.

$$h^0, H^0, A^0, H^+, H^-$$

The SM Higgs is replaced by

$$h_{SM}^0 = \sin(\beta - \alpha)h^0 + \cos(\beta - \alpha)H^0$$

Exp. data prefers $sin(\beta - \alpha) = 1$.

General 2HDM (Type III) in alignment limit

Within alignment Limit, after SB and mass diagonalization

$$\mathcal{L}_Y = -Y_u \; \overline{U}Uh - Y_u \; \overline{D}Dh \; -Y_e \; \overline{L}Lh \quad \text{Light Higgs (SM Higgs) Yukawa} \\ + \overline{U} \frac{\xi^U}{\sqrt{2}} UH + \overline{D} \frac{\xi^D}{\sqrt{2}} DH + \overline{L} \frac{\xi^L}{\sqrt{2}} LH \quad \text{Neutral CP-even Higgs Yukawa} \\ - i \overline{U} \gamma_5 \frac{\xi^U}{\sqrt{2}} UA - i \overline{D} \gamma_5 \frac{\xi^D}{\sqrt{2}} DA - i \overline{L} \gamma_5 \frac{\xi^L}{\sqrt{2}} LA \; \text{Neutral CP-odd Higgs Yukawa} \\ + [\overline{U} (\xi^U V P_L - V \xi^D P_R) DH^+ + \overline{v} \xi^L P_R H^+ + h. c.] \text{ Charged Higgs Yukawa}$$

$$\xi^{U}, \xi^{D} \text{ are non-diagonal:} \qquad \xi^{U} = \begin{pmatrix} \xi_{uu} & \xi_{uc} & \xi_{ut} \\ \xi_{cu} & \xi_{cc} & \xi_{ct} \\ \xi_{tu} & \xi_{tc} & \xi_{tt} \end{pmatrix}, \qquad \xi^{D} = \begin{pmatrix} \xi_{dd} & \xi_{ds} & \xi_{db} \\ \xi_{sd} & \xi_{ss} & \xi_{sb} \\ \xi_{bd} & \xi_{bs} & \xi_{bb} \end{pmatrix}$$

→ These cause dangerous tree level FCNC

General 2HDM (Type III) in alignment limit

- ξ^D are severely constrained by flavor physics than ξ^U .
- To avoid down-type FCNC we adopt Cheng-Sher ansatz:

$$\xi_{ij} = rac{\sqrt{2m_i m_j}}{v} \lambda_{ij}$$
 , $\lambda_{ij} = \mathcal{O}(1)$

Fit into $B \to D^{(*)} \tau \nu$ anomaly

- The charged Higgs mimics W boson and it contribute to most of Weak decays of B meson
- The top FCNC Yukawa coupling λ_{ct} contributes to bcH^+ Yukawa coupling. Therefore it contribute to $B \to D^{(*)}\tau\nu$ at tree level.

Fit into $B \to D^{(*)} \tau \nu$ anomaly

Allows region at 95% CL.

Very large, $\lambda_{\tau\tau}$, λ_{ct} , (order 10) are prefered.

Anomalous Single Top Production with gct effective vertex.

• Non-observation of $gq \rightarrow t$ put the limit on $\mathcal{B}(t \rightarrow u/cg)$.

$$\mathcal{B}(t \to ug) < 3.1 \times 10^{-5}$$

 $\mathcal{B}(t \to cg) < 1.6 \times 10^{-4}$
ATLAS, at 8 TeV, (14.2fb⁻¹)

→ Currently the best upper limit.

Gray region is allowed region by $\Delta \rho$ and flavor constraints

The constraint from is very weak due to the loop suppression

- Same sign top pair production is a tree level process and the signal rate is very large.
- It significantly constrains or rule out many top FCNC models. For example, Z' model that explains ttbar FBA anomaly is excluded by this.

Green region is allows by using

 λ_{ct} is strongly upper bounded as 10~20!

•
$$B \to X_S \gamma$$

$$\frac{b}{\lambda_{bb}} \xrightarrow{S} \Rightarrow C_{7,8}(\mu_{W}) \qquad \frac{b}{\lambda_{bb}} \xrightarrow{\lambda_{ct}} \xrightarrow{\lambda_{ct}} \Rightarrow \delta C_{7,8}(\mu_{W})$$

By comparing with Data $8.22 {\rm Re} C_7^{\rm NP} + 1.99 {\rm Re} C_8^{\rm NP} = -0.07 \pm 0.32$.

$$\delta C_{7,8} = \left(\lambda_{tt} + 2.1\lambda_{ct}\right) \left(\frac{1}{3}\lambda_{tt}F_{7,8}^{(1)} - \lambda_{bb}F_{7,8}^{(2)}\right)$$
 This can be large

There would be strong correlation between λ_{tt} and λ_{bb} .

In order to avoid fine tuning between λ_{tt} and λ_{bb} , we consider λ_{tt} , $\lambda_{bb} \sim \mathcal{O}(1)$

• $B \to X_S \gamma$

Allows region at 95% CL.

 λ_{bb} is highly suppressed.

• $B_s - \bar{B}_s$ mixing

$$\Delta M_{B_S} = \frac{G_F^2}{6\pi^2} |V_{tS}^* V_{tb}|^2 f_{B_S}^2 B_{B_S} m_{B_S} \eta_b M_W^2 S_{2HDM}(x_W, x_H)$$

Non perturbative quantity. Use Lattice QCD result (with 7% error)

Perturbative quantity. $\eta_b = 0.552$

CKM factor 7% error

Green: No fine tuning. Gray, Black: Need fine tuning more than 10%

Gray region represent large cancelation between C_{WH} and C_{HH}

Combined constraints

Blue band is from $B \to D^{(*)} \tau \nu$ constraints with $\lambda_{\tau\tau} = 40$.

Mostly, constraints from cc→tt is important.

Bs-Bs mixing without fine-tuing give also strong constraints

Concerning $B \to D^{(*)} \tau \nu$ constraints, $\lambda_{\tau \tau}$ can not arbitrary small.

Combined constraints

The lower bound of $\lambda_{\tau\tau}$ is quite significant.

It may affect significantly $H \rightarrow \tau \tau$ decay.

SUMMARY

- $B \to D^{(*)} \tau \nu$ anomaly can be successfully explained by 2HDM type III with very large tcH^+ coupling λ_{ct} .
- Large λ_{ct} is severely constrained by same sign top pair production.
- Among other flavor constraints, Bs-Bs mixing without fine-tuning also gives similar strong constraints on λ_{ct} .
- Combining them all we find that $\lambda_{\tau\tau}$ is strongly lower bounded