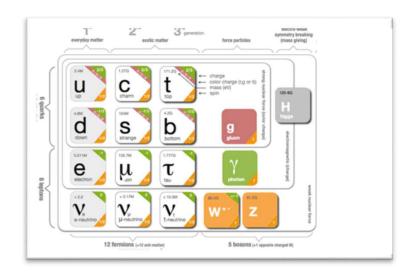


Dark Matter Searches at the CMS

DongHee Kim – Kyungpook National University **On behalf of the CMS collaboration**

CosPA2015, Oct 12-16 2015

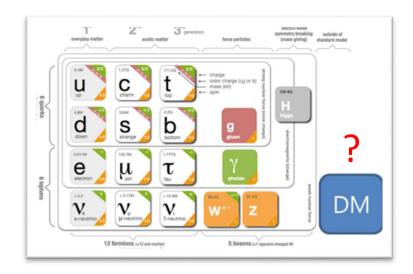
CONTENTS


- Introduction
- Dark Matter and Effective Field Theory
- 8 TeV CMS Results
 - Mono-jet, photon, W, top, top-pair and Mono-Z
- Prospect of the LHC Run 2
 - Minimal Simplified Dark Matter Model
 - LHC Run 2 and Direct Detection Experiments
- Summary

** SUSY searches are not included in this talk due to the time limit.

Introduction

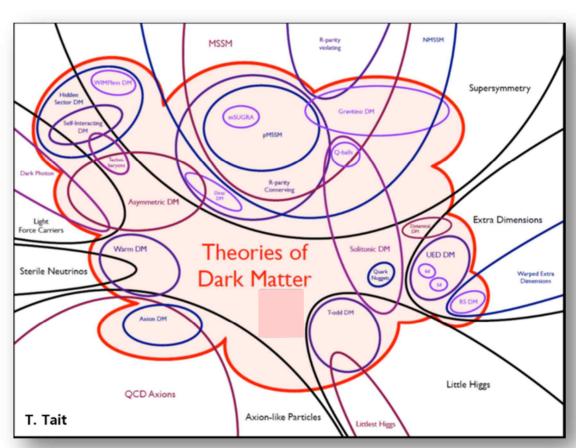
- The discovery of the Higgs particle implies the Standard Model(SM) describes nature very well.
- However, the incompleteness of the SM may hint the bigger quantum symmetrized universe.
- The Higgs discovery naturally leads to attempt to understand whether new phenomena beyond the SM exist or not.
 - The beyond SM like SUSY, Extra Dimensions and many extended SMs.



- Moreover, the dark matter(DM) is one of the biggest mysteries in understanding of universe after the discovery of Higgs.
- The discovery of a dark matter is very important since the existence of dark matter has been certified by astronomic observations.
- The LHC at CERN with new energy has a great chance to discover a dark matter or probe unknown nature.
- Searches of a dark matter (and unknown phenomena) at the LHC would be one of the most exciting moments enhancing mankind knowledge in the Universe!

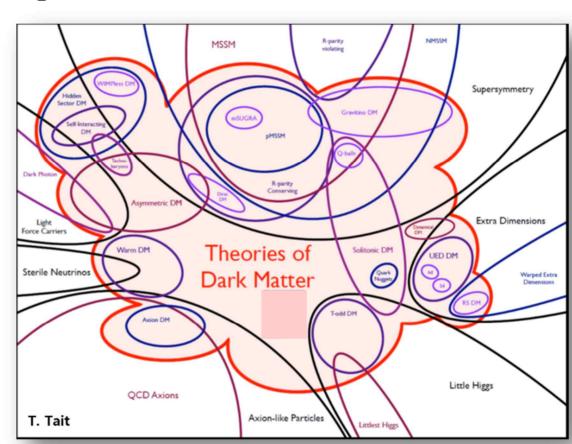
Introduction

- The discovery of the Higgs particle implies the Standard Model(SM) describes nature very well.
- However, the incompleteness of the SM may hint the bigger quantum symmetrized universe.
- The Higgs discovery naturally leads to attempt to understand whether new phenomena beyond the SM exist or not.
 - The beyond SM like SUSY, Extra Dimensions and many extended SMs.



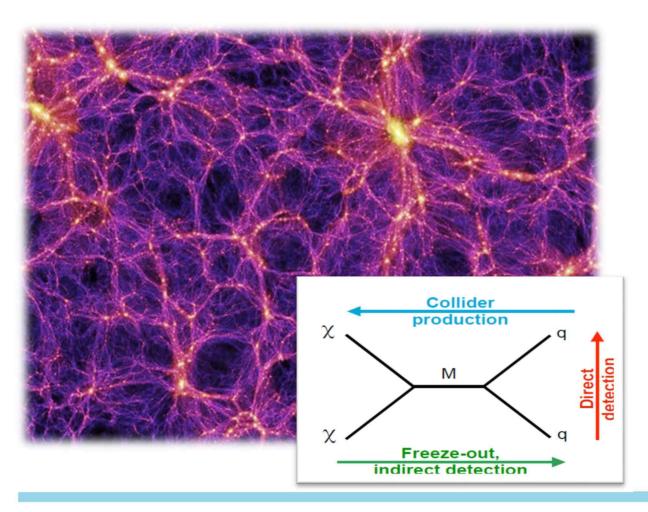
- Moreover, the dark matter(DM) is one of the biggest mysteries in understanding of universe after the discovery of Higgs.
- The discovery of a dark matter is very important since the existence of dark matter has been certified by astronomic observations.
- The LHC at CERN with new energy has a great chance to discover a dark matter or probe unknown nature.
- Searches of a dark matter (and unknown phenomena) at the LHC would be one of the most exciting moments enhancing mankind knowledge in the Universe!

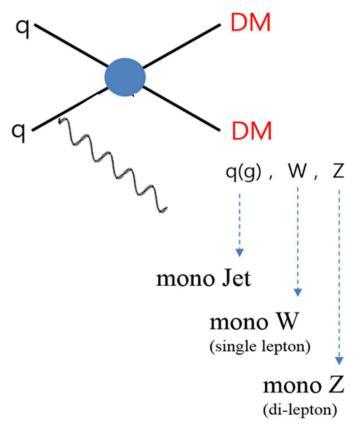
Dark matter?


- WIMPs: Weakly Interacting Massive Particles?
- Super-WIMPs?
- Axions?
- Sterile neutrinos?
- FIMPs : Feebly IMPs ?

Dark matter?

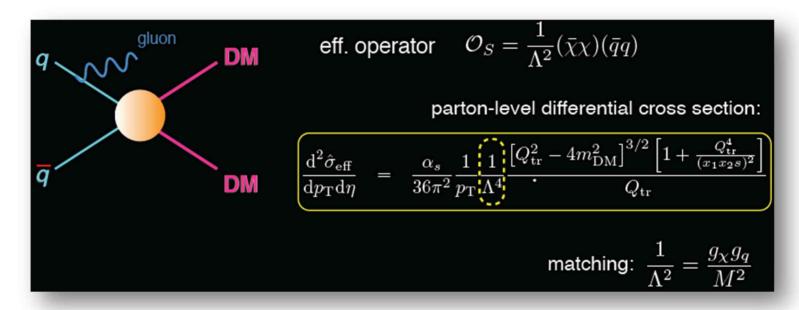
- WIMPs: Weakly Interacting Massive Particles?
- Super-WIMPs?
- Axions?
- Sterile neutrinos?
- FIMPs : Feebly IMPs ?




→ Something invisible !!

Dark Matter Production at colliders

- There are many models from the theoretical point of view.
- However the final states are simple from the experimental point of view.
 - Events characterized by ISR recoil of X
 - mono X + missing energy in collider experiments



Effective Field Theory for dark matter

- Effective Field Theory(EFT) interaction between DM and SM particles is a contact interaction.
- Consider operator at the new physics scale Λ .

The Results applied to Run 1 analysis at the LHC

Advantage: Limited number of degrees of freedom scale of interaction Disadvantage: Only applicable at low momentum transfer

DM Production in EFT

General Interaction Lagrangian for DM in EFT frame can be

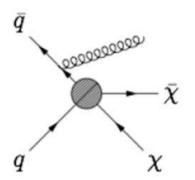
$$\mathcal{L} = \sum_{q} \left\{ \frac{m_q}{\Lambda_{\mathrm{D1}}^3} \bar{q} q \ \bar{\chi} \chi + \frac{1}{\Lambda_{\mathrm{D8}}^2} \bar{q} \gamma^{\mu} \gamma_5 q \ \bar{\chi} \gamma_{\mu} \gamma_5 \right\} + \frac{1}{\Lambda_{\mathrm{D5}}^2} \bar{q} \gamma^{\mu} q \ \bar{\chi} \gamma_{\mu} \chi + \frac{1}{\Lambda_{\mathrm{D9}}^2} \bar{q} \sigma^{\mu\nu} q \ \bar{\chi} \sigma_{\mu\nu} \chi \right\}$$

D1: Scalar, D8: Axial-Vector, D5: Vector and D9: Tensor

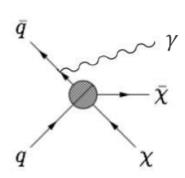
χ : Dirac Fermion Dark Matter

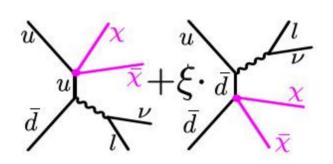
 Λ : interaction scale(or suppression scale)

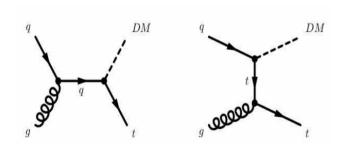
- Mediate DM + q/g interaction under M > M_{χ}
 - M_{χ} : Dark Matter mass, M: Mediator mass
- Suppression scale by Λ (or $M_*) \sim M/(g_{\chi}g_{\rm q})^{1/2}$
- $M_{\chi} < M/2$ required for four-m/m conservation
- $g_{\chi}g_{q} < (4\pi)^{2}$ required for perturbation $\rightarrow \Lambda > M_{\chi} / 2\pi$

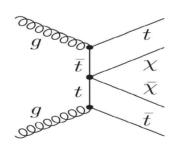

Dirac Fermions

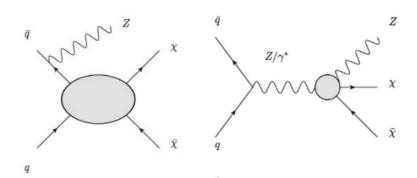
			_
Name	Operator	Coefficient	
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3	scalar
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_q/M_*^3	
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3	
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3	
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$	vector Spin-independent
D6	$\bar{\chi}\gamma^{\mu}\gamma^5\chi\bar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$	Spin-independent
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_{*}^{2}$	axial -vector
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$	tensor
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2	
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$	scalar Spin dependent
D12	$\bar{\chi}\gamma^5\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$	
D13	$\bar{\chi}\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^3$	
D14	$\bar{\chi}\gamma^5\chi G_{\mu\nu}\tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$	


J. Goodman et. al, Phys. Rev. D 82, 116010 (2010)


Channels for Dark matter at the LHC

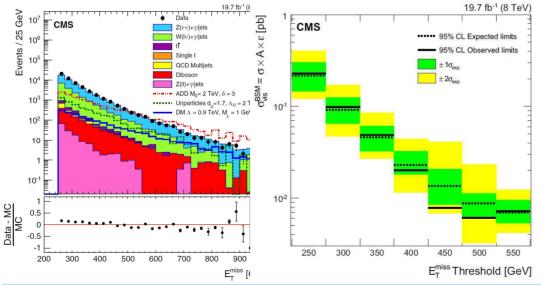


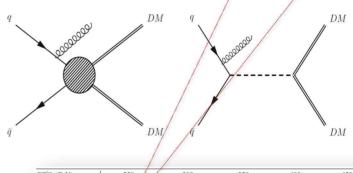

Mono-photon


Mono-W

Mono-top

Top pair

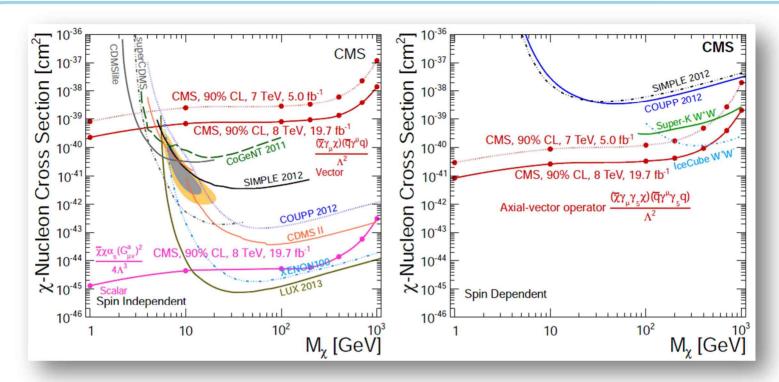



Mono-Z

Mono-jet

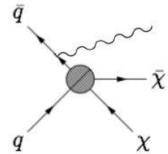
- A Jet from ISR
- one energetic jet and large missing energy (MET)
 - $Z(\rightarrow vv)$ +jet, irreducible background and W+jets(lost lepton): main backgrounds(62 and 36%)
 - QCD jet misidentified, $t\bar{t}$ etc.
- Selection \rightarrow very large MET!
 - $-p_{\rm T} > 110 \text{ GeV}, |\eta| < 2.4$
 - second jet are allowed, if $\Delta \varphi(\text{jet1}, \text{jet2}) < 2.5$
 - MET > 250, 300, 350, 400, 450, 500, 550 GeV
 - Veto events with isolated leptons.
- Estimates of Standard Model contributions
 - Data-driven : Z(vv) + jets (from $Z \rightarrow \mu\mu$)
 - Data-driven : W + jets (from W $\rightarrow \mu \nu$)
 - single-top, multi-jets (QCD), $t\bar{t},~Z(\ell\ell)$

$E_{\rm T}^{\rm miss}$ (GeV) \rightarrow	>250	>300	>350	>400	>450	>500	>550
$Z(\nu\nu) + jets$	32100 1600	12700 ± 720	5450 ± 360	2740 ± 220	1460 ± 140	747 ± 96	362 ± 64
W+jets	17600 ± 900	6060 ± 320	2380 ± 130	1030 ± 65	501 ± 36	249 ± 22	123 ± 13
$(t\bar{t})$	446 ± 220	167 ± 84	69 ± 35	31 ± 16	15 ± 7.7	6.6 ± 3.3	2.8 ± 1.4
$Z(\ell\ell)$ + jets	139 ± 70	44 ± 22	18 ± 9.0	8.9 ± 4.4	5.2 ± 2.6	2.3 ± 1.2	1.0 ± 0.5
Single t	155 ± 77	53 ± 26	18 ± 9.1	6.1 ± 3.1	0.9 ± 0.4	=	-
QCD multijets	443 ± 270	94 ± 57	29 ± 18	4.9 ± 3.0	2.0 ± 1.2	1.0 ± 0.6	0.5 ± 0.3
Diboson	980 ± 490	440 ± 220	220 ± 110	118 ± 59	65 ± 33	36 ± 18	20 ± 10
Total SM	51800 ± 2000	19600 ± 830	8190 ± 400	3930 ± 230	2050 ± 150	1040 ± 100	509 ± 66
Data	52200	19800	8320	3830	1830	934	519
Exp. upper limit $+1\sigma$	5940	2470	1200	639	410	221	187
Exp. upper limit -1σ	2870	1270	638	357	168	123	104
Exp. upper limit	4250	1800	910	452	266	173	137
Obs. upper limit	4510	1940	961	397	154	120	142

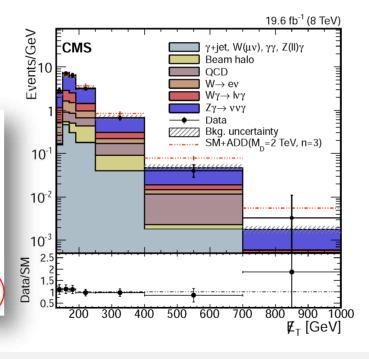

- Consistent with the SM backgrounds
- Set the model-independent observed 95% CL upper limits on the visible x-section for non-SM production according to MET cuts

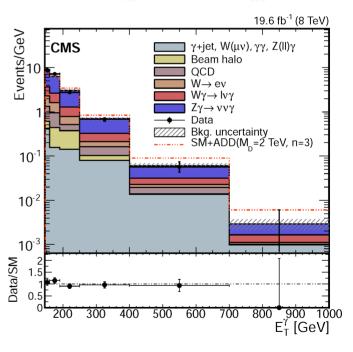
Typical Mono-jet Event

Mono-jet (DM mass vs x-section)



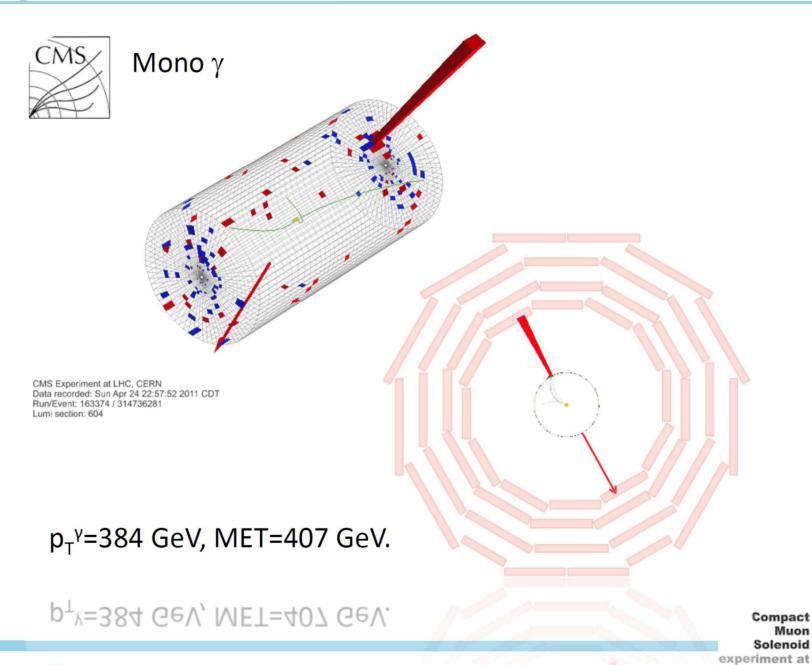
- The observed limit on the x-section depends on M_{χ} and nature of its interaction with SM particles.
- The limits on the effective contact interaction scale as a function of M_{χ} translated into a limit on the dark matter-nucleon scattering cross section in the framework of EFT.
- Shown for the vector & scalar case(SI) and axial vector(SD).
- Better results shown in Spin Dependent than direct detection experiments $\rightarrow \sim 1000$ times better
- Sensitive to low $M\chi$ for Spin Independent case.



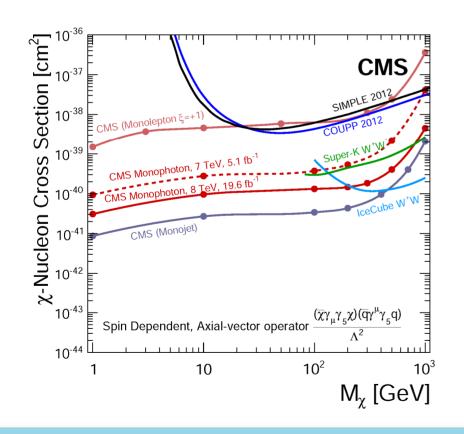

Mono-photon

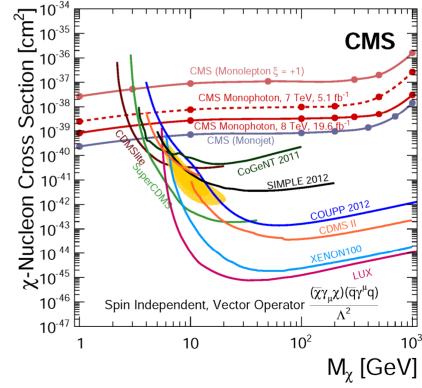
- Dark matter particle can be produced in process of photon radiated by one of incoming quarks.
- Signature : 1 photon + 2 dark matters
 - One isolated photon
 - Very large MET (> 140 GeV) and photon pT(> 145 GeV)
 - $Z\gamma \rightarrow vv\gamma$ as irreducible background, $W\gamma$, W, γ +jets, QCD multijet, diphotons etc..

Process	Estimate
$Z(\rightarrow \nu \bar{\nu}) + \gamma$	345 ± 43
$W(\rightarrow \ell \nu) + \gamma$	103 ± 21
$W \rightarrow e \nu$	60 ± 6
$\mathrm{jet} ightarrow \gamma \mathrm{MisID}$	45 ± 14
Beam halo	25 ± 6
Others	36 ± 3
Total background	614 ± 63
Data	630



A good agreement with expectations from SM background.

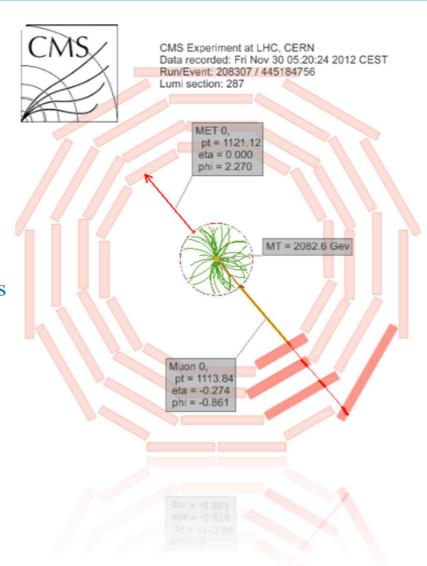

Mono-photon event



CERN's LHC

Mono-photon results

- The 90% CL upper limits on the χ -nucleon cross section as a function of the DM mass (M χ)
- Results also shown for CMS mono-jet and mono-lepton signatures
 - ζ is the interference parameter
- Also shown several direct detection experiments for comparison
 - The yellow contours show the 68% and 95% CL contours respectively for a possible signal from CDMS

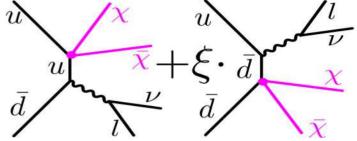


Mono-W(to lepton)

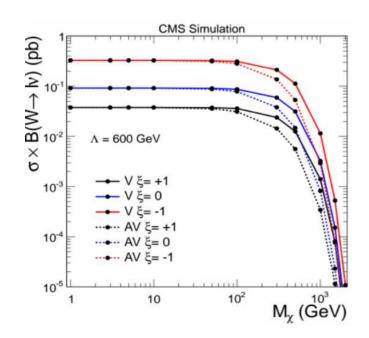
PHYSICAL REVIEW D **91**, 092005 (2015)

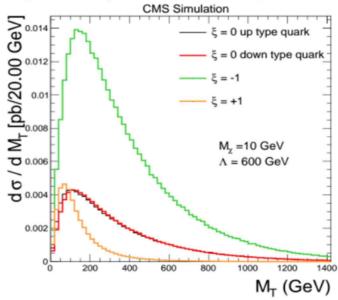
- Experimental point of view:
 - Easier to trigger (mono-lepton)
 - Clean, well simulated background
 - Low systematic uncertainties from the detector
- Theoretical point of view:
 - Higher production cross section than mono-Z
 - Well simulated, Quark-sensitive interference effects

- Plenty reinterpretations to the model
 - Sequential Standard Model W'
 - Interference W-W'
 - Mass Limit M(W') > 3.35 TeV
 - Split-UED model
 - 2-dim. limits are set in $(1/R, \mu)$ space
 - Helicity-Non-Conserving Contact Interaction (HNC-CI)
 - Limits are set on Λ (binding energy)



Huge Interference effects


• The DM particles either couple to the up- or the down-type quark with their relative coupling strength parameterized by the factor ξ .


V:
$$\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \chi \quad (\bar{u} \gamma^{\mu} u + \xi \bar{d} \gamma_{\mu} d)$$

AV: $\frac{1}{\Lambda^2} \bar{\chi} \gamma^{\mu} \gamma^5 \chi \quad (\bar{u} \gamma^{\mu} \gamma_5 u + \xi \bar{d} \gamma^{\mu} \gamma_5 d)$

The interesting values are $\xi = -1, 0, +1$

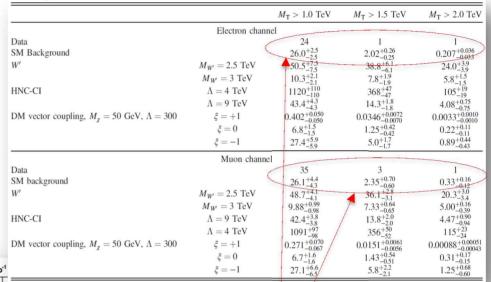
signal shape for different ξ

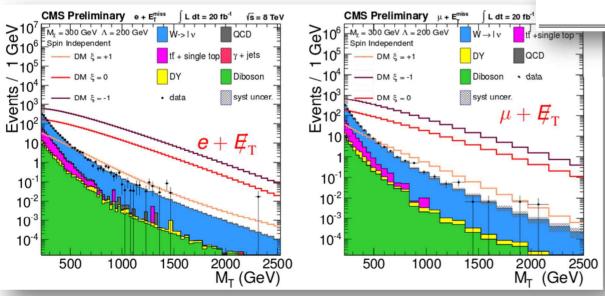
- Strong dependence on ξ factor ξ =+1(destructive)

0 (u/d no differ-)

-1(constructive)

- The interference changes
the total cross-section and
steepens the Mt spectrum

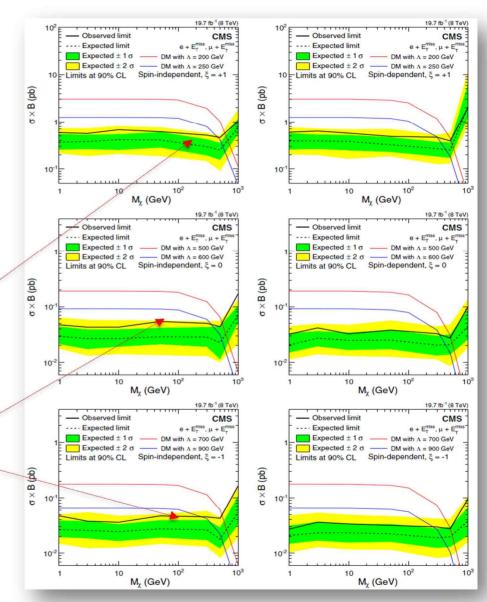

One can expect the results have a strong dependence on the interference.



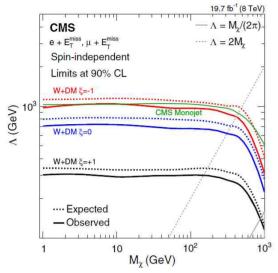
M_T distribution with DM expectations

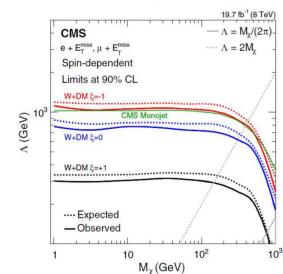
- 1 high-Pt lepton (>45GeV for mu & >100GeV for e)
- Ratio of lepton PT to MET is between 0.4 and 1.5
- $\Delta \varphi(\text{lep, MET}) > 0.8 \text{ pi}$
- The main value to identify signal events is MT

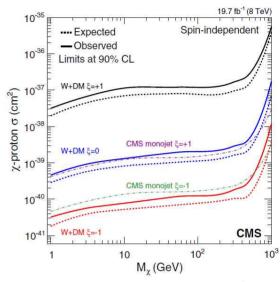
$$extbf{ extit{M}}_{ extsf{ extsf{T}}} = \sqrt{2 \cdot extbf{ extit{p}}_{ extsf{T}}^{\ell} \cdot extbf{ extit{F}}_{ extsf{T}} \cdot (1 - \cos \Delta \phi_{\ell,
u})}$$

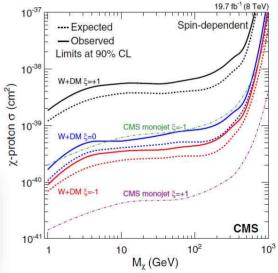


A good agreement with expectations from SM background.


X-sections w(w/o) interference

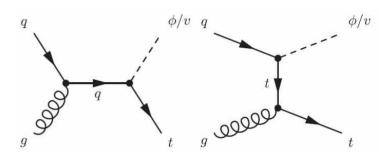

- The excluded cross section is flat as a function of $M\chi$,
- \rightarrow because the signal kinematics do not change appreciably for different M χ
- The coupling does not have a large effect on the excluded cross section
- The different interference scenarios have a visible influence on the limit
 - \rightarrow for $\xi = +1$, a cross section > 0.6 pb excluded
 - \rightarrow for $\xi = 0$ and $\xi = -1$, the x-section limit is 0.05 pb
- For high Mχ the phase space to produce two heavy particles and a W-boson is small
 - → the signal cross section is reduced

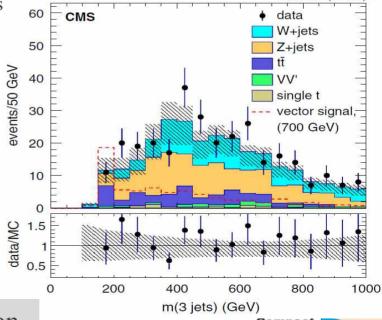

Λ and σ_X vs M_X



- Cross section upper limits transformed into lower limits on the effective scale parameter Λ as a function of $M\chi$
- For lower masses a constant Λ exclusion obtained for $M\chi \le 100$ GeV
 - Λ < 300 GeV for ξ =1, Λ < 700 GeV for ξ = 0, and Λ < 1000 GeV for ξ =-1.
 - The difference between vector-like and axial-vector-like couplings is small for low M χ for all three values of ξ , but a difference is observed in the high-M χ region, > 100 GeV
- The χ -proton cross section upper limits at 90% for M χ = 10 GeV as an example

ξ	Vector coupling (cm ²)	Axial-vector coupling (cm ²)
-1	4×10^{-41}	1×10^{-40}
0	6×10^{-40}	2×10^{-40}
+1	3×10^{-38}	2×10^{-39}

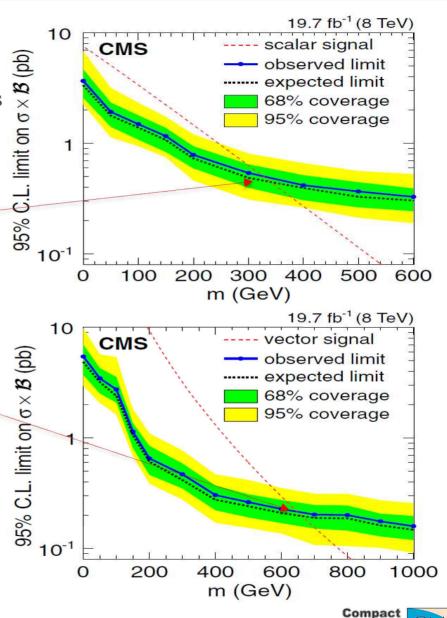

Mono-lepton results are better than mono-jet for the construction case.



Mono-top

- DM particle(either scalar or vector) could be produced in association with a top quark.
 - Could be invisible particle produced top quark by quark flavor changing
 - R-parity violating SUSY or FC interaction mediated by invisible state
 - Both with branching fraction to unity assumed
- A single top decays a bottom quark and two light quarks
 - Only jets with pT \geq 35 GeV and $|\eta| < 2.4$
 - The two highest-pT (leading) jets > 60 GeV, third highest pT > 40GeV
 - The inv. mass of the 3 jets < 250 GeV and rejected additional jets with a pT > 35 GeV
 - requiring one of the three jets to be identified as a candidate jet from a b quark
- 3 jets with MET, Z + jets(73%), W + jets(13%) and $t\bar{t}$ as backgrounds

	No b tag	One b tag
tīt	$6\pm0\pm5$	$12 \pm 0 \pm 12$
W + jets	$18 \pm 9 \pm 7$	$3\pm1\pm2$
Z + jets	$103 \pm 33 \pm 9$	$11 \pm 10 \pm 1$
Single top	$2\pm1\pm1$	$1\pm1\pm1$
VV'	$5\pm0\pm0$	$0\pm0\pm0$
Multijet	$6(\pm 39)$	$1(\pm 9)$
Total background	140 ± 36	28 ± 16
Signal	2 ± 6	3 ± 11
Data	143	30

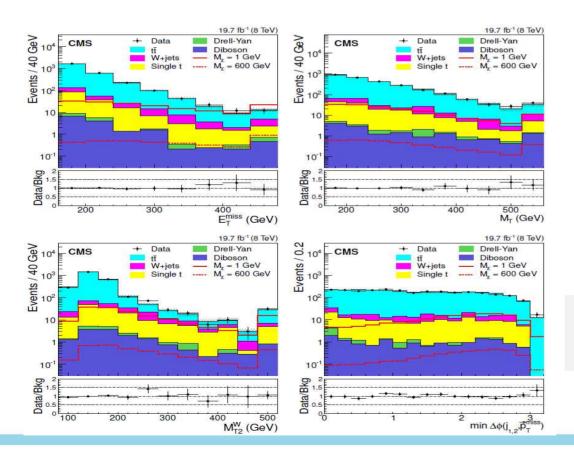


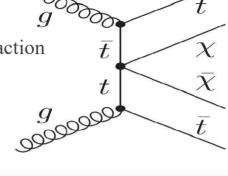
No excess is observed above the background expectation

19.7 fb⁻¹ (8 TeV)

Mono-top Results

- The 95% C.L. expected and observed limits on product of production cross section of mono-top as function of mass of invisible bosonic state. (scalar and vector fields)
- The scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level.
- The substantial Extension of previous limit on the search from the CDF
- Complementary with the ATLAS results obtained with the leptonic top decay channel.
- This results can be applied to the non-thermal DM model as well.

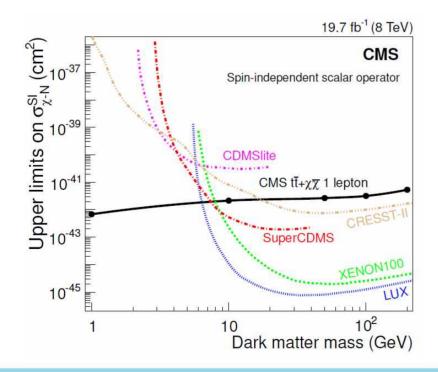


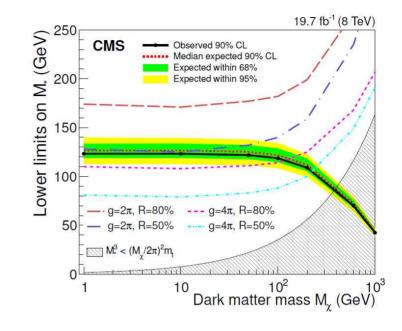

Muon

experiment at

Top-quark pairs associated

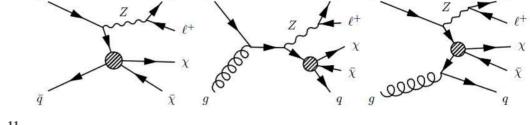
- Assume only one new Dirac fermion related to DM by EFT Lagrangian
 - Assume coupling strength proportional to the mass of quark.
 - \rightarrow suppressed to light quarks \rightarrow dominant to 3rd generation quarks
- Consider DM production in association with top quark pair and only scalar interaction
- Requiring the presence of one lepton, multiple jets and large MET
- Backgrounds: $t\bar{t}$ +jets, $t\bar{t}$ + γ /W/Z, W+jets, single top, dibosons and DY

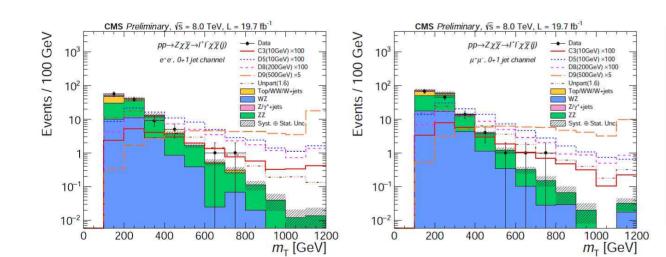

Source	Yield (±stat ±syst)
tt	$8.2 \pm 0.6 \pm 1.9$
W	$5.2 \pm 1.8 \pm 2.1$
Single top	$2.3 \pm 1.1 \pm 1.1$
Diboson	$0.5 \pm 0.2 \pm 0.2$
Drell-Yan	$0.3 \pm 0.3 \pm 0.1$
Total Bkg	$16.4 \pm 2.2 \pm 2.9$
Data	18


The data are in good agreement with expectations from SM background.

Top quark-pair: Results

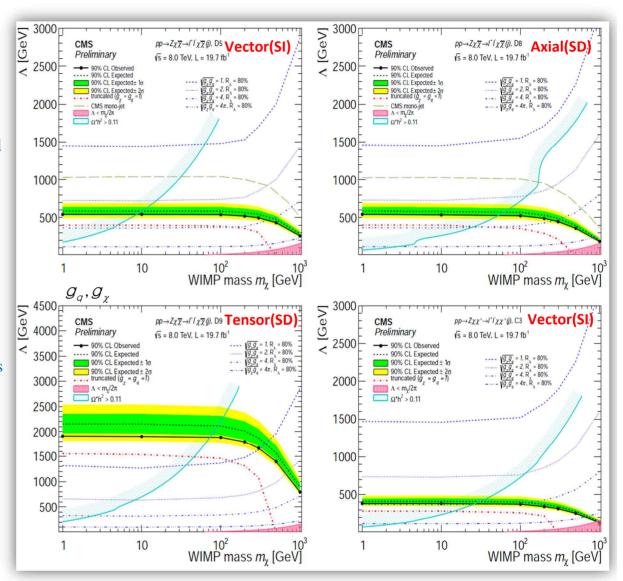
- Observed exclusion limits in the plane of $(M\chi, M_*)$ at a 90% CL.
- The background-only expectations are represented by dashed line (68% and 95% CL bands).
- A lower bound of the validity of the EFT indicated by the upper edge of the hatched area.
- The four curves corresponding to different g and R values
 - represent the lower bound on M* for different (g, R) set
 - indicate further restrictions on the applicability of EFT


- The 90% CL upper limits on the DM-nucleon spinindependent scattering cross section as a function of Mχ for the scalar operator.
- Also shown are 90% CL limits from various direct DM search experiments


Better result in M χ < ~ 5 -10 GeV region in comparison with DD experiments

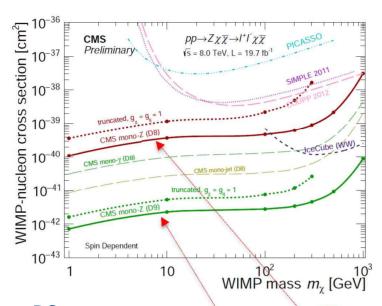
Mono-Z(to Dilepton)

- Dark matter production : Z boson is radiated(ISR) or interacts directly with DMs
- Signature : 2 leptons + 2 dark matters
 - 2 isolated leptons (electrons or muons)
 - Mass(II) in Z boson mass window
 - Large missing transverse energy
- ZZ/WZ main backgrounds, $t\bar{t}$, tW, WW etc. as well.
- Applying to vector (D5), axial-vector (D8) and tensor (D9) coupling to the SM quarks for Dirac fermion DM and vector (C3) coupling for complex scalar DM.

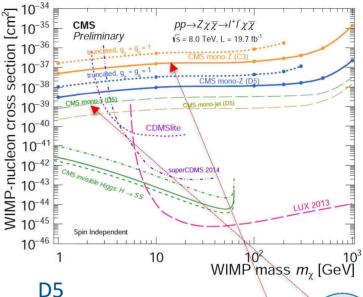

Process	e^+e^-	$\mu^+\mu^-$
C3(10GeV)	$0.20 \pm 0.004 \pm 0.02$	$0.24 \pm 0.005 \pm 0.02$
D5(10GeV)	$0.79 \pm 0.02 \pm 0.09$	$0.97 \pm 0.02 \pm 0.09$
D8(200GeV)	$0.48 \pm 0.01 \pm 0.06$	$0.59 \pm 0.01 \pm 0.05$
D9(500GeV)	$10.24 \pm 0.12 \pm 1.59$	$10.80 \pm 0.13 \pm 0.98$
Unparticle(1.6)	$48.96 \pm 0.88 \pm 3.26$	$65.80 \pm 1.07 \pm 4.38$
$Z/\gamma^* \to \ell^+\ell^-$	$8.18 \pm 1.93 \pm 0.82$	$8.59 \pm 3.01 \pm 1.02$
$WZ \rightarrow 3\ell\nu$	$25.08 \pm 0.53 \pm 2.84$	$40.70 \pm 0.69 \pm 4.50$
$ZZ \rightarrow 2\ell 2\nu$	$58.81 \pm 0.65 \pm 10.30$	$78.68 \pm 0.79 \pm 13.83$
Top/WW/Z $\rightarrow \tau^+\tau^-$	$18.74 \pm 3.39 \pm 3.27$	$22.92 \pm 2.29 \pm 3.44$
W + jets	$1.84 \pm 0.64 \pm 0.27$	
Total bkg.	$113 \pm 4 \pm 13$	$151 \pm 4 \pm 18$
Data	111	133

The data agree with SM background prediction and no excess is observed.

Dilepton - Λ vs Mχ


- 90% expected and observed CL Limits set on (M_{χ}, Λ) plane
- Appropriate choices of couplings and masses made for valid EFT
 - Consider massive mediator(M) couples to DM and quarks.(g_q and g_χ)
 - Can be $\Lambda \sim M/\sqrt{g_q g_\chi}$
- Lower bound set to $\Lambda > M\chi/2\pi$ with condition $\sqrt{g_q g_\chi} < 4\pi$
- Realistically RA to be 80% with various values as well as truncated limits
 - R∧ more realistic min. constraint Qtr < M applied
 - → fraction of total events w/ the constraint of Q less than cutoff scale
 - Truncated: removed events w/ Qtr > M at gen. level → this limit curve pattern coincides with the observed one in shape
- $\Omega h^2 = 0.11$ measured by WMAP
- In overall, tune very much within EFT
- Poor results than CMS mono-jet for D5 and D8

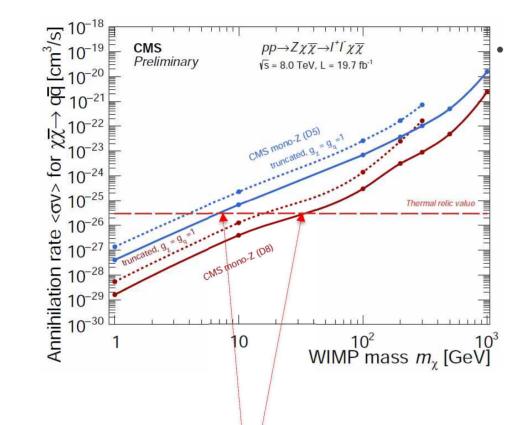
Dilepton – Nucleon xsection vs Mχ


- The 90% CL upper limits on the DM-nucleon cross section as a function of the DM particle mass
- Spin-dependent(D8 and D9) and Spin-Independent(C3 and D5) limits
- Comparisons with various direct detection experiments
- CMS mono-jet, monophoton and Higgs portal DM results as well.
- In general, dominant contributions to SD against direct detection experiments
- In the region Mχ < 5 to 10
 GeV, LHC is better than
 DD experiments for the case of SI

	D8							
M_{χ}	E	xpected	Expe	ected -1σ	Exp	ected $+1\sigma$	/ 0	bserved
	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	/ Λ	$\sigma_{\chi-N}$
(GeV)	(GeV)	(cm ²)	(GeV)	(cm^2)	(GeV)	(cm ²)	(GeV)	(cm ²)
1	586	8.05×10^{-41}	641	5.63×10^{-41}	535	1.16×10^{-40}	542	1.10×10^{-40}
10	579	2.65×10^{-40}	633	1.85×10^{-40}	528	3.82×10^{-40}	536	3.62×10^{-40}
100	568	3.37×10^{-40}	621	2.36×10^{-40}	518	4.86×10^{-40}	523	4.66×10^{-40}
200	532	4.42×10^{-40}	581	3.09×10^{-40}	485	6.38×10^{-40}	488	6.22×10^{-40}
300	488	6.24×10^{-40}	534	4.37×10^{-40}	445	9.01×10^{-40}	446	8.96×10^{-40}
500	394	1.48×10^{-39}	430	1.04×10^{-39}	359	2.14×10^{-39}	358	2.15×10^{-39}
1000	203	2.10×10^{-38}	222	1.47×10^{-38}	185	3.03×10^{-38}	184	3.07×10^{-38}
							1	

	טש							
M_{χ}	E:	Expected Expected -1σ		Expected $+1\sigma$		Observed		
	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	A	$\sigma_{\chi-N}$
(GeV)	(GeV)	(cm^2)	(GeV)	(cm^2)	(GeV)	(cm ²)	(GeV)	(cm ²)
1	2151	4.44×10^{-43}	2352	3.10×10^{-43}	1962	6.40×10^{-43}	1909	7.14×10^{-43}
10	2148	1.40×10^{-42}	2350	9.78×10^{-43}	1960	2.02×10^{-42}	1902	2.28×10^{-42}
100	2113	1.75×10^{-42}	2311	1.23×10^{-42}	1928	2.53×10^{-42}	1884	2.78×10^{-42}
200	2011	2.16×10^{-42}	2199	1.51×10^{-42}	1835	3.12×10^{-42}	1795	3.40×10^{-42}
300	1873	2.88×10^{-42}	2048	2.01×10^{-42}	1709	4.16×10^{-42}	1668	4.58×10^{-42}
500	1570	5.84×10^{-42}	1717	4.09×10^{-42}	1433	8.43×10^{-42}	1401	9.23×10^{-42}
1000	892	5.63×10^{-41}	975	3.94×10^{-41}	813	8.13×10^{-41}	795	8.90×10^{-41}
							1	

Da



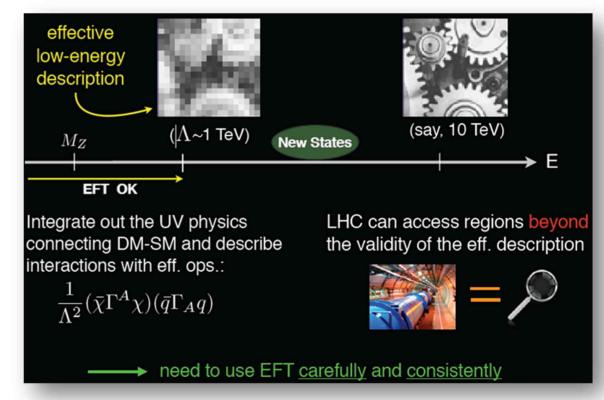
						1		
M_{χ}	Expected		Expe	ected -1σ	Exp	ected $+1\sigma$	0	bserved
	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	/Λ	$\sigma_{\chi-N}$
(GeV)	(GeV)	(cm ²)	(GeV)	(cm ²)	(GeV)	(cm ²)	(GeV)	(cm ²)
1	585	2.23×10^{-39}	640	1.56×10^{-39}	534	3.22×10^{-39}	541	3.05×10^{-39}
10	584	7.08×10^{-39}	638	4.95×10^{-39}	532	1.02×10^{-38}	542	9.49×10^{-39}
100	583	8.34×10^{-39}	638	5.83×10^{-39}	532	1.20×10^{-38}	538	1.15×10^{-38}
200	565	9.55×10^{-39}		6.68×10^{-39}	515	1.38×10^{-38}	519	1.34×10^{-38}
300	542	1.13×10^{-38}	593	7.88×10^{-39}	495	1.63×10^{-38}	495	1.62×10^{-38}
500	474	1.94×10^{-38}	519	1.35×10^{-38}	433	2.79×10^{-38}	432	2.81×10^{-38}
1000	286	1.46×10^{-37}	313	1.02×10^{-37}	261	2.11×10^{-37}	258	2.21×10^{-37}
			-				-	

	J							
M_{χ}	Expected Expected -1σ I		Expe	Expected $+1\sigma$		oserved		
	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	Λ	$\sigma_{\chi-N}$	/ Λ	$\sigma_{\chi-N}$
(GeV)	(GeV)	(cm ²)	(GeV)	(cm^2)	(GeV)	(cm ²)	(GeV)	(cm ²)
1	411	3.66×10^{-38}	450	2.56×10^{-38}	375	5.28×10^{-38}	382	4.93×10^{-38}
10	412	1.14×10^{-37}	451	7.96×10^{-38}	376	1.64×10^{-37}	382	1.54×10^{-37}
100	403	1.47×10^{-37}	440	1.02×10^{-37}	367	2.11×10^{-37}	373	1.99×10^{-37}
200	371	2.05×10^{-37}	406	1.43×10^{-37}	339	2.95×10^{-37}	341	2.87×10^{-37}
300	342	2.84×10^{-37}	374	1.99×10^{-37}	312	4.10×10^{-37}	314	4.03×10^{-37}
500	278	6.53×10^{-37}	304	4.56×10^{-37}	254	9.42×10^{-37}	253	9.62×10^{-37}
1000	145	8.85×10^{-36}	159	6.18×10^{-36}	132	1.28×10^{-35}	131	1.34×10^{-35}

DM Annihilation Rate limit

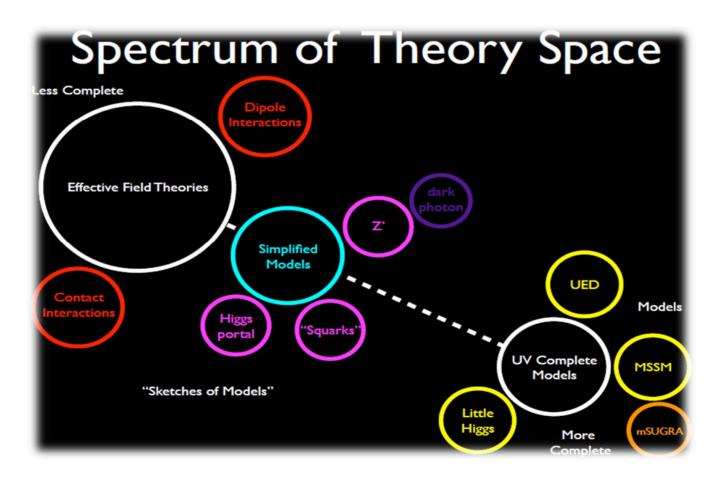
The limits from D5(vector) and D8(axial-vector) translated into upper limits on the dark matter annihilation rate.

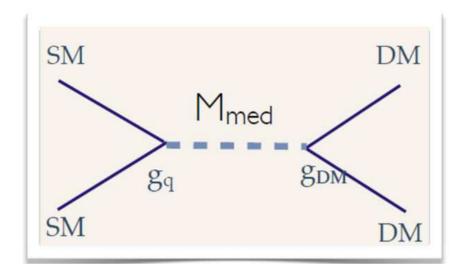
- A 100% branching fraction of DM annihilating to quarks is assumed.
- The corresponding truncated limits for D5 and D8 with sqrt(gqgχ) = 1 are also presented.
- The value required for DM to make up the relic abundance labeled "Thermal relic value" is shown as a red dashed line.
- The annihilation rate of Dirac fermion DM ruled out at 90% CL.
 - $m\chi < 7$ GeV for vector coupling
 - $m\chi$ < 32 GeV in case of axial-vector coupling.
- Indicate same conclusions in comparison with FNAL-LAT experiment.


Run 1 Summary

- Searches for DM at collider have evolved since the Higgs discovery.
 - The most recent one: Mono-Z(to Dilepton) analysis contains the most tuned EFT
 - Indicate no-longer valid EFT → Requiring new DM model rather than EFT at new energy
- Qualitative picture on DM searches by the LHC is complementary with Direct Detection experiments regardless of decay channels by the LHC.
 - Dominant contribution in Spin-dependent by the LHC
 - Dominant in spin-independent by the Direct Detection experiments but the LHC is better in the region of DM mass less than ~ 5 10 GeV region.
- Need more reliable model rather than EFT at the new energy LHC era since momentum transfer is very high.

EFT applicable to Run 2?

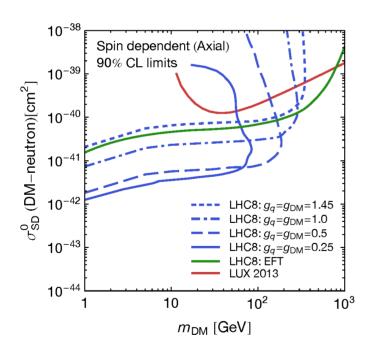

- Since the start-up of the LHC, generic searches for DM production at colliders, and their comparison with direct-detection experiments such as LUX, have become a focal point for both the experimental and theoretical particle and astro-particle communities.
- A comparison of DM searches at collider and DD experiments using the EFT approach does not provide an accurate description of the complementarity of the two search strategies.
- How to go beyond the problematic comparison of DM searches in the EFT framework ??
- An alternative to the EFT interpretation is the Simplified Models.
- Simplified models are able to capture properly the relevant kinematic properties of collider searches with only a few free parameters.

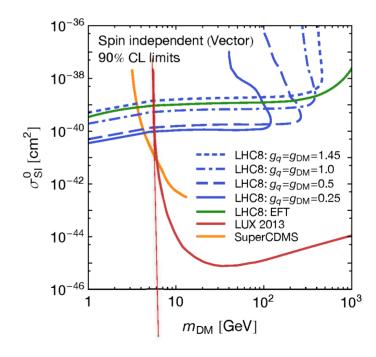

Minimal Simplified DM Model

- The model where only the particles and parameters most relevant to the search are included.
- The Minimal Simplified DM(MSDM) model can be understood as a phenomenological sketch of a complete mode.

MSDM Model

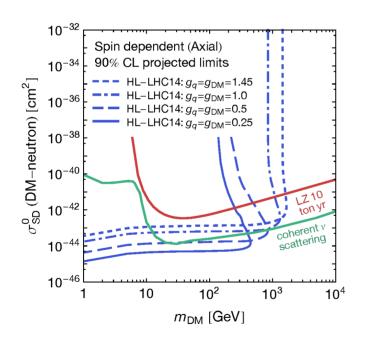
Define simplific (minimum) 4	ed model with parameters	D	M	Consider comprehensive set of diagrams for mediator		
Mediator mass (M _{med})	DM mass (M _{DM})	Dirac fermion	Scalar - real	Vector	Axial-vector	
g q	Э рм	Majorana fermion	Scalar - complex	Scalar	Pseudoscalar	

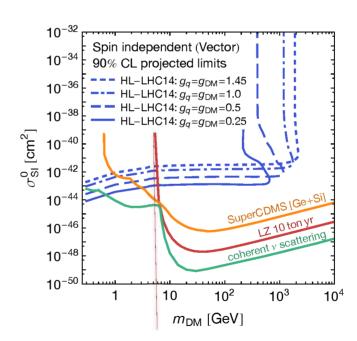

 $g_q = g_{\rm DM} = [0.25, \ 0.5, \ 1.0, \ 1.45]$ M_{DM} vs M_{med} assuming g_q = g_{DM}


S. Malik et. al, arXiv:1409.4075 (2014): White Report

Dark Matter Searches Results(Run 1)

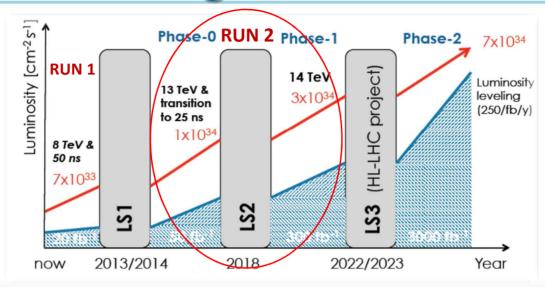
- The most recent comparison of the LHC and underground experiments
 - LUX : Current world best limit among underground experiments(350 kg Xe)
 - CMS: Mono-jet channel at 8 TeV
 - The LHC results are much better in the case of Spin dependent(Axial)
 - But the LHC is only sensitive in low DM mass(<5 GeV) region in the case of Spin-independent





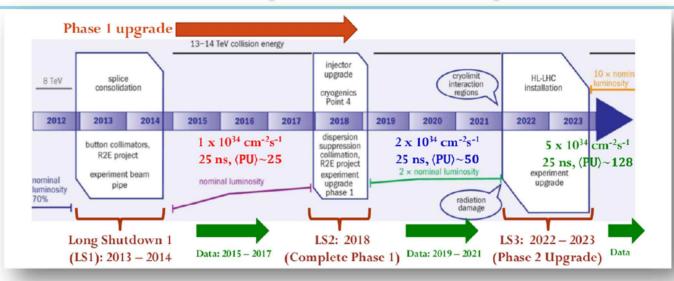
Prospect of Run 2

- Expectations with 14 TeV LHC
 - Comparison with future underground experiments
 - LZ(LUX-ZEPLIN: 7 ton planned) and SuperCDMS
 - Show much better results(10 -100 times more in x-section) with the LHC for spin-dependent case
 - LHC results sensitive in very low dark mass region for spin-independent case



Collider Dark Matter Search is complementary with underground experiments

The LHC Run 2 Original Plan

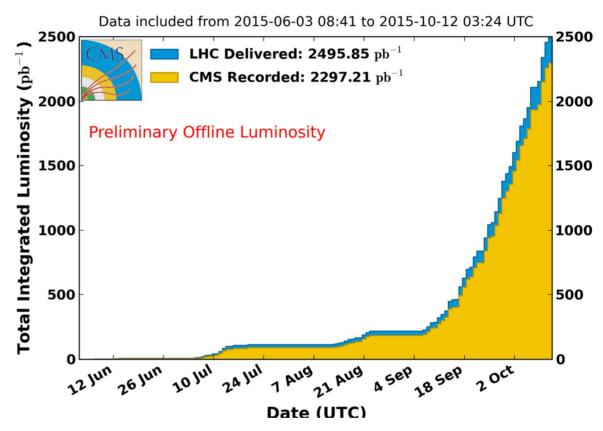

The most important period in Particle Physics Field

	Period	Activity	Label	Peak $\mathscr L$	Int ℒ(fb ⁻¹)	√s (TeV)	Bunch (ns)
	2013-2014	Install Phase 0	LS1				
	2015-2017	Running		10 ³⁴	~100	~14	25
	2018	Install Phase I	LS2				
	2019-2021	Running		~2 × 10 ³⁴	~300	~14	25
	2022-2023	Install Phase II	LS3				
	2024-2036	Running		~5 × 10 ³⁴	~3000	~14	25

The Run 2 is main while Run 1 was like introductory even Higgs had been found.

Physics Milestone(Run 2 & 3)

- Run 2 (Phase 1: 2015-2021) : 13 and 14 TeV, \sim 2 X 10^{34} cm⁻²s⁻¹, 300 fb⁻¹
 - Doubling of new particle mass reach : SUSY and(/or) other unknown phenomena
 - Potential searches of dark matters
 - Higgs Properties: mass, width, couplings and even self-coupling
 - Looking for anomalies through vector-vector scattering
 - Measurements of rare SM processes
- Run 3(Phase 2: 2024-2036) : 14 TeV, \sim 5 X 10³⁴ cm⁻²s⁻¹, 3000 fb⁻¹
 - Characterization of new particle discovered at run 2, or
 - Extension of new particle mass reach : SUSY and(/or) Exotic discovery
 - Precision measurements of Higgs properties : couplings (< 5%), self-coupling (~20%) etc.
 - Precision Measurements of rare SM process



Current Status

• As of Oct 12, 2015, ~ 2.3 fb⁻¹ recorded.

- Some fraction of data with no magnetic field on (~20%)
- Data delivered exponentially (similar situation with year 2011 run)

- First results were presented at EPS-HEP conference in July 2015.
- First paper already submitted to PLB for charged Hadron Production.
- All the important physics topics are underway of analysis mode.

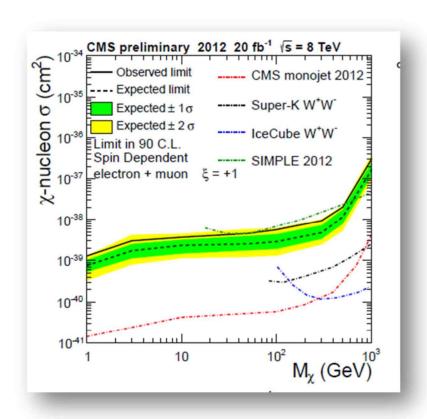
Summary

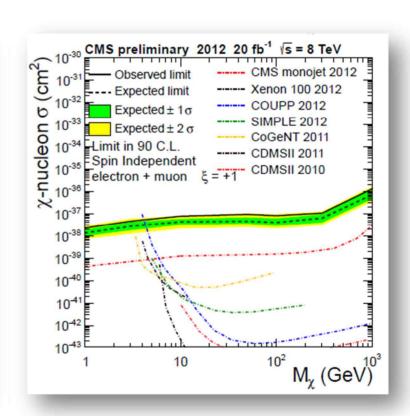
- The LHC experiments are compatible and complementary with the underground experiments.
- The LHC is very strong with spin-dependent DM case and low mass(~< 5 to 10 GeV) DM region in spin-dependent case.
- There had been a development of Minimal Simplified DM model in order to compare with direct detection experiments in parallel.
- We have many interesting results on DM searches at the LHC from Run 1, but have not yet found a signal.
- Dark Matter searches at the LHC are hot topics at the LHC Run 2.
- Hopefully the DM will be unveiled at the LHC Run 2 period.

Summary

- The LHC experiments are compatible and complementary with the underground experiments.
- The LHC is very strong with spin-dependent DM case and low mass(~< 5 to 10 GeV) DM region in spin-dependent case.
- There had been a development of Minimal Simplified DM model in order to compare with direct detection experiments in parallel.
- We have many interesting results on DM searches at the LHC from Run 1, but have not yet found a signal.
- Dark Matter searches at the LHC are hot topics at the LHC Run 2.
- Hopefully the DM will be unveiled at the LHC Run 2 period.

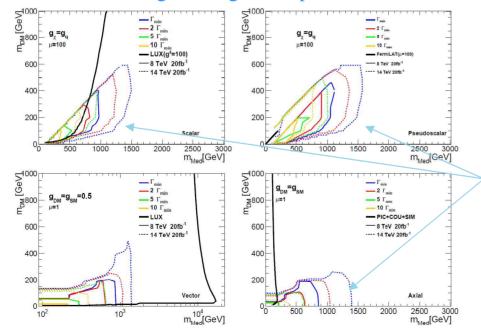
'The truth is only an agreement between a cognitive spirit and Things. Well, Nature never surrenders against any traditions by human being.'

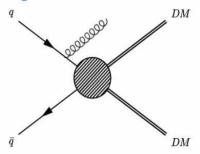


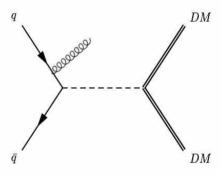

BACKUP

Comparisons with the Direct Detection Expts

- Direct detection much more sensitive on SI(V) coupling for $M\chi > 5$ GeV
- Strong in SD(axial) mode:
- very similar with mono-jet case but better for the case constructive interference

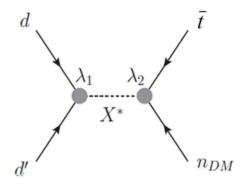




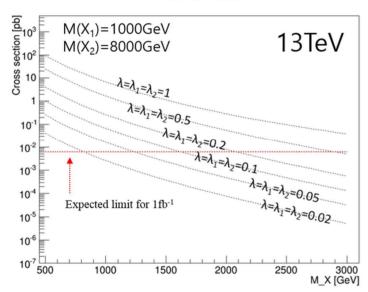


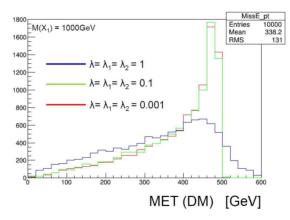
Mono-jet + missing energy

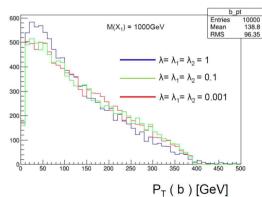
- Signature
 - One light jet(gluon initiated) with large missing energy from undetected particle
- Dark matter production scenarios
 - Contact interaction
 - Mediator is heavier than the typical energy transfer at the LHC
 - The framework of effective field theory is used
 - mediator can be scalar, pseudo-scalar, vector or axial vector field.
 - Exchange of mediator
 - Mediator is light enough to be produced at the LHC



LHC 14TeV Run can probe much wider region than any other dark matter experiments!




Mono-top Studies at new energy


- Mono-top + missing energy channel
 - Top quark + dark matter production via resonance of scalar particle is considered.
 - Production cross section of pp collision at 13 TeV are calculated.
 - Kinematical properties are studied to setup the trigger and selection scheme for data analysis.

- Confirmed the mono-top channel can be probed for the dark matter
- To be analyzed with the CMS new energy data

