Effective Value of Weak Axial Coupling: A Review

Jouni Suhonen

Department of Physics, University of Jyväskylä

NDM2018 (6th Symposium on Neutrinos and Dark Matter in Nuclear Physics 2018) Daejeon, South Korea, June 29 - July 4, 2018

Contents:

- Double-beta-decay rates
- Effective value of *g*_A:
- from allowed β Decays
- from forbidden β Decays
- Effects on $0\nu\beta\beta$ NMEs
- Is there any reactor- $\bar{\nu}$ anomaly?

Motivation for the Work: Double Beta Decay

Jouni Suhonen (JYFL, Finland)

Two-Neutrino Double Beta Decay of ¹¹⁶Cd

Neutrinoless Double Beta Decay of ¹¹⁶Cd

Definitions

See also: "Value of the axial-vector coupling strength in β and $\beta\beta$ decays: A review" published in **Frontiers in Physics 5 (2017) 55**.

Nucleon weak current in a nucleus:

$$j^{\mu}_{\rm N} = g_{\rm V} \gamma^{\mu} - g_{\rm A} \gamma^{\mu} \gamma^5$$

Quenching:

$$q = g_{\rm A}/g_{\rm A}^{\rm free}$$

Free value of g_A (Particle Data Group 2016) from the decay of free neutron:

 $g_{\rm A}^{\rm free} = 1.2723(23)$

Effective value of *g*_A:

$$g_{\rm A}^{\rm eff} = q g_{\rm A}^{\rm free}$$

There are data on:

Gamow-Teller β TRANSITIONS

Theoretical approaches:

ISM (Interacting Shell Model) pnQRPA (proton-neutron QRPA)

Typical Gamow-Teller β transitions

Results from:

Quenching of g_A in the ISM calculations

Results from the ISM

- Kumar *et al.*: J. Phys. G 43 (2016) 105104
- Honma *et al.*: J. Phys. Conf. Ser. 49 (2006) 45
- Caurier *et al.*: Phys. Lett. B 711 (2012) 62
- Horoi *et al.*: Phys. Rev. C 93 (2016) 024308
- Juodagalvis *et al.*: Phys. Rev. C 72 (2005) 024306
- Siiskonen *et al.*: Phys. Rev. C 63 (2001) 055501

Proton-neutron Quasiparticle Random-Phase Approximation (pnQRPA)

Results from:

Quenching of g_A in the pnQRPA calculations

Results from the pnQRPA analyses

			-
Α	pn Conf.	$\bar{g}_{\rm A}^{\rm eff}$ [1]	
62 - 70	$1p_{3/2} - 1p_{1/2}$	0.81 ± 0.20	1.0 -
78 - 82	$0g_{9/2} - 0g_{9/2}$	0.88 ± 0.12	-
98 - 116	$0g_{9/2} - 0g_{7/2}$	0.53 ± 0.13	_]
118 - 136	$1d_{5/2} - 1d_{5/2}$	0.65 ± 0.17	9
138 - 142	$1d_{5/2} - 1d_{3/2}$	1.14 ± 0.10	0.5
-			. 0.0

[1] H. Ejiri, J. S., J. Phys. G 42 (2015) 055201

Other analyses in the whole range:

[2] P. Pirinen, J. S., Phys. Rev. C 91

(2015) 054309

[3] F. Deppisch, J. S., Phys. Rev. C 94(2016) 055501

Fundamental quenching: M. Ericson (1971); M. Ericson *et al.* (1973); M. Rho (1974); D. H. Wilkinson (1974)

(Meson-exchange currents → effective two-body operators)

Results from the ISM on top of the pnQRPA ranges

- Kumar *et al.*: J. Phys. G 43 (2016) 105104
- Honma *et al.*: J. Phys. Conf. Ser. 49 (2006) 45
- Caurier *et al*.: Phys. Lett. B 711 (2012) 62
- Horoi *et al.*: Phys. Rev. C 93 (2016) 024308
- Juodagalvis *et al.*: Phys. Rev. C 72 (2005) 024306
- Siiskonen *et al.*: Phys. Rev. C 63 (2001) 055501

Calculations for the β decays and $\beta\beta$ decays

Results from:

Quenching of g_A in the pnQRPA-based, ISM-based and **IBM-based** calculations of β decays and $\beta\beta$ decays

The studied cases

Results from the $\beta + \beta \beta$ calculations against the pnQRPA ranges from Gamow-Teller β decays

- pnQRPA: Faessler et al., A. Faessler, G. L. Fogli, E. Lisi, V. Rodin, A. M. Rotunno, F. Šimkovic, arXiv 0711.3996v1 [Nucl-th]
- pnQRPA: Suhonen *et al.*,
 J. Suhonen, O. Civitarese,
 Nucl. Phys. A 924 (2014)
 1
- ββ ISM and IBM-2: J. Barea, J. Kotila, F. Iachello, Phys. Rev. C 87 (2013) 014315
- IBFFM-2: N. Yoshida, F. Iachello, Prog. Theor. Exp. Phys. 2013 (2013) 043D01

Forbidden β decays and the value of g_A

Results from:

Quenching of g_A as derived from β decays of forbiddenness *F*

INCENTIVE: $0\nu\beta\beta$ decay through the higher angular-momentum states

Global study for the first-forbidden (F = 1) $2_{gs}^- \rightarrow 0_{gs}^+$ decays

H. Ejiri, N. Soukouti and J. S., Spin-dipole nuclear matrix elements for double beta decays and astro-neutrinos, Phys. Lett. B 729 (2014) 27 $2_{gs}^{-} \left[\frac{84}{37} \text{Rb}_{47}\right]_{M_{22}}$

Based on the global studies in

H. Ejiri, J. S., J. Phys. G: Nucl. Part. Phys. 42 (2015) 055201

H. Ejiri, N. Soukouti, J. S., Phys. Lett. B 729 (2014) 27

J. Kostensalo, J.S., Phys. Rev. C 95 (2017) 014322 conclude that all unique-forbidden β transitions

roughly evenly quenched)

Then: Low-energy quenching of g_A derivable from the hatched regions of the Gamow-Teller studies in the pnQRPA framework:

Mass range	A = 76 - 82	A = 100 - 116	A = 122 - 136
$g^{ m eff}_{ m A,0 u}$	0.5 - 1.0	0.4 - 0.7	0.5 - 0.8

Assumption: Also the forbidden non-unique virtual transitions behave like the forbidden unique virtual transitions. BUT: How to study the forbidden non-unique decays? Caveat: $0\nu\beta\beta$ decay is a high-momentum transfer process ($q \sim 100$ MeV) \Rightarrow less quenching (J. Menéndez, D. Gazit, A. Schwenk, PRL 107 (2011) 062501) Results from:

Effective value of g_A as derived from electron spectra of forbidden non-unique β decays

Spectrum shape of higher-forbidden non-unique β decays

Half-life:

$$t_{1/2} = \kappa / \tilde{C} \,.$$

Dimensionless integrated shape function:

$$\tilde{C} = \int_1^{w_0} C(w_e) p w_e(w_0 - w_e)^2 F_0(Z_f, w_e) \mathrm{d} w_e \,.$$

Shape factor:

$$C(w_{e}) = \sum_{k_{e},k_{\nu},K} \lambda_{k_{e}} \left[M_{K}(k_{e},k_{\nu})^{2} + m_{K}(k_{e},k_{\nu})^{2} - \frac{2\gamma_{k_{e}}}{k_{e}w_{e}} M_{K}(k_{e},k_{\nu})m_{K}(k_{e},k_{\nu}) \right] ,$$

where

$$\lambda_{k_e} = \frac{F_{k_e-1}(Z, w_e)}{F_0(Z, w_e)} ; \quad \gamma_{k_e} = \sqrt{k_e^2 - (\alpha Z_f)^2} ,$$

 $F_{k-1}(Z, w_e)$ being the generalized Fermi function.

Decomposition of the shape factor:

$$C(w_e) = g_{\mathrm{V}}^2 C_{\mathrm{V}}(w_e) + \frac{g_{\mathrm{A}}^2 C_{\mathrm{A}}(w_e)}{g_{\mathrm{V}} g_{\mathrm{A}} C_{\mathrm{VA}}(w_e)}.$$

ISM-computed β spectra for different values of g_A

Normalized ISM-computed electron spectra for the 2*nd*-forbidden nonunique $\beta^$ decays of ⁹⁴Nb and ⁹⁸Tc ($g_V = 1.0$).

Example: ISM- and MQPM-computed electron spectra

Normalized ISMand MQPM-computed electron spectra for the 2*nd*-forbidden nonunique β^- decay of ⁹⁹Tc ($g_V = 1.0$) using different values of g_A .

Example: Decay of ¹¹³Cd – Comparison with data

Normalized electron spectra for the 4th-forbidden nonunique β^- decay ¹¹³Cd(1/2⁺) \rightarrow ¹¹³In(9/2⁺) ($g_V = 1.0$). Experimental data from: The COBRA collaboration, L. Bodenstein-Dresler *et al.*, arXiv:1806.02254 [nucl-ex] 6 Jun 2018

Distribution of the best-match g_A values from 44 detector units

Example: Decay of ¹¹⁵In – Comparison with data

Summary of the exploratory work on β spectra

Transition	$J_i^{\pi_i}(\mathrm{gs})$	$J_f^{\pi_f}(n_f)$	Branching	Κ	Sensitivity	Nucl. model
$^{36}\text{Cl} \rightarrow \ ^{36}\text{Ar}$	2+	0+ (gs)	98%	2	None	ISM
$^{48}\text{Ca} ightarrow ^{48}\text{Sc}$	0^{+}	$4^{+}(2)$	$\sim 0\%$	4	None	ISM
$^{48}\text{Ca} ightarrow ^{48}\text{Sc}$	0^{+}	6^{+} (gs)	$\sim 0\%$	6	None	ISM
$^{50}V ightarrow ^{50}Cr$	6^{+}	$2^{+}(\bar{1})$	$\sim 0\%$	4	Weak	ISM
$^{60}\mathrm{Fe} ightarrow ^{60}\mathrm{Co}$	0^{+}	2+ (1)	100%	2	None	ISM
$^{85}\mathrm{Br} ightarrow ^{85}\mathrm{Kr}$	$3/2^{-}$	$9/2^{+}$ (gs)	$\sim 0\%$	3	Moderate	MQPM
$^{87}\mathrm{Rb} ightarrow ^{87}\mathrm{Sr}$	$3/2^{-}$	$9/2^{+}$ (gs)	100%	3	Moderate	MQPM, ISM
$^{92}\text{Rb} ightarrow ^{92}\text{Sr}$	0^{-}	0^{+} (gs)	95%	1	Weak	ISM
$^{93}{ m Zr} ightarrow ^{93}{ m Nb}$	$5/2^{+}$	$9/2^{+}$ (gs)	$5 \leq \%$	2	Weak	MQPM
$^{93}\mathrm{Y} ightarrow ^{93}\mathrm{Zr}$	$1/2^{-}$	$1/2^+$ (1)	2%	1	Moderate	ISM
$^{94}\text{Nb} \rightarrow ^{94}\text{Mo}$	6^{+}	4+ (2)	100%	2	Strong	NSM
$^{95}\mathrm{Sr} ightarrow ^{95}\mathrm{Y}$	$1/2^{+}$	$1/2^{-}$ (gs)	56%	1	Weak	ISM
$^{96}{ m Zr} ightarrow ^{96}{ m Nb}$	0^{+}	4+ (2)	$\sim 0\%$	4	None	ISM
$^{96}{ m Zr} ightarrow ^{96}{ m Nb}$	0^{+}	6 ⁺ (gs)	$\sim 0\%$	6	Strong	ISM
$^{96}\mathrm{Y} ightarrow ^{96}\mathrm{Zr}$	0^{-}	0^{+} (gs)	96%	1	weak	ISM
$^{97}{ m Zr} ightarrow ^{97}{ m Nb}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{97}\mathrm{Y} ightarrow ^{97}\mathrm{Zr}$	$1/2^{+}$	$1/2^{-}$ (gs)	40%	1	Weak	ISM
$^{98}\mathrm{Tc} ightarrow ^{98}\mathrm{Ru}$	6^{+}	4+ (3)	100%	2	Strong	ISM
$^{99}\text{Tc} \rightarrow ^{99}\text{Ru}$	$9/2^{+}$	$5/2^{+}$ (gs)	100%	2	Strong	MQPM, ISM

Transition	$J_i^{\pi_i}$ (gs)	$J_f^{\pi_f}(n_f)$	Branching	Κ	Sensitivity	Nucl. model
$^{101}\text{Mo} \rightarrow ~^{101}\text{Tc}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{113}\text{Cd} \rightarrow ^{113}\text{In}$	$1/2^{+}$	$9/2^{+}$ (gs)	100%	4	Strong	MQPM, ISM, IBFM-2
$^{115}\text{Cd} \rightarrow ^{115}\text{In}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
115 In $\rightarrow \ ^{115}$ Sn	$9/2^{+}$	$1/2^+$ (gs)	100%	4	Strong	MQPM, ISM, IBFM-2
$^{117}\text{Cd} \rightarrow ^{117}\text{In}$	$1/2^{+}$	$9/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{119}\text{In} \rightarrow ^{119}\text{Sn}$	$9/2^{+}$	$1/2^{+}$ (gs)	$\sim 0\%$	4	Strong	MQPM
$^{123}\text{Sn} \rightarrow ^{123}\text{Sb}$	$11/2^{-}$	$1/2^+$ (4)	$\sim 0\%$	5	Weak	MQPM
$^{125}\mathrm{Sb} ightarrow ^{125}\mathrm{Te}$	$7/2^{+}$	$9/2^{-}(3)$	7.2%	1	None	MQPM
$^{126}\text{Sn} \rightarrow ^{126}\text{Sb}$	0^{+}	$2^{+}(5)$	100%	2	None	ISM
$^{133}\text{Sn} \rightarrow ^{133}\text{Sb}$	$7/2^{-}$	$7/2^{+}$ (gs)	85%	1	Weak	ISM
$^{134}\text{Sb} \rightarrow ^{134}\text{Te}$	0-	0^{+} (gs)	98%	1	Weak	ISM
$^{135}\mathrm{Cs} ightarrow ^{135}\mathrm{Ba}$	$7/2^{+}$	$3/2^{+}$ (gs)	100%	2	None	MQPM
$^{135}\text{Te} \rightarrow ^{135}\text{I}$	$7/2^{-}$	$7/2^{+}$ (gs)	62%	1	Weak	ISM
$^{137}\mathrm{Cs} ightarrow ^{137}\mathrm{Ba}$	$7/2^{+}$	$3/2^{+}$ (gs)	5.4%	2	None	MQPM, ISM
$^{137} ext{Xe} ightarrow ^{137} ext{Cs}$	$7/2^{-}$	$7/2^{+}$ (gs)	67%	1	Weak	ISM
$^{138}\mathrm{Cs} ightarrow ^{138}\mathrm{Ba}$	3-	3+ (1)	44%	1	Strong	ISM
$^{139}\mathrm{Ba} ightarrow ^{139}\mathrm{La}$	$7/2^{-}$	$7/2^{+}$ (gs)	70%	1	Weak	ISM
$^{139}\mathrm{Cs} ightarrow ^{139}\mathrm{Ba}$	$7/2^{+}$	$7/2^{-}$ (gs)	85%	1	Weak	ISM

-

Transition	$J_i^{\pi_i}$ (gs)	$J_f^{\pi_f}(n_f)$	Branching	Κ	Sensitivity	Nucl. model
$\begin{array}{c} {}^{141}\text{Ce} \rightarrow {}^{141}\text{Pr} \\ {}^{142}\text{Pr} \rightarrow {}^{142}\text{Nb} \\ {}^{143}\text{Pr} \rightarrow {}^{143}\text{Nb} \\ {}^{159}\text{Gd} \rightarrow {}^{159}\text{Tb} \\ {}^{161}\text{Tb} \rightarrow {}^{161}\text{Dy} \\ {}^{169}\text{Er} \rightarrow {}^{169}\text{Tm} \\ {}^{210}\text{Bi} \rightarrow {}^{210}\text{Po} \\ {}^{211}\text{Pb} \rightarrow {}^{211}\text{Bi} \end{array}$	$7/2^{-}$ 2^{-} $7/2^{+}$ $3/2^{-}$ $3/2^{+}$ $1/2^{-}$ 1^{-} $9/2^{+}$	$5/2^{+} (gs)$ $2^{+} (1)$ $7/2^{-} (gs)$ $5/2^{+} (1)$ $5/2^{-} (1)$ $3/2^{+} (1)$ $0^{+} (gs)$ $9/2^{-} (gs)$	31% 3.7% 100% 26% ~0% 45% 100% 91%	1 1 1 1 1 1 1 1 1	Weak Weak Weak None None Strong Weak	MQPM ISM ISM MQPM MQPM MQPM ISM ISM
$^{213}\text{Bi} \rightarrow \ ^{213}\text{Po}$	9/2-	$9/2^+$ (gs)	66%	1	Weak	ISM

Results from:

Effects of a quenched
$$g_A$$

on NMEs of $0\nu\beta\beta$ decays:

$$\left[T_{1/2}^{(0\nu)}\right]^{-1} = (g_{A,0\nu})^4 G^{(0\nu)} \left|M^{(0\nu)}\right|^2 \left(\frac{\langle m_\nu \rangle}{m_e}\right)^2$$

$$M^{(0
u)} = M^{(0
u)}_{
m GT} - \left(rac{g_{
m V}}{g_{
m A,0
u}}
ight)^2 M^{(0
u)}_{
m F} + M^{(0
u)}_{
m T}$$

Example: $0\nu\beta\beta$ NMEs of ⁷⁶Ge, effect on the half-life

- Jiao et al.: Phys. Rev. C 96 (2017) 054310 (GCM+ISM)
- Menendez *et al.*: Nucl. Phys. A 818 (2009) 139 (ISM)
- Senkov *et al.*: Phys. Rev. C 93 (2016) 044334 (ISM)
- Barea *et al.*: Phys. Rev. C 91 (2015) 034304 (IBM-2)
- Suhonen: Phys. Rev. C 96 (2017) 055501 (pnQRPA + isospin restoration + data on $2\nu\beta\beta$)

Novel application of electron spectra of forbidden decays

Try to investigate:

Reactor- $\bar{\nu}$ anomaly

and the spectral shoulder

See: L. Heyen, J. Kostensalo, N. Severijns, J.S., First forbidden transitions in the reactor anomaly, arXiv:1805.12259 [nucl-th] 30 May 2018

Results from the analyses (see the parallel talk of Joel Kostensalo on Tuesday evening!)

Taking into account the (first-forbidden) decays of ⁸⁶Br(0⁺), ⁸⁶Br(2⁺), ⁸⁷Se, ⁸⁸Rb, ⁸⁹Br(3/2⁺), ⁸⁹Br(5/2⁺), ⁹⁰Rb, ⁹¹Kr(5/2⁻), ⁹¹Kr(3/2⁻), ⁹²Rb, 92 Y, 93 Rb, 94 Y(0⁺), 94 Y(0⁺), ⁹⁵Rb(7/2⁺), ⁹⁵Rb(3/2⁺), ⁹⁵Sr, ⁹⁶Y, ⁹⁷Y, ⁹⁸Y, ¹³³Sn, ^{134m}Sb(6⁺), ^{134m}Sb(6⁺?), ¹³⁵Te, ^{136m}I, ¹³⁷I, ¹³⁸L ¹³⁹Xe, ¹⁴⁰Cs, ¹⁴²Cs decreases the $\bar{\nu}$ flux by 5%

The spectral sholder appears due to forbidden spectral corrections

Conclusions and Outlook

Conclusions:

- The long chain of ISM calculations and the recent pnQRPA and IBM-2 calculations of Gamow-Teller β decays and 2νββ decays are (surprisingly!) consistent with each other and clearly point to a *A*-dependent quenched g_A
- Studies on GT 1⁺ and SD 2⁻ β decays shed light on the suppression chain: quasiparticle NME \rightarrow pnQRPA NME \rightarrow experimental NME
- Studies of high-forbidden unique β decays ($F \ge 2$) \rightarrow uniform quenching \rightarrow speculations about modifications in the $0\nu\beta\beta$ -decay half-lives
- The spectrum-shape method (SSM) for forbidden non-unique β decays is a robust tool (largely independent of the nuclear model, the assumed Hamiltonian and mean field) to seach for the effective value of g_A and to try to solve other problems, like those related to the reactor- $\bar{\nu}$ spectra.

Outlook:

- Urge measurements of the β spectra for the interesting decays amenable to the SSM
- The effective value of g_A is involved in all weak processes, and thus has impact on studies of rare β decays, neutrino physics and astrophysics