

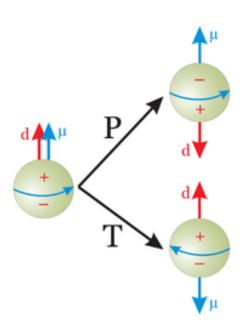
Axion Research at CAPP/IBS

SungWoo YOUN CAPP/IBS

CosPA 2015, Daejeon, Korea Oct. 12~16, 2015

CAPP/IBS

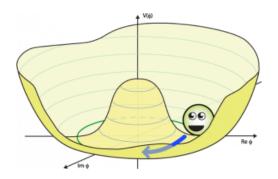
- Center for Axion and Precision Physics Research
 - Funded by the Institute for Basic Science
 - Located at KAIST campus in Daejeon, Korea
 - Led by Prof. Semertzidis Yannis



- Experimental efforts to address the Strong-CP problem
 - State of the art dark matter axion experiment
 - Storage ring proton EDM
- Leading roles in international collaborations in intensity frontier
 - Muon g−2
 - COMET ($\mu \rightarrow e$ conversion)
- Plenary talk by Prof. Semertzidis tomorrow for more details

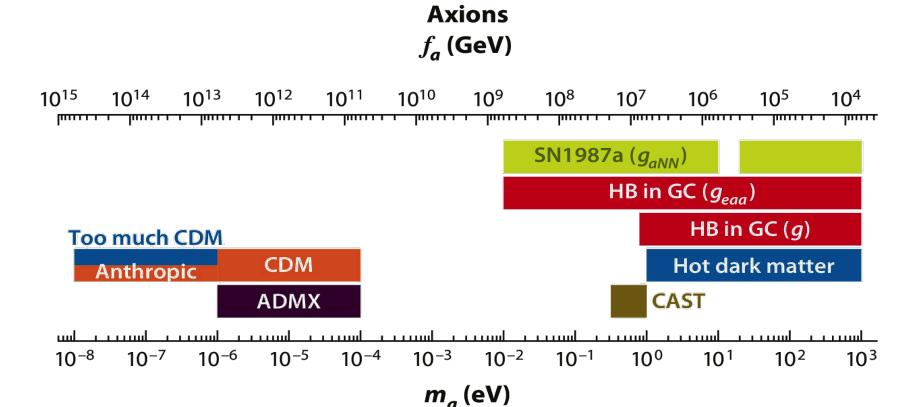
Strong-CP Problem

- CP symmetry breaking (CPV)
 - Matter-antimatter imbalance in our universe
- CPV in electroweak interaction
 - Observations are consistent with predictions
 - CPV phase in CKM matrix
- CPV in strong interaction
 - Theory: natural CPV term due to non-zero QCD vacuum
 - Sizable neutron dipole moment (d_n)
 - At least one of the quarks are massless
 - Experiment: QCD respects CP symmetry
 - $d_{n,exp} \le 10^{-26} \text{ e*cm} => \Theta_{QCD} \le 10^{-10}$
 - None of the quarks are massless
 - This is known as strong-CP problem
 - One of the most important but unsolved problems in physics



Axion

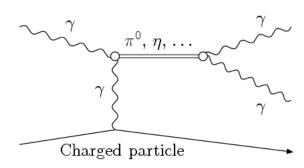
- Peccei-Quinn theory (1977)
 - An elegant idea to solve the strong CP problem
 - A new global symmetry, $U(1)_{PQ}$, with a scalar field permeating all space
 - Spontaneous (explicit) PQ symmetry breaking involving a new Goldstone boson: axion
 - Similar to Higgs mechanism
 - Spontaneous EWSB involving the Higgs boson
 - Discovery in 2012 has enhanced the interest in the axion and the possibility of its existence



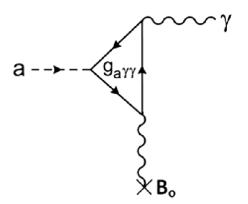
Axion properties							
Interaction	Gravity, EM	Mass	μeV to eV				
С	0	$ ho_{ extit{local}}$	0.45 GeV/cm ³				
JP	0-	β ~10 ⁻³ \rightarrow Q _a ~10 ⁶					

Axion and Dark Matter

- Attractive dark matter candidate
 - If its mass lies between 1 μeV and 100 μeV, the axion can fit the halo model
 - Referred to as axion dark matter



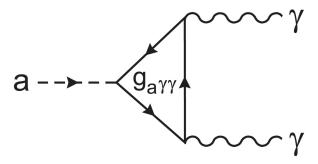
Detection Strategy


Primakoff Effect

- Pseudoscalar production by a photon scattering with an EM field
- $\gamma\gamma \rightarrow \pi^0$, η , ...

P. Sikivie's method (1983)

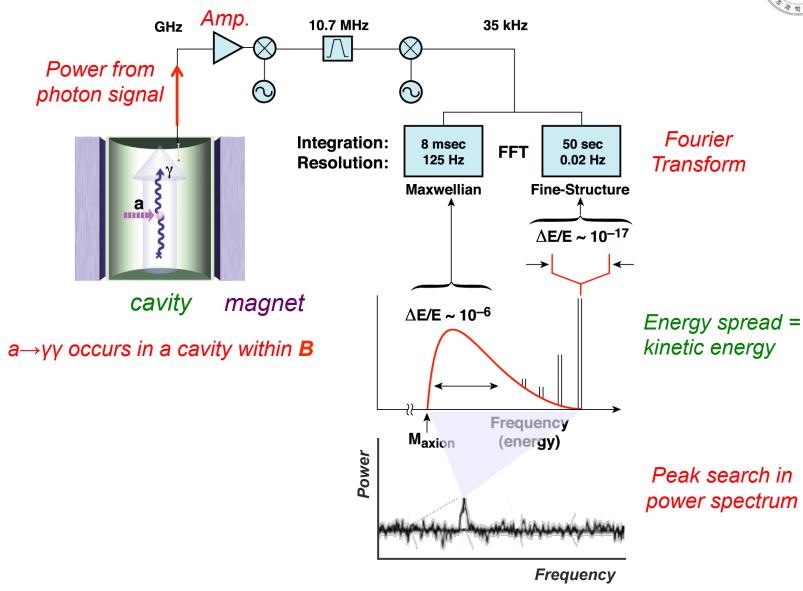
- Reverse Primakoff effect
- Conversion of axions into microwave photons
 - $a \rightarrow \gamma \gamma$ (cf. $\pi^0 \rightarrow \gamma \gamma$)
- Detectable in a EM rasontor in the presence of a strong magnetic field
 - Principle of haloscope
 - Most promising technique for the faintest axion-photon coupling


Axion Coupling to Photons

Lagrangian

$$L_{a\gamma\gamma} = -\frac{g_{a\gamma\gamma}}{4} \boldsymbol{\varphi}_{a} F_{\mu\nu} \tilde{F}^{\mu\nu} = -g_{a\gamma\gamma} \boldsymbol{\varphi}_{a} \boldsymbol{E} \cdot \boldsymbol{B}, \quad g_{a\gamma\gamma} \equiv \frac{\alpha}{\pi} \frac{g_{\gamma}}{f_{PO}}$$

- g_{avv}: coupling constant
- φ_a: axion field
- F: EM field-strength tensor
- α: fine structure constant
- g_v : model-dependent coefficient
 - 0.97 for KSVZ (hadronic)
 - −0.36 for DFSZ (minimum)


$$g_{\gamma} = \left(\frac{E}{N} - \frac{2}{3} \frac{4+z}{1+z}\right)$$

• f_{PO}: PQ symmetry breaking scale (10¹⁰~10¹² GeV)

$$m_a = \frac{f_{\pi} m_{\pi}}{f_{PQ}} \frac{\sqrt{z}}{1+z} \simeq 6 \,\mu eV \frac{10^{12} GeV}{f_{PQ}}, \quad z = \frac{m_u}{m_d}$$

Axion Detection

Conversion Power

Conversion power

- Theoretical parameters
- experimental parameters

$$P_{a\to\gamma\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_a}{m} B^2 V C_{mnp} \min(Q_L,Q_a)$$

$$Coupling \ constant \qquad Effective \ volume$$

$$Axion \ number \ density \qquad Magnetic \ field$$

$$P_{a} = 5.2 \times 10^{-22} W \left(\frac{g_{\gamma}}{0.97} \right)^{2} \left(\frac{\rho_{a}}{0.45 \, GeV/cc} \right) \left(\frac{f_{a}}{6 \, GHz} \right) \left(\frac{B}{8T} \right)^{2} \left(\frac{V}{1L} \right) \left(\frac{C_{010}}{0.6} \right) \left(\frac{Q_{L}}{10^{6}} \right)$$

Conversion Power and Sensitivity

Conversion power

- Theoretical parameters
- experimental parameters

$$P_{a \to \gamma \gamma} = g_{a \gamma \gamma}^2 \frac{\rho_a}{m_a} B^2 V C_{mnp} \min(Q_L, Q_a)$$
Coupling constant

Axion number density

$$Cavity \ Q \ factor$$

$$Effective \ volume$$

$$Magnetic \ field$$

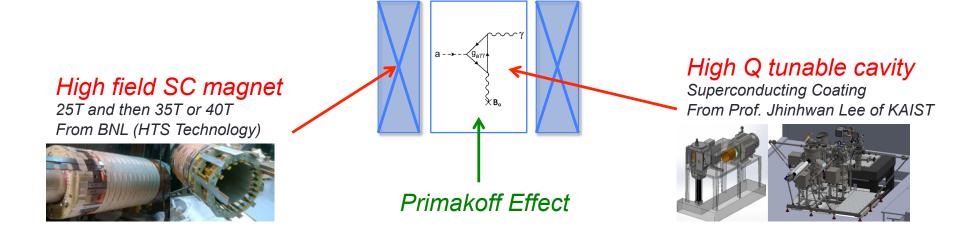
Signal-to-noise ratio (SNR)

$$SNR \equiv \frac{P_{signal}}{P_{noise}} = \frac{P_{a \to \gamma \gamma}}{k_B T_{syst}} \sqrt{\frac{t_{int}}{\Delta f_a}} - \underbrace{Integration \ time}_{Axion \ bandwidth}$$

System noise temperature

Scan rate

$$\frac{df}{dt} = \left(\frac{1}{SNR}\right)^2 \left(\frac{P(f)}{k_B T_{syst}}\right)^2 \cdot \frac{Q_a}{Q_L} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$$

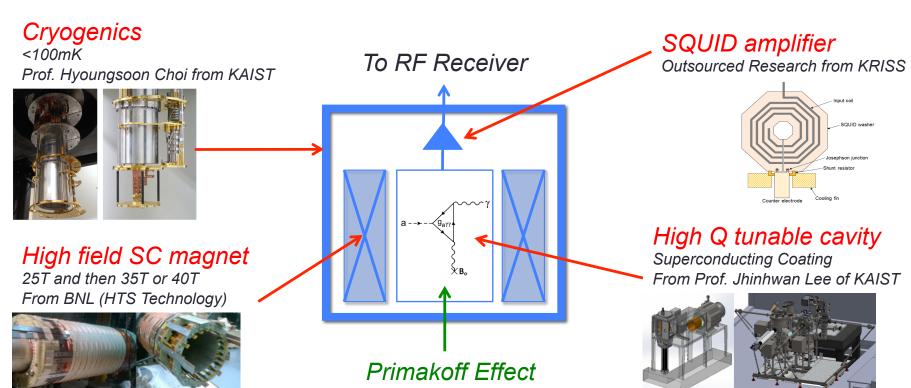

$$\frac{df_d}{dt} = \frac{140MHz}{year} \left(\frac{g_{\gamma}}{0.97}\right)^4 \left(\frac{\rho_a}{0.45 GeV/cc}\right)^2 \left(\frac{B}{8T}\right)^4 \left(\frac{V}{1L}\right)^2 \left(\frac{C_{010}}{0.6}\right)^2 \frac{Q_L}{Q_a} \left(\frac{4}{SNR}\right)^2 \left(\frac{4.5K}{T_{sys}}\right)^2 \left(\frac{f}{6GHz}\right)^2$$

11 SungWoo YOUN CosPA 2015

Experimental Setup

• Axion conversion power:
$$P_{a \to \gamma\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a} B^2 VC_{mnp} \min(Q_L, Q_a)$$

Experimental Setup



Axion conversion power:

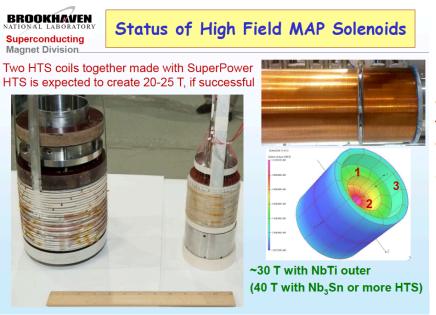
$$P_{a\to\gamma\gamma} = g_{a\gamma\gamma}^2 \frac{\rho_a}{m_a} B^2 VC_{mnp} \min(Q_L, Q_a)$$

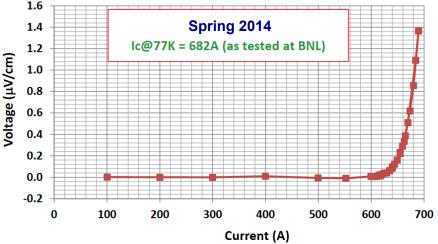
Signal-to-Noise Ratio:

$$SNR = \frac{P_{signal}}{P_{noise}} = \frac{P_{a \to \gamma\gamma}}{k_B T_{syst}} \sqrt{\frac{t_{int}}{\Delta f_a}}$$

CAPP/IBS Axion Research

Focuses on improvements in experimental parameters

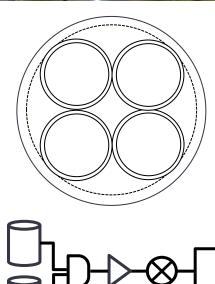

$$\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$$


- Magnetic Field
 - Critical (4th power), but technically challenging and expensive
- Cavity volume
 - Limited by the magnet bore size
 - Higher frequencies require smaller cavities
- Quality factor
 - Several ideas in community pure metal, superconductor, ...
- System temperature
 - Dilution refrigerator technique
 - SQUID amplifier

High Magnetic Field: B

- Launched a R&D program
 - BNL's Superconducting Magnet R&D Group (Dr. R. Gupta)
 - Determining the cable for the final design within a year
- Two stage program
 - 25 T with 10 cm bore (HTS)
 - 35(40) T with10 cm bore hybrid design HTS(inner)/LTS(outer)
 - cf. current axion experiments use < 10 T

Large Cavity Volume: V

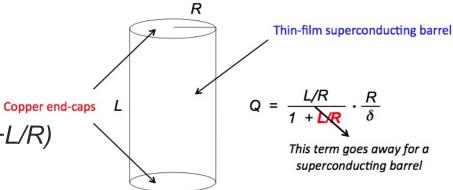

ibs

- Multiple cavities in-phase
 - First experimental trial by ADMX (2000) using a 4 cavity system
- Improves sensitivity by up to N w.r.t. a single cavity system

SNR:
$$\frac{N \cdot P_S}{\sqrt{N} \cdot P_C + P_A}$$
 v.s. $\frac{P_S}{P_C + P_A}$

- N: cavity multiplicity
- Key issue is phase-locking
 - Challenging
 - Phase matching in both frequency and time domains
- I have received the 5-year IBS Young-Scientist award with CAPP to develop this system

High Quality Factor: Q



- Typical Cu cavity
 - Q_{max} ~ 10⁵ with annealing
 cf. Q_a ~ 10⁶
- Superconducting cavity
 - Hybrid design improves Q by (1+L/R)

$$Q = \omega \frac{\text{Stored energy}}{\text{Power loss}}$$

$$= \left(\frac{2V}{S\delta}\right) = \frac{2\pi R^2 L}{2\pi R^2 + 2\pi R L} \frac{1}{\delta} = \frac{L}{R + L} \frac{R}{\delta}$$

The concept of a hybrid superconducting cavity:

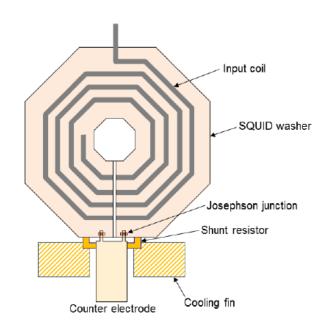
$$Q_{hybrid} = (1 + L/R) \cdot Q_{cu}$$

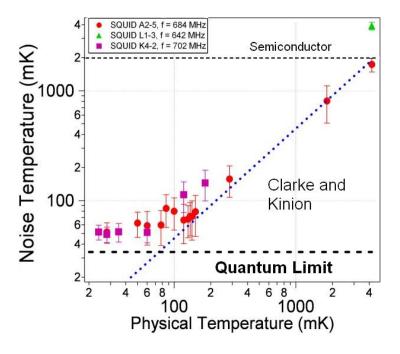
For typical ADMX cavity, L/R = 5, enhancement factor = 6

- R&D program with Prof. J. Lee (KAIST/IBS) for SC cavity
 - SC walls including top/bottom plates
 - CAPP goal: up to Q ~10⁷ in high B-field

SungWoo YOUN **CosPA 2015**

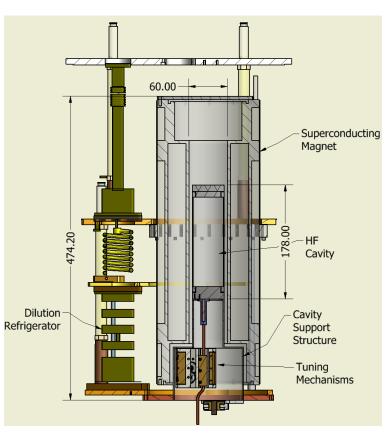
Low System Temperature: T – Cryostats (ib)



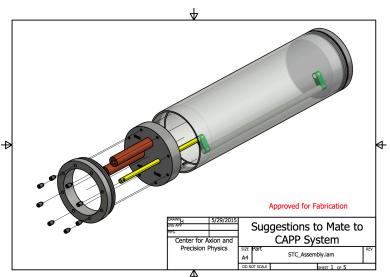

	2014	2015	2016	2017	2018	
	T					
Essential Equipments	CF-DR(RF1) CF-DR(magne Wet-He	et) 3(large bore)		Americ Magne	can tilcs	
Quantum	BlueFors	QUOTATION				
Amplifier		CF-DR(RF2)				
Research						
Small-sclae		CE-	-DR(testbed)		00mm cryogen free AMI magnet integrated w re aluminum magnet cover shield not shown	
Integration	CF-Dh(lesibed)					
Low-noise			Wet-DR1(pred			
Experiments	Wet-DR2(precision)					
AxionDetector				Main DD /Avi	on Detector)	
main				Main DR (Axi	on Detector)	
Helium		MAN AND	Holium Liquet	ior		
Liquefier	On the left 4x superconducting (none-attenuated) CuNi lines in a KF63 LOS-port and right 4x	RF lines in a KF40 LOS-port, in the middle 12x CuNi (attenuated) lines in KF40 LOS-port.	Helium Liquefier			

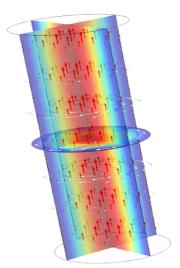
Low System Temperature: T – SQUID

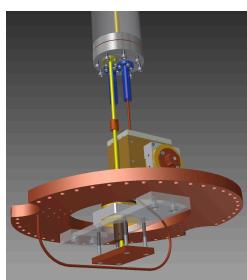
- Started a development program with KRISS (5 year)
 - Korea Research Institute of Standards and Science
 - Providing us with (near) quantum noise limited SQUID amplifiers in the 1-20 GHz range
 - $T_{quantum} \approx 50 \text{ mK * f (GHz)}$
 - Evaluating methods for higher frequencies



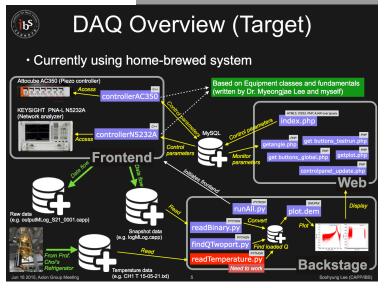
CULTASK

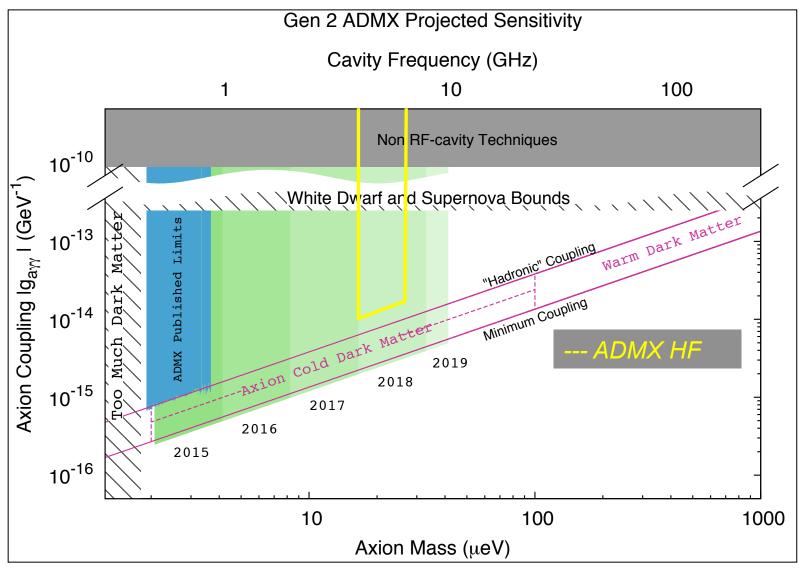

- CAPP Ultra Low Temp Axion Search in Korea
 - Corporate body of axion research efforts at CAPP
 - Coldest axion experiment (<100 mK)



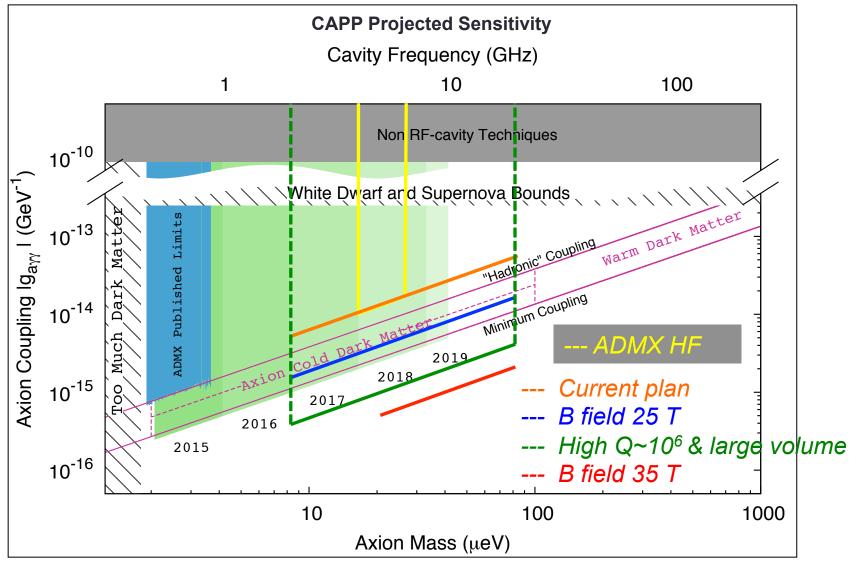

- Currently in engineering run
 - Building infrastructure
- Status
 - Designing cavities with tuning mechanism
 - Completed RT electronics test
 - Cryogenic RF circuits test ongoing
 - DAQ system ready
 - Start with ~ 5GHz (ID: 4.5 cm)

CULTASK



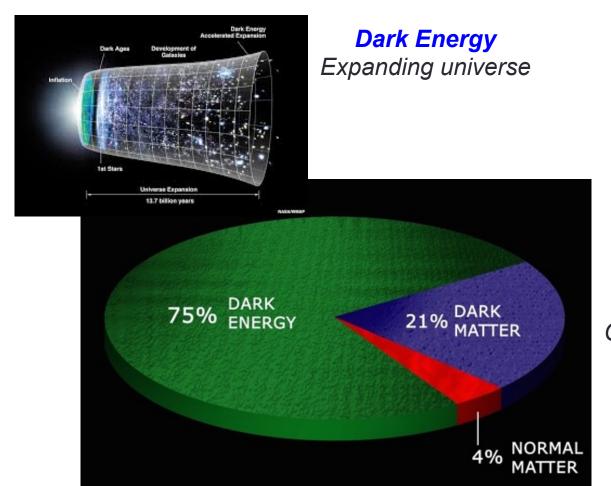

Timeline

	2015	2016	2017	2018	2019	
Lab Space	Munji Campus Design & Renovation	Occupation				
High Field Magnet	Prototype, testing of SuperC cables	25T, 10cm bore SuperC Magnet design	Work on 35T, 10 cm bore SuperC magnet	Magnet Delivery		
SC Cavity Developme nt	Procure Equip. Study res. and geom.	Development of high Q SC resonator	Production of high Q resonator			
SQUID Amplifier	Design and production of prototype SQUID for 1-10 GHz Acquire JPA and test		SQUID delivery from KRISS Develop higher freq. amplifier			
Axion Cavity Experiment	Building infrastructure. Engineering Run at KAIST		Setup at Munji Runs	High Field Magnet + SQUID + SC Cavity		
Cryogenics	Setup plan, acquisition	DR's(2) + Wet He3 & DR	DR's(2)		OR and Juefier	

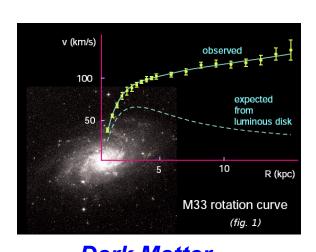

Projected Sensitivity – ADMX Gen 2

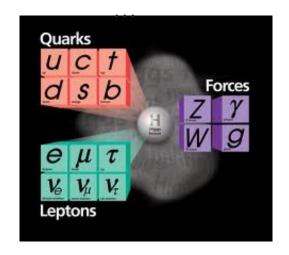
Projected Sensitivity – CAPP

Summary



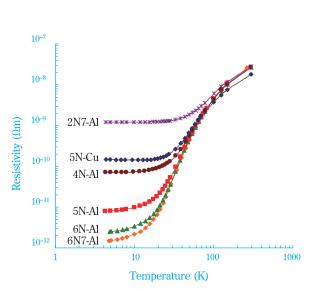
- Axion is the key particle to solve the strong-CP problem and dark matter issue
- Cavity-based approach is promising to detect the challenging axion-photon coupling
- CAPP/IBS is an experimental particle physics group dedicated to dark matter axion searches in Korea
- Exciting results are expected in a few years

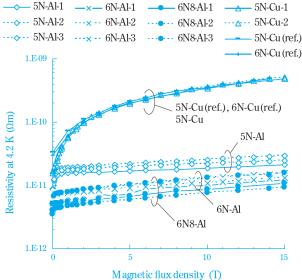


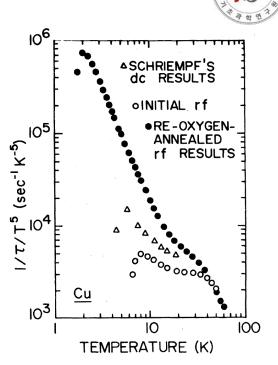

Our Universe

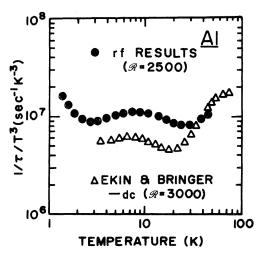
Normal Matter
Standard Model
(EM, weak, strong)

Dark Matter
Rotation velocity of galaxies
Gravitational Lensing
Cosmic Microwave Background




High Quality Factor: Q (II)


RRR (Residual Resistance Ratio)


$$Q \sim \frac{V}{S\delta}, \quad \delta = \sqrt{\frac{2}{\omega\mu\sigma}}$$

- Comprehensive studies for Cu and Al
- Magnetic field effect
- DC vs. AC
 - Anomalous behavior of skin depth at high frequencies at low temperatures
 - High purity AI is preferable (?)
 - Dedicated study is planned

