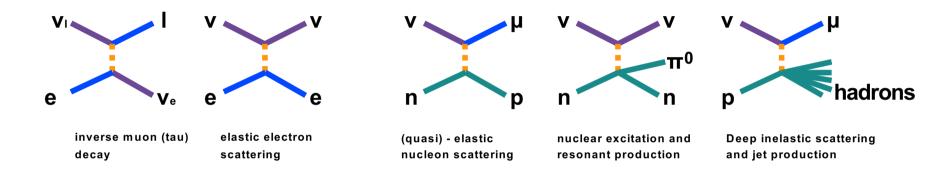
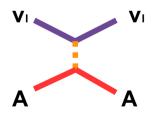
Coherent Neutrino Scattering and the Status of CONUS


Manfred Lindner


Coherent Neutrino Scattering

The Standard Model has six different interactions of neutrinos with matter:

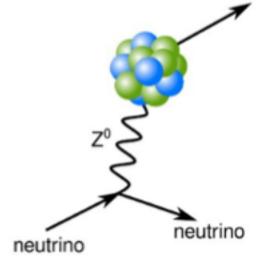
5 have already been detected

1 has so far not been detected:

Coherent neutrino-nucleus scattering: CEvNS

- conceptually important
- very useful to test new physics

D.Z. Freedman, Phys.Rev. 9 (1974) 5


A. Drukier, Leo Stodolsky, Phys.Rev. D30 (1984) 2295 (1984), DOI: 10.1103/PhysRevD.30.2295

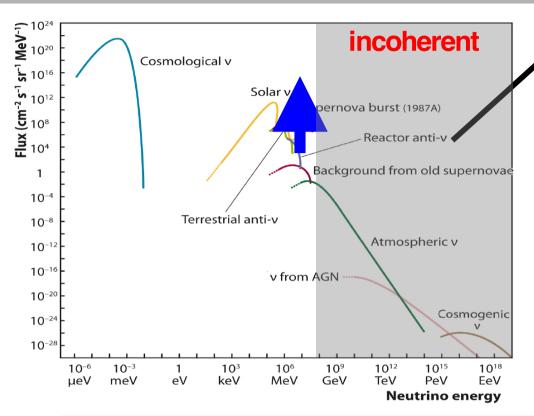
Coherent Neutrino Scattering

Z-exchange of a neutrino with nucleus

- nucleus recoils as a whole
- \rightarrow coherent up to E_v~ 50 MeV

$$Q_w = N - (1 - 4\sin^2\theta_w)Z \sim N$$

$$\frac{d\sigma(E_{\nu}, T)}{dT} = \frac{G_f^2}{4\pi} Q_w^2 M \left(1 - \frac{MT}{2E_{\nu}^2} \right) F(Q^2)^2 \sim 1$$


$$\sim N^2$$

$$N \simeq 40 \implies N^2 = 1600 \implies detector mass 10t \implies few kg$$

Important: Coherence length ~ 1/E

- → need neutrinos below O(50) MeV for typical nuclei
- \rightarrow low energy $E_v \leftarrow \rightarrow$ lower cross sections $\leftarrow \rightarrow$ maximal flux!

The Neutrino Spectrum

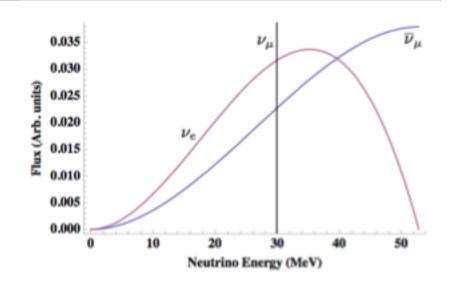
~KamLAND: 10 GW at a distance of 150 km ca. ~4% of the thermal power P 3.9 GW → ca. 150 MW in v's

close to power reactors: flux $\Phi \sim P/R^2$ ca. 150 kW/m² at 10m distance

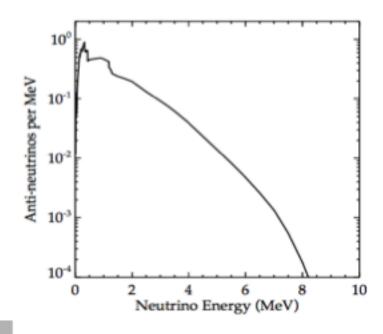
- + beams
- cross section grows with neutrino energy

source	flux	
reactor neutrinos (3 GW, at 10m distance)	5 x 10^13	/cm^2/s
solar neutrinos (on Earth)	6 x 10^10	/cm^2/s
supernova (50 kpc Abstand, for O(10) seconds)	~ 10^9	/cm^2/s
geo-neutrinos (on the Earth's continental surface)	6 x 10^6	/cm^2/s

Two Paths


Low energy v's from accelerators:

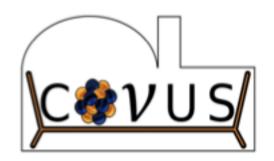
- π -decay-at-rest (DAR) ν source
- different flavors produced
- relatively high recoil energies
- → close to de-coherence
- → 1st observation of CEVNS by COHERENT in 2017


Reactors:

- lower v energies than accelerators
- lower cross section higher flux
- different flavor content implications for probes of new physics

→ CONUS

Anderson et al., 1201.3805



Vogel et al. 1981, Kopeikin 2012

The CONUS Experiment

Combine:

- highest neutrino flux → close to power reactor
- lowest detection threshold >> R&D

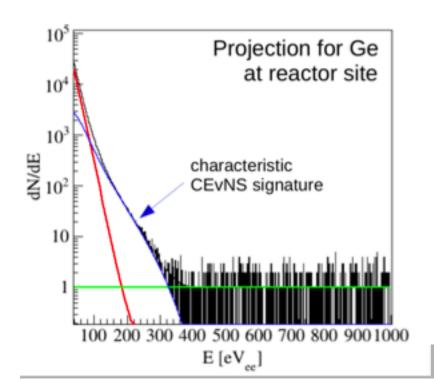
COherent NeUtrino Scattering experiment

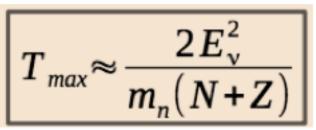
C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg, T. Rink, T. Schierhuber, H. Strecker

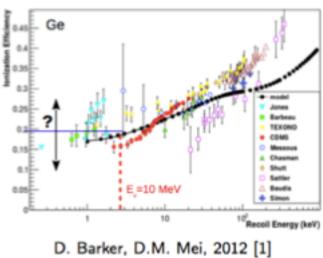
- Max Planck Institut für Kernphysik (MPIK), Heidelberg

K. Fülber, R. Wink

- Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

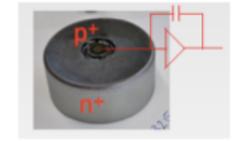



Experimental Requirements


- measure nuclear recoil energy T for $E_v = 10 \text{ MeV} \rightarrow T_{\text{max}} \sim 3 \text{ keV}$ (in Ge)
- energy loss due to quenching (Lindhard)
 Quenching Factor (QF)

QF down to 0.2 in Ge \rightarrow 600 eV

→ include systematic uncertainty

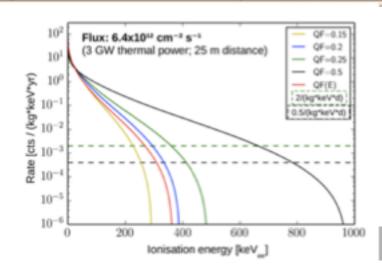


detection of CEvNS signal:

- highest v flux
- low noise threshold (sub keV)
- low background
 - radio-pure materials
 - "virtual depth" shielding

Event Rates for a conceivable Experiment

1kg detector: BEGE or SAGE type germanium diode Distance D=15 m; 3.9GW ←→ flux = 3.12*10¹³/cm²/s Background ~ 1/kg/keV/day



S[1/yr] / B[1/ye] / R=S/B

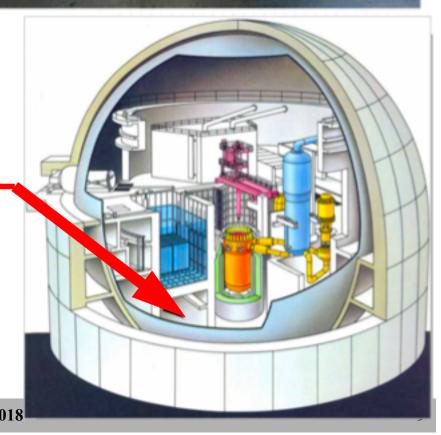
Pulser/Threshold [eV]	QF = 0.15	QF = best fit	QF = 0.25	
60 / 180	971 / 61 / 15.8	2 173 / 85 / 25.6	9 194 / 127 / 72.3	
65 / 195	588 / 58 / 10.1	1 488 / 81 / 18.4	6 962 / 123 / 56.4	
70 / 210	352 / 55 / 6.4	1 014 / 78 / 13.0	5 272 / 120 / 44/0	
75 / 225	207 / 52 / 4.0	686 / 75 / 9.2	3 989 / 117 / 34.2	
80 / 240	120 / 49 / 2.5	460 / 71 / 6.5	3 012 / 113 / 26.7	
85 / 255	69 / 46 / 1.5	306 / 68 / 4.5	2 269/110/20.7	

- → Not trivial, but doable on a short time scale!
- → Even a 1kg detector can detect CEvNS
- → Upscaling...

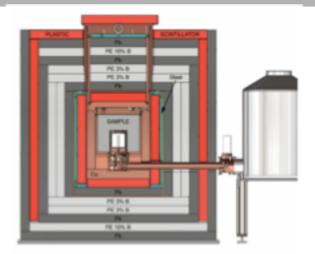
Maneschg, Rink, Salathe, ML

The CONUS Reactor Site

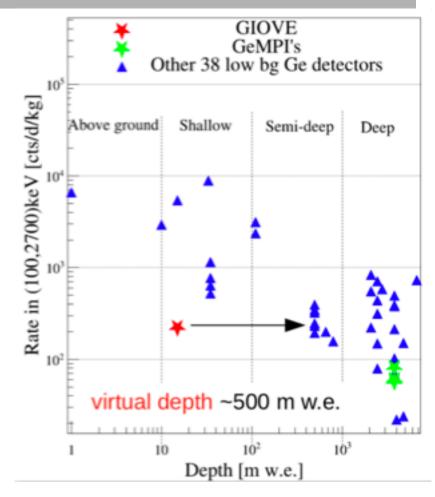
The Brokdorf (Germany) nuclear power plant:


thermal power 3.9 GW_{th} detector @ d=17m

→ v flux: 2.4 x 10¹³/cm²/s very high duty cycle

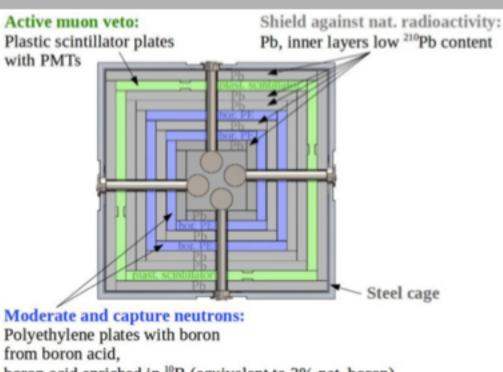


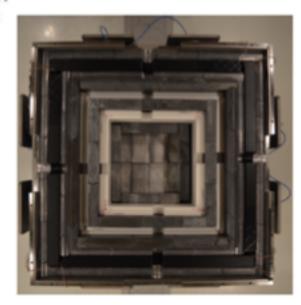
ightharpoonup very intense integral neutrino flux E_{ν} up to $\sim 8~MeV \rightarrow$ fully coherent


- overburden 10-45 m.w.e
- access during reactor operation
- measurements of n background
- ON/OFF periods
 - **→** backgd. only measurement

The GIOVE active Shield

- R&D at MPIK
- main purpose: material screening
 @ shallow depth (15 mwe)
- coaxial HPGe detector (m_{act} = 1.8 kg)
- radio-pure passive shielding
 - Pb, B-doped PE, μ-veto, OFHC Cu
- active veto: optimized to reduce $\mu 's$ and $\mu \text{-induced signals}$
 - plastic scintillators with PMTs
 - 99% muon veto efficiency (dead time ~2%)


"virtual depth" → UG projects close to surface


G.Heusseretal., Eur. Phys. J.

(²²⁶Ra: 70μBq/kg, ²²⁸Ra: 110μBq/kg, ²²⁸Th 50μBq/kg)

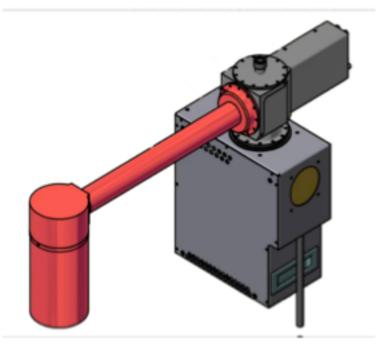
C(2015)75:531

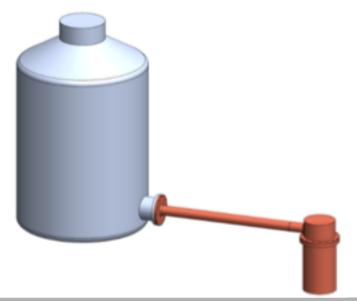
The CONUS Shield

boron acid enriched in 10B (equivalent to 3% nat. boron)

- inner layer: Pb \Rightarrow suppress μ -induced bremsstrahlung continuum
- careful material selection (screening @MPIK & MPIK-GeMPIs@LNGS)
- radon mitigation without N2 flushing
- testing at Low Level Laboratory at MPIK (15 mwe):
 - mechanical tests
 - muon veto performance (with coaxial high-purity detector CONRAD)
 - radiopurity of shield (with CONRAD)

Detectors

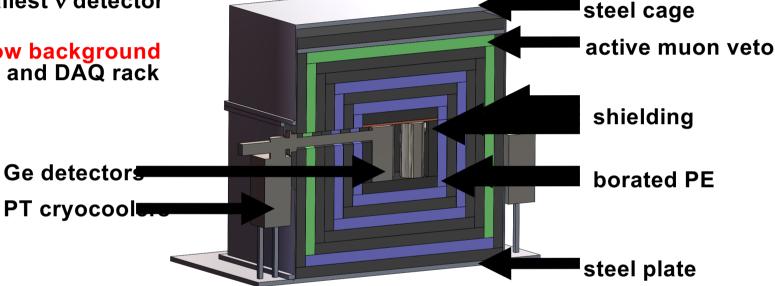

CONUS 1-4


- p-type point contact HPGe
- 4x 1kg active mass 3.85kg
- Spec for pulser res. (FWHM)_< 85eV

 → noise threshold_< 300eV
- electriocal PT-cryocoolers
- very low bg components

CONRAD

- very low bg components
- p-type semi-coax HPGe
- 2.47kg, N2 cooling
- extremely low bg components



The CONUS Detector

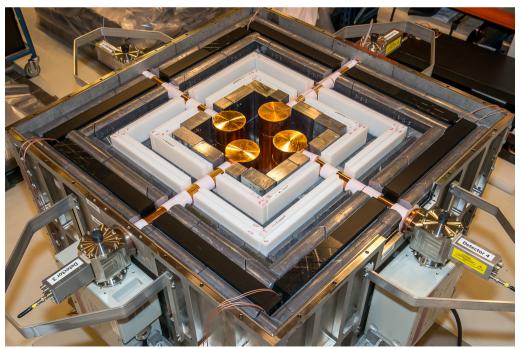
Components:

- about 1.2 m
- active/passive shielding
- 4 Germanium detectors
- 4kg → smallest v detector
- PT coolers
- → all ultra low background
- electronics and DAQ rack

Successful combination of three essential improvements:

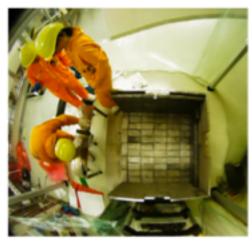
- new (best) active/passive shielding (GIOVE @ MPIK = "virtual depth")
- new detectors with very low thresholds
- site with highest neutrino flux

Start of the project summer 2016


Test Assembly and Installation @ Reactor

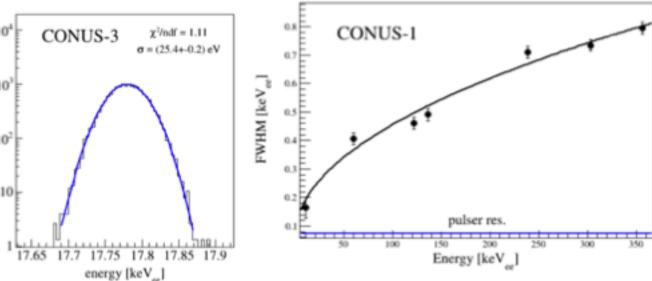
assembly at MPIK UG lab

- → characterization
- → commissioning


installation @ Brokdorf

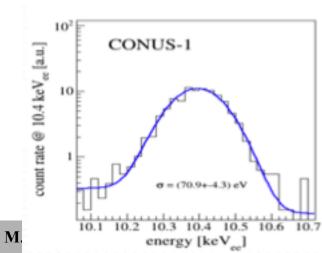
- → full assembly
- → commissioning

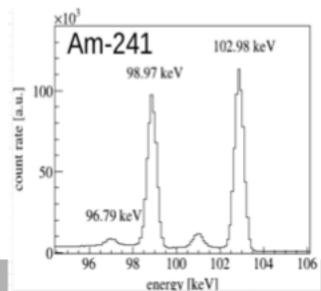
Energy Resolution


Commissioning @ MPIK

count rate [a.u.]

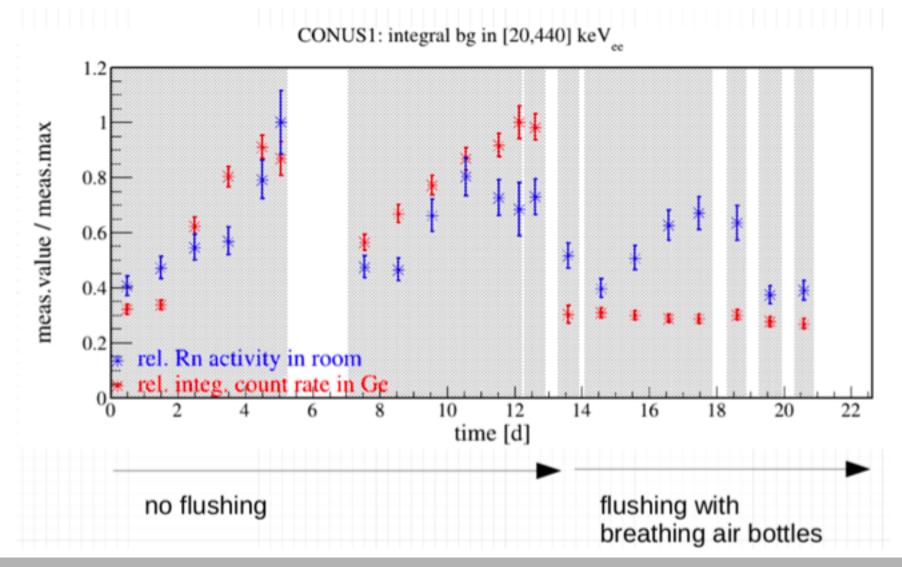
- pulser resolution


Detector	Pulser FWHM _P [eV _{ee}]
CONUS-1	74±1
CONUS-2	75±1
CONUS-3	59±1
CONUS-4	74±1


all within specs moise edge ≈3xFWHMP - energy resol. vs energy

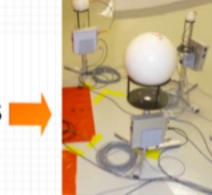
- Enhanced gamma-line separation

- X-ray peak resol.:

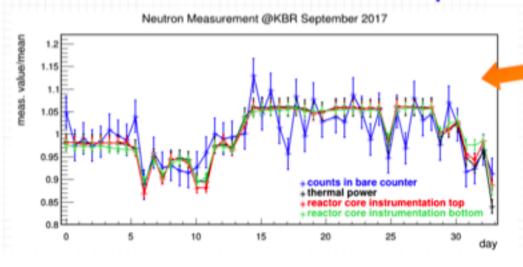


- → background analysis
- → detector characterisation
 (e.g. active volume via
 Am-241 source) ...
- \rightarrow energy scale calibration

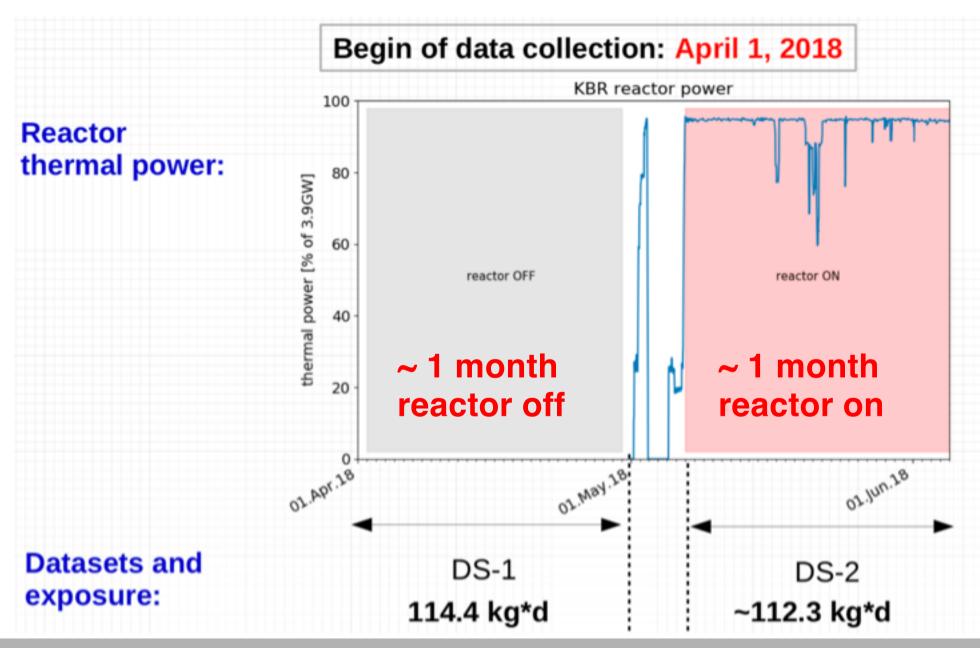
Radon Mitigation @ Reactor Site


radon at reactor site: closed room, thick concrete walls → 100-300 Bq/m³ counter measure: hermetical sealing + flush with breating air bottles ~1 l/min

Neutron Spectroscoy @ Reactor Site


Potential neutron background: Ge recoils from fast neutrons mimic CEvNS signals

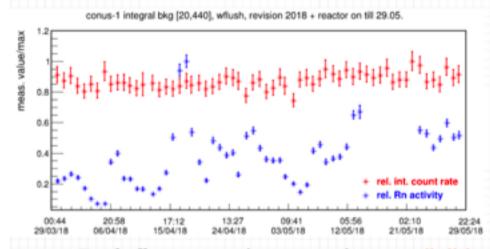
Corr. with	
therm. power	
. No	
No)
No	Outside
No	CONUS
Yes	shield
	therm. power . No No No No No


Neutron spectrometry on-site with **NEMUS** by PTB [7]

Results from n measurements at experimental site:

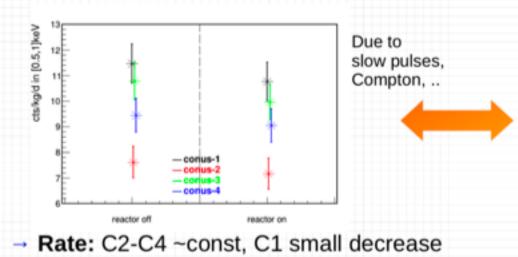
- Neutron field highly thermalized (>80%),
 correlated with thermal power
 - → fully absorbed by B-PE layers (MC)
- 2. Residual fluence:
 - if at all epithermal from reactor
 - cosmic 100 MeV n: negligible
 - reactor-correlated fast n inside shield negligible

Data Taking

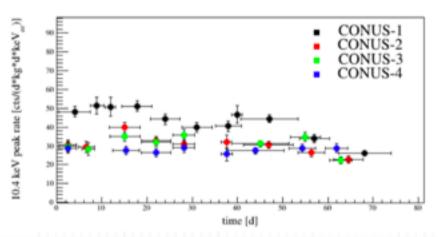


M. Lindner, MPIK

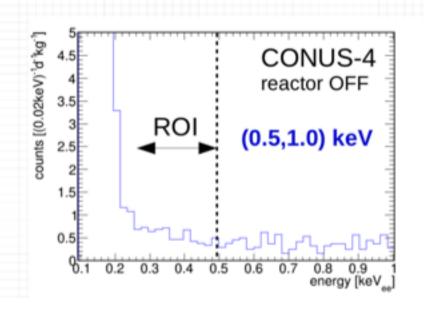
NDM 2018, June 30, 2018


Background Stability in DS-1 & DS-2

1. Bg rate stability in [20,440] keV

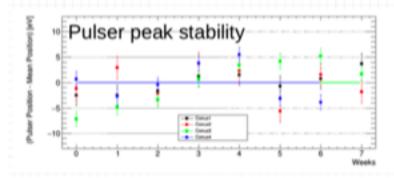


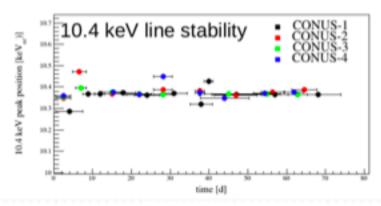
→ Rn influence at low energies: negligible


3. Bg stability in interval (0.5,1.0) keV

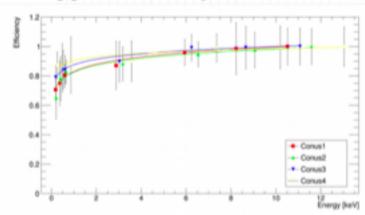
2. Rate stability of Ge line at 10.4 keV

→ Rate: C2-C4 ~const, C1 small decrease

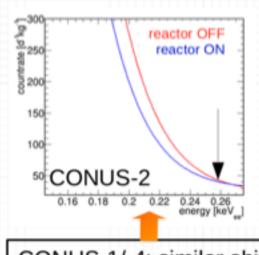


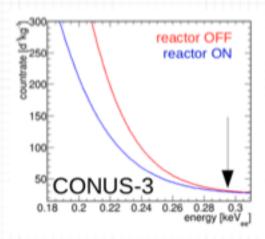

Detector Performance in DS-1 & DS-2

1. Pulser resolution


H	Detector	Pulser FWHM _P [eV _{ee}]
Ħ	CONUS-1	69±1
Ħ	CONUS-2	77±1
Ŧ	CONUS-3	64±1
	CONUS-4	68±1

2. Energy scale stability





3. Trigger efficiency close to threshold

4. Noise threshold stability

CONUS-1/-4: similar shift for reactor ON/OFF

First quick Rate-Only Analysis

→ Talk by W. Maneschg @ NEUTRINO 2018

Definition of cuts from reactor OFF time:

- energy scale calibration
- quality cuts (noise/spurious event red.)
- conservative ROI for CEvNS window (individual for every detector)

Definition of efficiencies:

- active volume: (96+-2)%
- muon AC ind. trg. Efficiency: (98+-1)%
- threshold trg. Efficiency (individual for every detector)

Rate comparison (all detectors):

	counts	counts/(d·kg) (*)
reactor OFF (114 kg*d)	582	
reactor ON (112 kg*d)	653	
ON-OFF (exposure corr.)	84	0.94
Significance	2.4 σ	2.3σ

Some systematics still under study

(*) Including stat. uncertainty and above efficiencies

→ observe excess which matches expected CEvNS range

Future: CONUS100

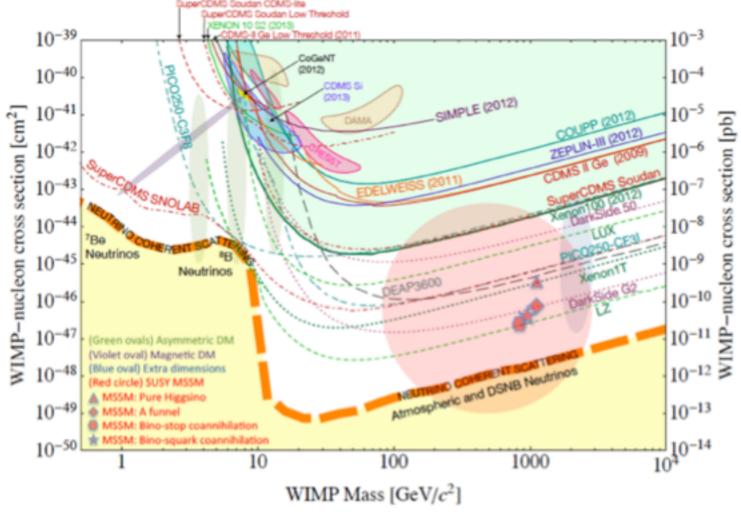
Upscaling to 100kg → **very interesting Potential** high statistics \rightarrow precision \rightarrow various interesting topics...

assume:

100kg detector 4GW @ 15m flux $\sim 3*10^{13}$ /cm²/s background 1/kg/day

BSMsens=ΔS/S

Puler/Thresh [eV]	QF=0.15	BSMsens	QF=BF	BSMsens	QF=0.25	BSMsens
40 / 120	647 474/ 8291 / 78.1	1*10 ⁻³	965 999/ 10 775/89.7	1*10 ⁻³	2.9*10 ⁶ / 15 158 / 189	6*10 ⁻⁴
45 / 135	407 092/ 8 036 / 50.7	2*10 ⁻³	664 316/ 10 519/63.2	1*10 ⁻³	2.1*10 ⁶ / 14 866 / 144	7*10 ⁻⁴
50 / 150	254 745/ 7780 / 32.7	2*10 ⁻³	458 072/ 1 0264/44.6	1*10 ⁻³	1.6*10 ⁶ / 14 574 / 84.9	8*10 ⁻⁴
55 / 165	158 109/ 7 524 / 21.0	3*10 ⁻³	315 843/ 9 971/31.7	2*10 ⁻³	1.2*10 ⁶ / 14 318 / 84.9	9*10 ⁻⁴
60 / 180	97 066/ 7 305 / 13.3	3*10 ⁻³	217 277/ 9 716/22.4	2*10 ⁻³	919 435/ 13 026 / 65.6	1*10 ⁻³
65 / 195	58 827/ 7 049 / 8.3	4*10 ⁻³	148 848/ 9 460/15.7	3*10 ⁻³	696 196/ 13 770 / 50.6	1*10 ⁻³
70 / 210	35 154/ 6 830 / 5.1	5*10 ⁻³	101 386/ 9 204/11.0	3*10 ⁻³	527 204/ 13 514 / 39.0	1*10 ⁻³
75 / 225	20 711/ 6 575 / 3.2	7*10 ⁻³	68 573/ 8 949/7.7	4*10 ⁻³	398 867/ 13 222 / 30.2	2*10 ⁻³
80 / 240	12 042/ 6 355 / 1.9	9*10 ⁻³	46 008/ 8 730/5.27	5*10 ⁻³	301 231/ 12 966 / 23.2	2*10 ⁻³
85 / 255	6 924/ 6 136 / 1.1	1*10 ⁻²	30 598/ 8 474/3.6	6*10 ⁻³	226 910/ 12 711 / 17.9	2*10 ⁻³


Maneschg, Rink, Salathe, ML BSMsens=AS/S

S[1/yr] / B[1/yr] / R=S/B

CEVNS becomes a Tool for other Topics

DM connection:

- DM experiments assume coherent DM scattering \rightarrow test of CvS
- 2) Neutrino floor of direct DM experiments *IS* due to CvS

M. Lindner, MPIK 23

Searches for new Physics: Magnetic Moments

Magnetic moment for minimal ν masses are very tiny:

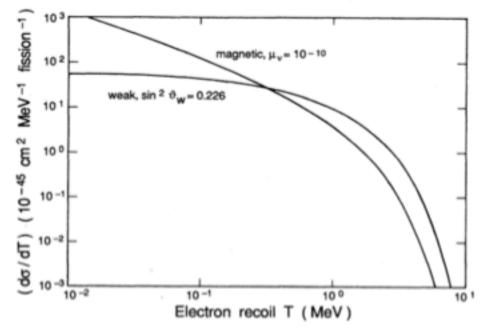
Dirac:

$$\mu_{kk}^D \simeq 3.2 * 10^{-19} \left(\frac{m_k}{\text{eV}}\right) \mu_B$$

Majorana:

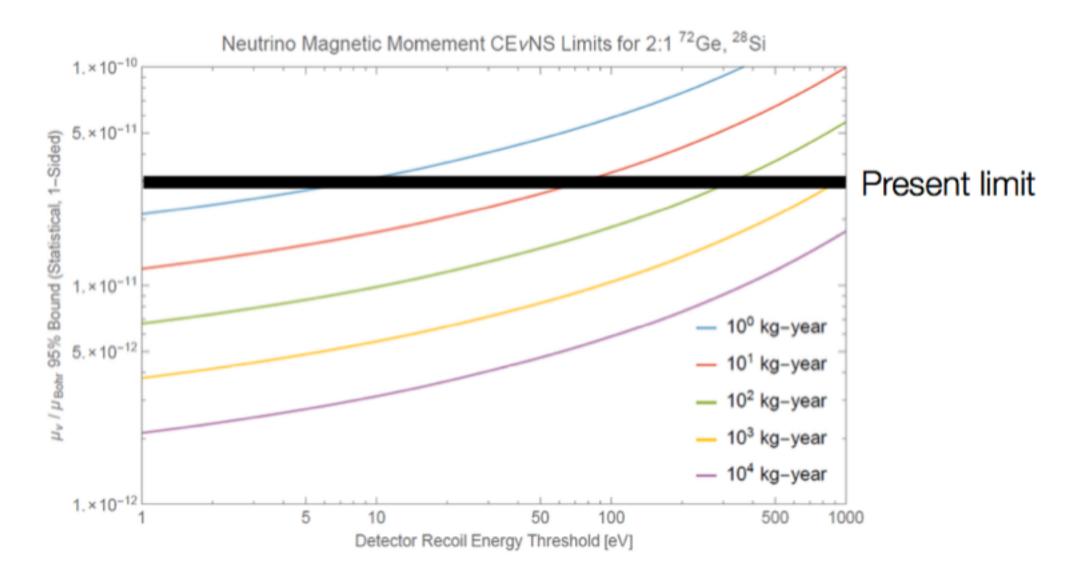
$$\mu_{ll'}^M \lesssim 4 * 10^{-9} \mu_B \left(\frac{M_{ll'}^M}{\mathrm{eV}}\right) \left(\frac{\mathrm{TeV}}{\Lambda}\right)^2 \left|\frac{m_{ au}^2}{m_l^2 - m_{l'}^2}\right|$$

New physics \rightarrow detectable enhancements due to new physics:


SUSY, extra dimensions, ...

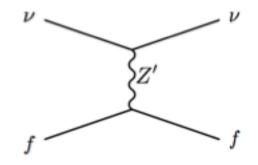
At least new best limits:

e-scattering (GEMMA) and astrophysics:


$$\mu_{\nu} < 3 \times 10^{-11} \mu_b$$

Scattering on protons coherently enhanced: → detectable at low energy (Vogel & Engel 1989)

$$\frac{d\sigma}{dT_{\rm R}}\Big|_{\mu_{\rm R}} = \frac{\pi\alpha^2\mu_{\nu}^2}{m_e^2} \left[\frac{1 - T_{\rm R}/E_{\nu}}{T_{\rm R}} + \frac{T_{\rm R}}{4E_{\nu}^2} \right]$$


Potential for Magnetic Moments

100 kg * 5 y = 500 kg-year; low threshold \Rightarrow one order of magnitude better

Searches for new Physics: NSI's

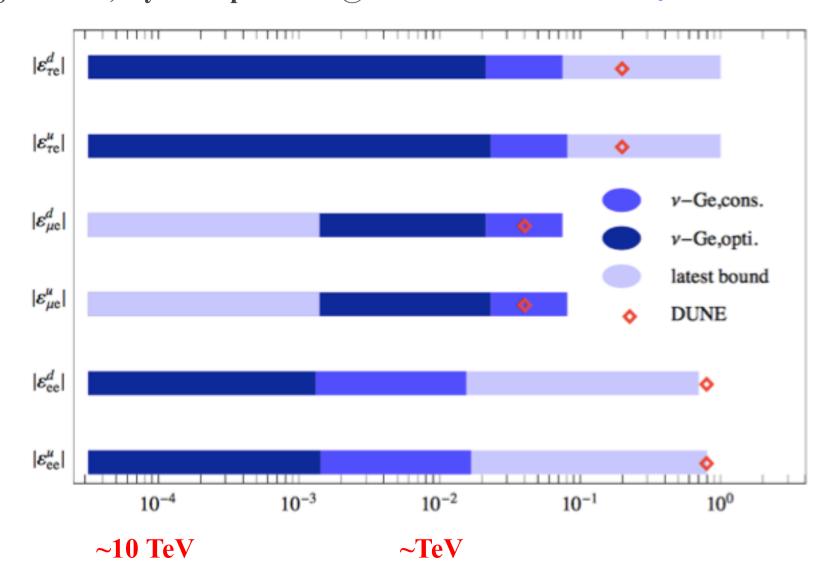
NSI's ←→ new physics at high scales Which are integrated out

Z', new scalars, ...
$$\rightarrow \epsilon_{ij}$$

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

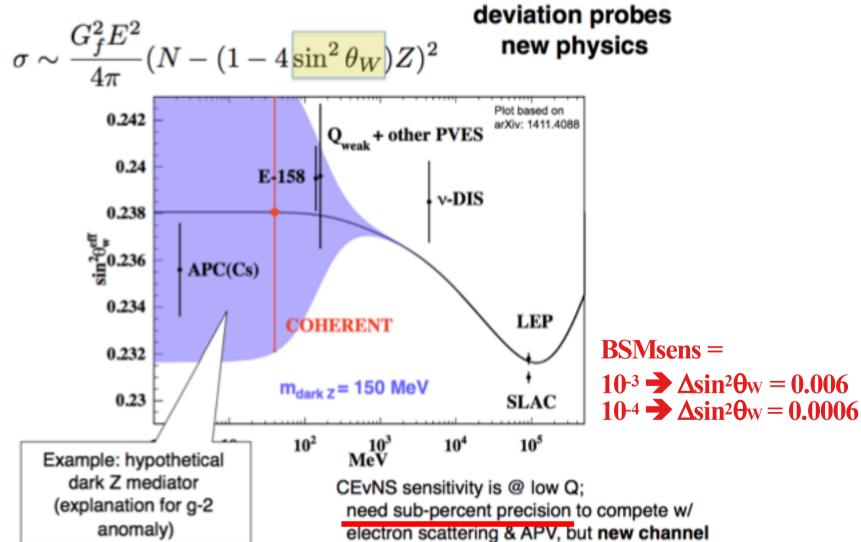
$$\frac{d\sigma}{dT}(E_{\nu},T) = \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2} \right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \sum_{\alpha = \mu, \tau} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\}$$

Barranco et al. 2005


$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

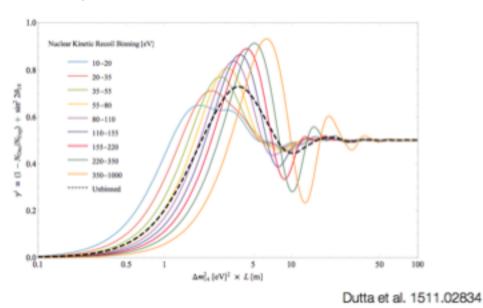
→ Competitive method to test TeV scales $ε = 0.01 \leftarrow →$ TeV scales

NSI-Potential

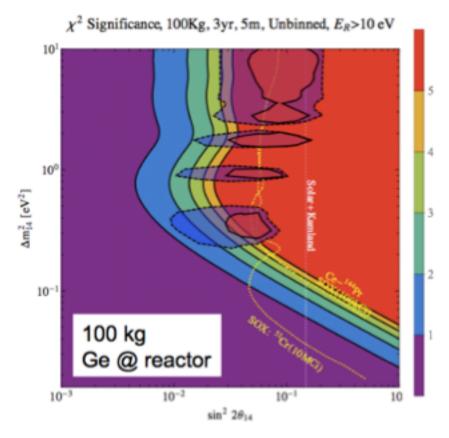

100kg detector, 5 years operation @ 4GW M

ML, W. Rodejohann, X.Xu

Precise Measurement of sin²θ_w at low E


Clean SM prediction for the rate \rightarrow measure $\sin^2\theta_w$ eff;

slide adopted from K. Scholberg


Searches for new Physics: Sterile v's

- Various indications / hints for sterile neutrinos
- Tensions with cosmology?
- eV hints with small mixing
- keV warm dark matter with tiny mixing < 10⁻⁸x
- ...different mass ranges
- any sterile state would motivate more...

 $P(\nu_{\alpha} \rightarrow \nu_{\alpha}) = 4|U_{\alpha 4}|^2(1 - |U_{\alpha 4}|^2)\sin^2(1.27\Delta m_{41}^2 L/E)$

- → test if / how flux deviates from 1/R²
- → time scales compared to other projects

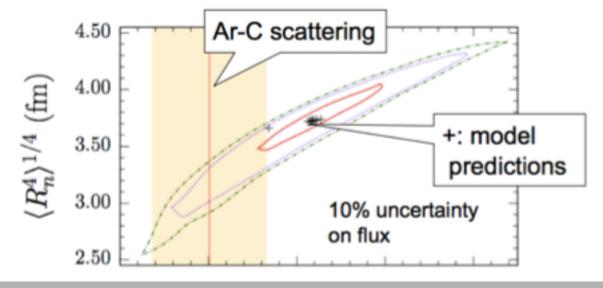
B. Dutta et al, arXiv:1511.02834

Nuclear Physics with coherent Scattering

Remember: DAR sources close to decoherence $\leftarrow \rightarrow$ combine with reactor measurements

we can start to explore nuclear form factors

P. S. Amanik and G. C. McLaughlin, J. Phys. G 36:015105

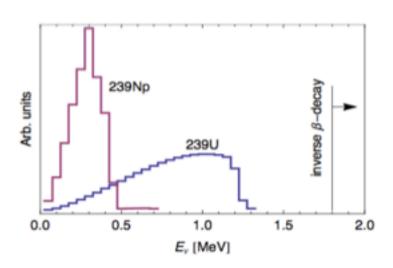

K. Patton et al., PRC86 (2012) 024612

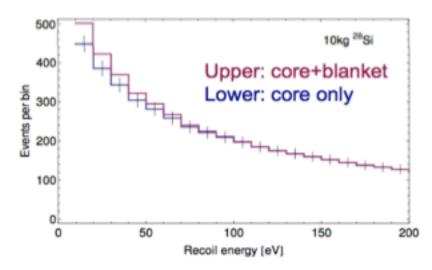
$$\frac{d\sigma}{dT}(E,T) = \frac{G_F^2}{2\pi}M\left[2 - \frac{2T}{E} + \left(\frac{T}{E}\right)^2 - \frac{MT}{E^2}\right]\frac{Q_W^2}{4}F^2(Q^2) = 0$$

Form factor: encodes information about nuclear (primarily neutron) distributions

Fit recoil **spectral shape** to determine the F(Q²) moments (requires very good energy resolution, good systematics control)

Example: tonne-scale experiment at πDAR source




Nuclear Safeguarding

P. Huber, talk at NA/NT workshop, Manchester, May 2015

Presence of **plutonium breeder blanket** in a reactor has v spectral signature

$$^{238}\mathrm{U} + n
ightarrow ^{239}\mathrm{U} \stackrel{eta}{
ightarrow} ^{239}\mathrm{Np} \stackrel{eta}{
ightarrow} ^{239}\mathrm{Pu}$$

v spectrum is below IBD threshold

- → accessible with CEvNS, but require low recoil energy threshold
- a) Of interest to IAEA
- b) Could be used as an extra "sensor" in reactors (close to core $\longleftrightarrow 1/R^2$)
 - **→** safety, optimal burn-up = neutrino technology

Summary

- CEVNS was 1st observed by COHERENT at E_ ~ 30-50 MeV
- CONUS starts to see CEVNS with reactor neutrinos (few MeV)
 - 1st rate only results from one month of reactor on
 - shape... more significant to be published soon
 - detector & reactor are running more statistics soon
- CEnNS will become an interesting tool
 - upscaling of existing technology to O(100kg)

various physics topics:

- coherent v scattering ←→ DM & WIMP scattering, neutrino floor
- search / limits for magnetic moments
- search for new physics: NSIs, steriles, $\sin^2\theta$ w, sterile osc. searches
- nuclear form factors with neutrinos $F(q^2)$
- reactor v spectrum & anomalies
- reactor monitoring: safe-guarding, optimization
 - → very interesting potential of CEvNS