Contribution ID: 81 Type: Oral

The Electron Capture in ¹⁶³Ho experiment –ECHo

Tuesday, 3 July 2018 12:00 (30 minutes)

Direct determination of the electron neutrino $m(\nu_{\rm e})$ and anti-neutrino mass $m(\bar{\nu}_{\rm e})$ can be obtained by the analysis of electron capture and beta spectra respectively. In the last years experiments analyzing the $^3{\rm H}$ beta spectrum reached a limit on $m(\bar{\nu}_{\rm e})$ of 2 eV. The upper limit on $m(\nu_{\rm e})$ is still two orders of magnitudes higher, at 225 eV.

The Electron Capture in 163 Ho experiment, ECHo, is designed to investigate $m(\nu_{\rm e})$ in the sub-eV region. In ECHo, high sensitivity on a finite $m(\nu_{\rm e})$ will be reached by the analysis of the endpoint region in high statistics and high resolution calorimetrically measured 163 Ho spectra. To perform this experiment, high purity 163 Ho sources will be enclosed in a large number of low temperature metallic magnetic micro-calorimeters which are readout using the microwave multiplexing technique. This approach allows for a very good energy resolution, below $\Delta E_{\rm FWHM} < 5$ eV and for a fast time resolution well below 1 \(\mathbb{\omega} \)s.

Thanks to the modular approach, the ECHo experiment is designed to be stepwise up-graded. The first ongoing phase, ECHo-1k, is characterized by a 163 Ho activity of about 1 kBq enclosed in about 100 pixels. The statistics of 10^{10} events in the 163 Ho spectrum will allow for improving the limit on $m(\nu_{\rm e})$ by more than one order of magnitude.

In this talk, the present status of the ECHo-1k experiment will be discussed as well as the plans for the next phase, ECHo-100k.

Co-Authors (Collaboration)

ECHo Collaboration

Primary author: Prof. GASTALDO, Loredana (Heidelberg University, Kirchhoff Institute for Physics)

Presenter: Prof. GASTALDO, Loredana (Heidelberg University, Kirchhoff Institute for Physics)

Session Classification: Plenary Session 8