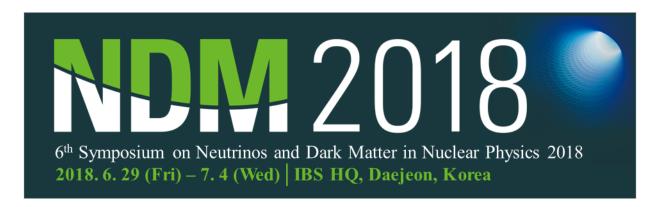
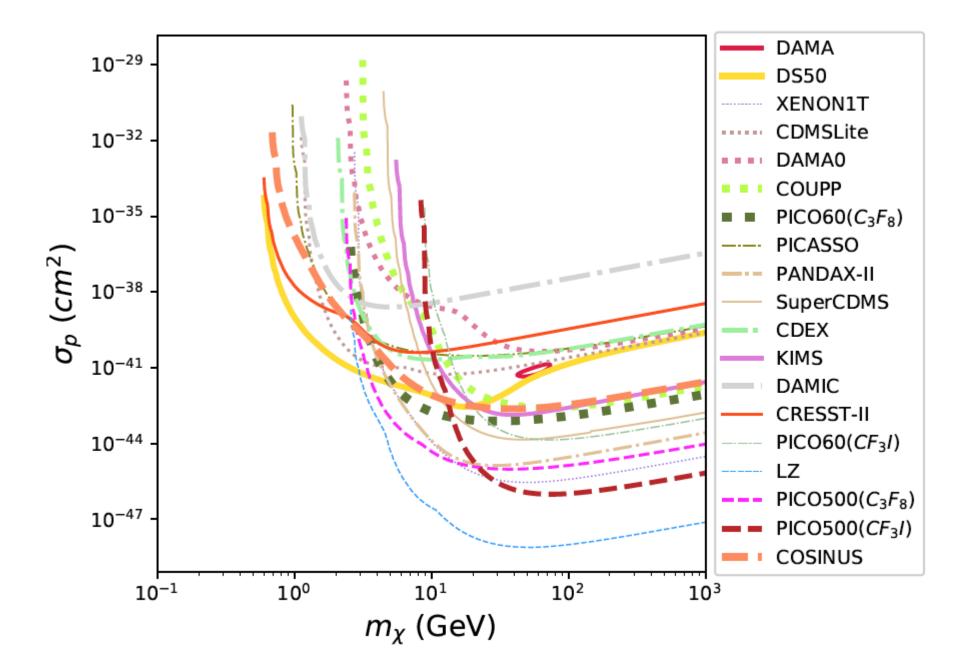
Present and projected sensitivities of Dark Matter direct detection experiments to effective WIMP-nucleus couplings

Stefano Scopel

in collaboration with Sunghyun Kang, G. Tomar, J.H. Yoon





N.B.: theoretical predictions for the WIMP direct detection rate depend on two main ingredients:

 a scaling law for the cross section, in order to compare experiments using different targets

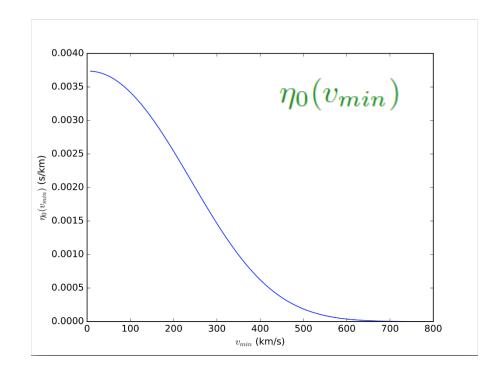
Traditionally spin-independent cross section (proportional to (atomic mass number)²) or spin-dependent cross section (proportional to the product $S_{WIMP} \cdot S_{nucleus}$) is assumed

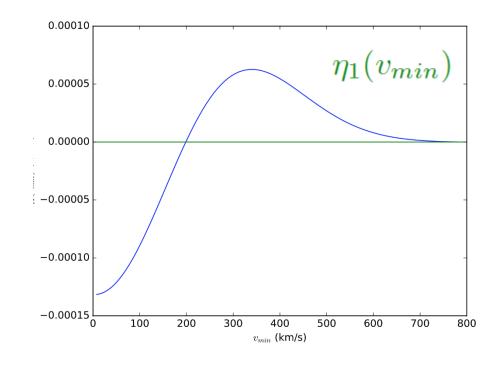
2) a model for the velocity distribution of WIMPs

Traditionally a Maxwellian distribution is assumed

We focus on the issue of the scaling law, assuming for the WIMP velocity distribution a standard Maxwellian

$$\eta(v_{min}, t) = \int_{v_{min}}^{\infty} \frac{f(v)}{v} dv = \eta_0(v_{min}) + \eta_1(v_{min}) \cos \omega(t - t_0)$$





Most general approach: consider all possible NR couplings, including those depending on velocity and momentum

 $\mathcal{O}_1 = 1_{\chi} 1_N$

 $\mathcal{O}_2 = (v^{\perp})^2,$

 $\mathcal{O}_4 = \vec{S}_{\chi} \cdot \vec{S}_N,$

 $\mathcal{O}_7 = \vec{S}_N \cdot \vec{v}^{\perp},$

 $\mathcal{O}_8 = \vec{S}_{\mathsf{x}} \cdot \vec{v}^{\perp}$

 $\mathcal{O}_3 = i \, \vec{S}_N \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^\perp \right),$

 $\mathcal{O}_5 = i \vec{S}_{\chi} \cdot \left(\frac{\vec{q}}{m_N} \times \vec{v}^{\perp} \right),$

 $\mathcal{O}_6 = \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_N}\right) \left(\vec{S}_N \cdot \frac{\vec{q}}{m_N}\right)$

$$\mathcal{H} = \sum_{i} \left(c_i^0 + c_i^1 \tau_3 \right) \mathcal{O}_i$$

 τ_3 =nuclear isospin operator, i.e.

$$c_i^{\rm p}=(c_i^0+c_i^1)/2 \qquad \text{(proton)}$$

$$c_i^{\rm n}=(c_i^0-c_i^1)/2 \qquad \text{(neutron)}$$

$$\text{(if $c_i^{\rm p}=c_i^{\rm n}\to c_i^{\rm 1}=0$)}$$

N.R. operators O_i guaranteed to be Hermitian if built out of the following four 3-vectors:

$$i\frac{\vec{q}}{m_N}, \quad \vec{v}^\perp, \quad \vec{S}_\chi, \quad \vec{S}_N$$
with:
$$\vec{v}^\perp = \vec{v} + \frac{\vec{q}}{2\mu_N}$$

$$\vec{v}^\perp = \vec{v}_{\chi, \text{in}} - \vec{v}_{N, \text{in}}$$

$$\vec{v}^\perp \cdot \vec{q} = 0$$

$$\vec{v}^\perp = \vec{v}_{\chi, \text{in}} - \vec{v}_{N, \text{in}}$$

$$\mathcal{O}_9 = i\vec{S}_\chi \cdot \left(\vec{S}_N \times \frac{\vec{q}}{m_N}\right),$$

$$\mathcal{O}_{10} = i\vec{S}_N \cdot \frac{\vec{q}}{m_N},$$

$$\mathcal{O}_{11} = i\vec{S}_\chi \cdot \frac{\vec{q}}{m_N}.$$

Additional operators that do not arise for traditional spin≤1 mediators:

$$\mathcal{O}_{12} = \vec{S}_{\chi} \cdot (\vec{S}_{N} \times \vec{v}^{\perp}),$$

$$\mathcal{O}_{13} = i(\vec{S}_{\chi} \cdot \vec{v}^{\perp}) \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right),$$

$$\mathcal{O}_{14} = i \left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right) (\vec{S}_{N} \cdot \vec{v}^{\perp}),$$

$$\mathcal{O}_{15} = -\left(\vec{S}_{\chi} \cdot \frac{\vec{q}}{m_{N}} \right) \left[(\vec{S}_{N} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_{N}} \right]$$

$$\mathcal{O}_{16} = -\left[(\vec{S}_{\chi} \times \vec{v}^{\perp}) \cdot \frac{\vec{q}}{m_{N}} \right] \left(\vec{S}_{N} \cdot \frac{\vec{q}}{m_{N}} \right)$$

Factorization of WIMP physics and nuclear physics

In the expected rate WIMP physics (encoded in the R functions that depend on the c_i couplings) and the nuclear physics (contained in 8 (6+2) response functions W factorize in a simple way:

$$\frac{dR_{\chi T}}{dE_R}(t) = \sum_T N_T \frac{\rho_{\text{WIMP}}}{m_{\text{WIMP}}} \int_{v_{min}} d^3v_T f(\vec{v}_T,t) v_T \frac{d\sigma_T}{dE_R}$$

$$\frac{d\sigma_T}{dE_R} = \frac{2m_T}{4\pi v_T^2} \left[\frac{1}{2j_\chi + 1} \frac{1}{2j_T + 1} |\mathcal{M}_T|^2 \right] \qquad \text{T=target}$$

$$\frac{1}{2j_\chi + 1} \frac{1}{2j_T + 1} |\mathcal{M}|^2 = \frac{4\pi}{2j_T + 1} \sum_{\tau = 0,1} \sum_{\tau' = 0,1} \sum_{\tau' = 0,1} \underbrace{NUCLEUS}_{K_\tau^{\tau\tau'}} \left[c_j^\tau, (v_T^\perp)^2, \frac{q^2}{m_N^2} \right]_{y \equiv (qv/2)^2}^{\text{NUCLEUS}}$$

$$y \equiv (qv/2)^2$$
 b=nuclear size q=momentum transfer

N.B.: besides usual spin-independent and spin-dependent terms new contributions arise, with explicit dependences on the transferred momentum q and the WIMP incoming velocity

WIMPs response funtions

$$\begin{split} R_{M}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= c_{1}^{\tau}c_{1}^{\tau'} + \frac{j_{X}(j_{X}+1)}{3} \left[\frac{q^{2}}{m_{N}^{2}}v_{T}^{\perp2}c_{5}^{\tau}c_{5}^{\tau'} + v_{T}^{\perp2}c_{8}^{\tau}c_{8}^{\tau'} + \frac{q^{2}}{m_{N}^{2}}c_{11}^{\tau}c_{11}^{\tau'}\right] \\ R_{\Phi''}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \left[\frac{q^{2}}{4m_{N}^{2}}c_{3}^{\tau}c_{3}^{\tau'} + \frac{j_{X}(j_{X}+1)}{12}\left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}}c_{15}^{\tau}\right)\left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}}c_{15}^{\tau'}\right)\right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Phi''M}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \left[c_{3}^{\tau}c_{1}^{\tau'} + \frac{j_{X}(j_{X}+1)}{3}\left(c_{12}^{\tau} - \frac{q^{2}}{m_{N}^{2}}c_{15}^{\tau}\right)c_{11}^{\tau'}\right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Phi''M}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \left[\frac{j_{X}(j_{X}+1)}{12}\left(c_{12}^{\tau}c_{12}^{\tau'} + \frac{q^{2}}{m_{N}^{2}}c_{13}^{\tau}c_{13}^{\tau'}\right)\right] \frac{q^{2}}{m_{N}^{2}} \\ R_{\Sigma''}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \frac{q^{2}}{4m_{N}^{2}}c_{10}^{\tau}c_{10}^{\tau'} + \frac{j_{X}(j_{X}+1)}{12}\left[c_{4}^{\tau}c_{1}^{\tau'} + \frac{q^{2}}{m_{N}^{2}}v_{T}^{\perp2}c_{13}^{\tau}c_{13}^{\tau'}\right] \\ R_{\Sigma''}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \frac{1}{8}\left[\frac{q^{2}}{m_{N}^{2}}v_{T}^{\perp2}c_{3}^{\tau}c_{3}^{\tau'} + v_{T}^{\perp2}c_{7}^{\tau}c_{7}^{\tau'}\right] + \frac{j_{X}(j_{X}+1)}{12}\left[c_{4}^{\tau}c_{4}^{\tau'} + \frac{q^{2}}{m_{N}^{2}}v_{T}^{\perp2}c_{13}^{\tau}c_{13}^{\tau'}\right] \\ R_{\Delta}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \frac{j_{X}(j_{X}+1)}{3}\left(\frac{q^{2}}{m_{N}^{2}}c_{5}^{\tau}c_{5}^{\tau'} + c_{8}^{\tau}c_{8}^{\tau'}\right)\frac{q^{2}}{m_{N}^{2}} \\ R_{\Delta}^{\tau\tau'}\left(v_{T}^{\perp2},\frac{q^{2}}{m_{N}^{2}}\right) &= \frac{j_{X}(j_{X}+1)}{3}\left(c_{5}^{\tau}c_{4}^{\tau'} - c_{8}^{\tau}c_{8}^{\tau'}\right)\frac{q^{2}}{m_{N}^{2}}. \end{split}$$

general form:

$$R_k^{\tau\tau'} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{(v_T^{\perp})^2}{c^2} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{v_T^2 - v_{min}^2}{c^2}$$

Nuclear response functions

Assuming one-body dark matter-nucleon interactions, the Hamiltonian density for dark matter-nucleus interactions is:

$$\mathcal{H}_{ET}(\vec{x}) = \sum_{i=1}^{A} l_0(i) \ \delta(\vec{x} - \vec{x}_i) + \sum_{i=1}^{A} l_0^A(i) \ \frac{1}{2M} \left[-\frac{1}{i} \overleftarrow{\nabla}_i \cdot \vec{\sigma}(i) \delta(\vec{x} - \vec{x}_i) + \delta(\vec{x} - \vec{x}_i) \vec{\sigma}(i) \cdot \frac{1}{i} \overrightarrow{\nabla}_i \right]$$

$$+ \sum_{i=1}^{A} \vec{l}_5(i) \cdot \vec{\sigma}(i) \delta(\vec{x} - \vec{x}_i) + \sum_{i=1}^{A} \vec{l}_M(i) \cdot \frac{1}{2M} \left[-\frac{1}{i} \overleftarrow{\nabla}_i \delta(\vec{x} - \vec{x}_i) + \delta(\vec{x} - \vec{x}_i) \frac{1}{i} \overrightarrow{\nabla}_i \right]$$

$$+ \sum_{i=1}^{A} \vec{l}_E(i) \cdot \frac{1}{2M} \left[\overleftarrow{\nabla}_i \times \vec{\sigma}(i) \delta(\vec{x} - \vec{x}_i) + \delta(\vec{x} - \vec{x}_i) \vec{\sigma}(i) \times \overrightarrow{\nabla}_i \right]$$

So the WIMP-nucleus Hamiltonian has the general form:

$$\int d\vec{x} \ e^{-i\vec{q}\cdot\vec{x}} \ \left[l_0 \langle J_i M_i | \hat{\rho}(\vec{x}) | J_i M_i \rangle - \vec{l} \cdot \langle J_i M_i | \hat{\vec{j}}(\vec{x}) | J_i M_i \rangle \right]$$
With:
$$e^{i\vec{q}\cdot\vec{x}_i} \ = \ \sum_{J=0}^{\infty} \sqrt{4\pi} \ [J] \ i^J j_J(qx_i) Y_{J0}(\Omega_{x_i})$$

$$\hat{e}_{\lambda} e^{i\vec{q}\cdot\vec{x}_i} \ = \ \begin{cases} \sum_{J=0}^{\infty} \sqrt{4\pi} \ [J] \ i^{J-1} \frac{\vec{\nabla}_i}{q} j_J(qx_i) Y_{J0}(\Omega_{x_i}), & \lambda = 0 \\ \\ \sum_{J>1}^{\infty} \sqrt{2\pi} \ [J] \ i^{J-2} \left[\lambda j_J(qx_i) \vec{Y}_{JJ1}^{\lambda}(\Omega_{x_i}) + \frac{\vec{\nabla}_i}{q} \times j_J(qx_i) \vec{Y}_{JJ1}^{\lambda}(\Omega_{x_i}) \right], & \lambda = \pm 1 \end{cases}$$

which depends on the expectations of six distinct nuclear response functions, defined as:

$$M_{JM}(q\vec{x})$$

$$\begin{split} \Delta_{JM}(q\vec{x}) &\equiv \vec{M}_{JJ}^{M}(q\vec{x}) \cdot \frac{1}{q} \vec{\nabla} \\ \Sigma_{JM}'(q\vec{x}) &\equiv -i \left\{ \frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} = [J]^{-1} \left\{ -\sqrt{J} \ \vec{M}_{JJ+1}^{M}(q\vec{x}) + \sqrt{J+1} \ \vec{M}_{JJ-1}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} \\ \Sigma_{JM}''(q\vec{x}) &\equiv \left\{ \frac{1}{q} \vec{\nabla} M_{JM}(q\vec{x}) \right\} \cdot \vec{\sigma} = [J]^{-1} \left\{ \sqrt{J+1} \ \vec{M}_{JJ+1}^{M}(q\vec{x}) + \sqrt{J} \ \vec{M}_{JJ-1}^{M}(q\vec{x}) \right\} \cdot \vec{\sigma} \\ \tilde{\Phi}_{JM}'(q\vec{x}) &\equiv \left(\frac{1}{q} \vec{\nabla} \times \vec{M}_{JJ}^{M}(q\vec{x}) \right) \cdot \left(\vec{\sigma} \times \frac{1}{q} \vec{\nabla} \right) + \frac{1}{2} \vec{M}_{JJ}^{M}(q\vec{x}) \cdot \vec{\sigma} \\ \Phi_{JM}''(q\vec{x}) &\equiv i \left(\frac{1}{q} \vec{\nabla} M_{JM}(q\vec{x}) \right) \cdot \left(\vec{\sigma} \times \frac{1}{q} \vec{\nabla} \right) \end{split}$$

with $M_{JM} = j_J Y_{JM}$ Bessel spherical harmonics and $M^{M}_{JL} = j_J Y_{JM}$ vector spherical harmonics.

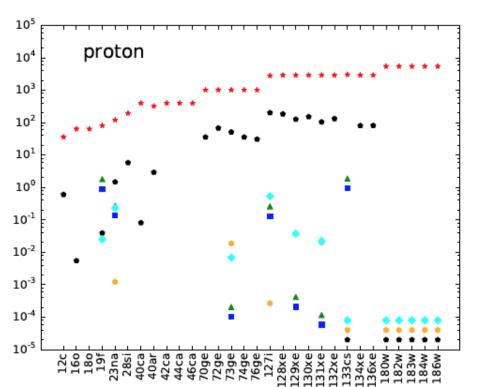
- •M= vector-charge (scalar, usual spin-independent part, non-vanishing for all nuclei)
- Φ "=vector-longitudinal, related to spin-orpit coupling σ ·l (also spin-independent, non-vanishing for all nuclei)
- • Σ ' and Σ " = associated to longitudinal and transverse components of nuclear spin, <u>their sum is</u> the usual spin-dependent interaction, require nuclear spin j>0
- •∆=associated to the orbital angular momentum operator I, also requires j>0
- • Φ ' = related to a vector-longitudinal operator that transforms as a tensor under rotations, requires j>1/2

Coupling – nuclear response function correspondence

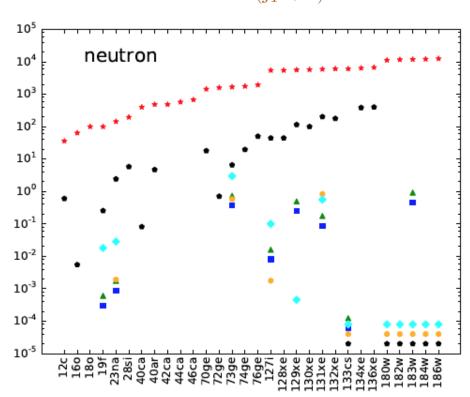
coupling	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$	coupling	$R_{0k}^{ au au'}$	$R_{1k}^{ au au'}$
1	$M(q^0)$	-	3	$\Phi''(q^4)$	$\Sigma'(q^2)$
4	$\Sigma''(q^0), \Sigma'(q^0)$	-	5	$\Delta(q^4)$	$M(q^2)$
6	$\Sigma''(q^4)$	-	7	-	$\Sigma'(q^0)$
8	$\Delta(q^2)$	$M(q^0)$	9	$\Sigma'(q^2)$	-
10	$\Sigma''(q^2)$	-	11	$M(q^2)$	-
12	$\Phi''(q^2), \tilde{\Phi}'(q^2)$	$\Sigma''(q^0), \Sigma'(q^0)$	13	$\tilde{\Phi}'(q^4)$	$\Sigma''(q^2)$
14	_	$\Sigma'(q^2)$	15	$\Phi''(q^6)$	$\Sigma'(q^4)$

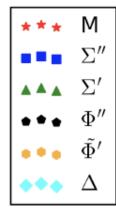
$$R_k^{\tau\tau'} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{(v_T^{\perp})^2}{c^2} = R_{0k}^{\tau\tau'} + R_{1k}^{\tau\tau'} \frac{v_T^2 - v_{min}^2}{c^2}$$

$$\frac{16\pi}{(j_T+1)} \times W_{Tk}^p(y=0)$$



$$\frac{16\pi}{(j_T+1)} \times W_{Tk}^n(y=0)$$





Normalization of W's chosen so that:

$$\frac{16\pi}{(j_T+1)} \times W_{TM}^p(y=0) = Z_T$$

$$\frac{16\pi}{(j_T+1)} \times W_{TM}^n(y=0) = A_T - Z_T$$

Factorization of astrophysics

The expected rate in a direct detection experiment can be written as:

$$R = \int_0^\infty \mathcal{R}(v)\tilde{\eta}(v) dv = \int_0^\infty \mathcal{R}'(E_R)\tilde{\eta}'(E_R) dE_R$$

where R is a response function that depends on the experimental inputs and on the scaling law, while η is a halo function that depends on astrophysics (WIMP local denity and velocity distribution:

$$\tilde{\eta}(v) = \frac{\rho_{\chi}}{m_{\chi}} \sigma \eta(v), \quad \eta(v) = \int_{v}^{v_{esc}} \frac{f(v)}{v} dv,$$

For N large enough can approximate:

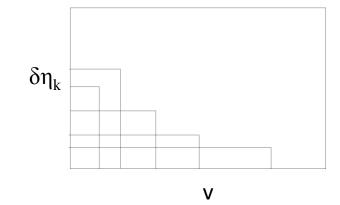
$$\tilde{\eta}(v) = \sum_{k=1}^{N} \delta \tilde{\eta}^k \theta(v_k - v)$$

and including explicit velocity dependence:

$$\mathcal{R}(v) = \mathcal{R}_0 + \mathcal{R}_1(v^2 - v_{min}^2)$$

with:

$$v_{min} = \frac{1}{2m_N E_R} \left| \frac{m_N E_R}{\mu_{\chi N}} + \delta \right|$$



The rate can be written as

$$R = \sum_{k=1}^{N} \delta \tilde{\eta}^{k} \times \left\{ \bar{\mathcal{R}}_{0} \left[E_{R}^{max}(v_{k}) \right] + (v_{k}^{2} - \frac{\delta}{\mu_{\chi N}}) \bar{\mathcal{R}}_{1} \left[E_{R}^{max}(v_{k}) \right] - \frac{m_{N}}{2\mu_{\chi N}^{2}} \bar{\mathcal{R}}_{1E} \left[E_{R}^{max}(v_{k}) \right] - \frac{\delta^{2}}{2m_{N}} \bar{\mathcal{R}}_{1E^{-1}} \left[E_{R}^{max}(v_{k}) \right] \right\}$$

In terms of four response functions that do not depend on the WIMP mass or mass splitting:

$$\bar{\mathcal{R}}_{0,1}(E_R) \equiv \int_0^{E_R} dE_R' \mathcal{R}_{0,1}(E_R')$$

$$\bar{\mathcal{R}}_{1E}(E_R) \equiv \int_0^{E_R} dE_R' E_R' \mathcal{R}_1(E_R')$$

$$\bar{\mathcal{R}}_{1E^{-1}}(E_R) \equiv \int_0^{E_R} dE_R' \frac{1}{E_R'} \mathcal{R}_1(E_R')$$

that can be tabulated for later use.

- We assume that one coupling dominates at a time (14 cases)
- We calculate exclusion plots from 15 existing experiments: XENON1T, PANDAX-II, KIMS, CDMSlite, SuperCDMS, COUPP, PICASSO, PICO-60 (using a CF₃I target and a C₃F₈ one) CRESST-II, DAMA modulation data), DAMA0 (average count rate), CDEX, DAMIC and DarkSide-50
- We include projections from LZ, COSINUS, PICO500 (a CF₃I target and a C₃F₈)

Sensitivity reach expressed in terms of 90% C.L. bounds on effective cross section:

$$\sigma_{\mathcal{N}} = \max(\sigma_p, \sigma_n)$$

$$\sigma_p = (c_j^p)^2 \frac{\mu_{\chi \mathcal{N}}^2}{\pi} \qquad \sigma_n = (c_j^n)^2 \frac{\mu_{\chi \mathcal{N}}^2}{\pi}$$

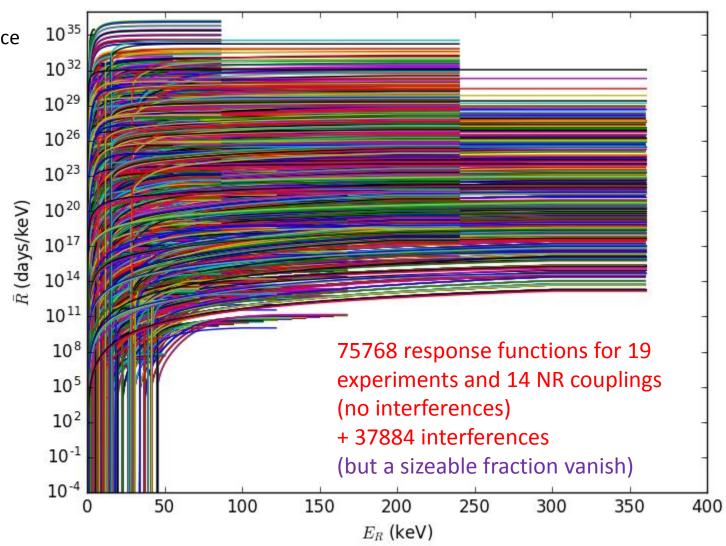
N.B. Corresponds to long-distance point-like cross section for standard SI and SD interactions. In other cases just a convenient alternative to directly parameterizing the interaction in terms of the c_i^p coupling.

Tabulate full calculation of R response function for each:

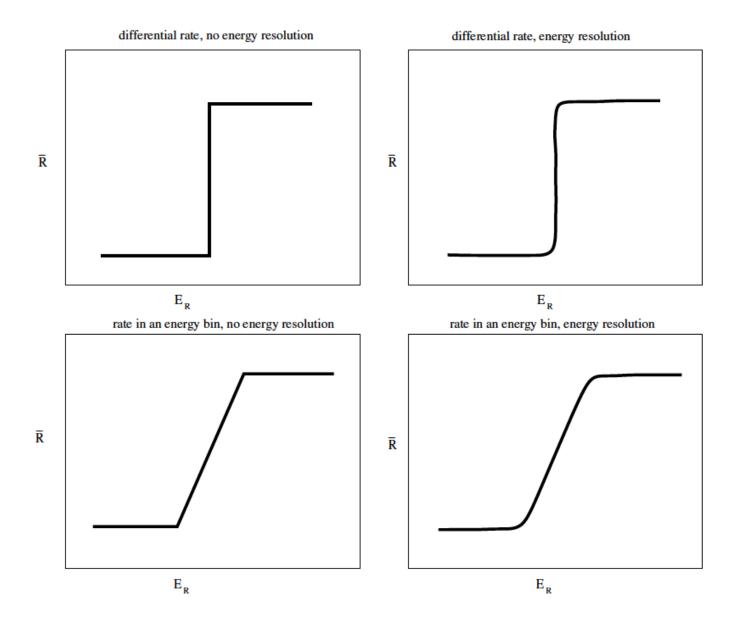
- 1) Experiment
- 2) Energy bin/energy threshold/energy value
- 3) Isospin value $(c_n/c_p=-1,0,1)$
- 4) Nuclear target (including all stable isotopes)
- 5) Effective coupling
- 6) 4 terms including explicit velocity dependence

Isospin rotation with $r=c^n/c^p$:

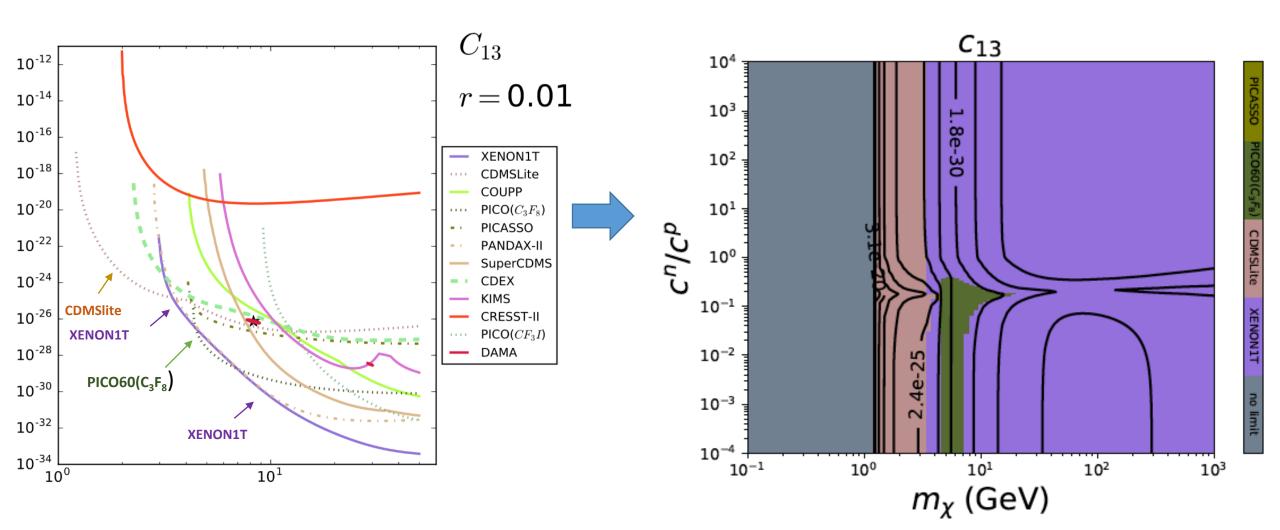
$$R(r) = \frac{r(r+1)}{2}R(r=1) + (1-r^2)R(r=0) + \frac{r(r-1)}{2}R(r=-1)$$

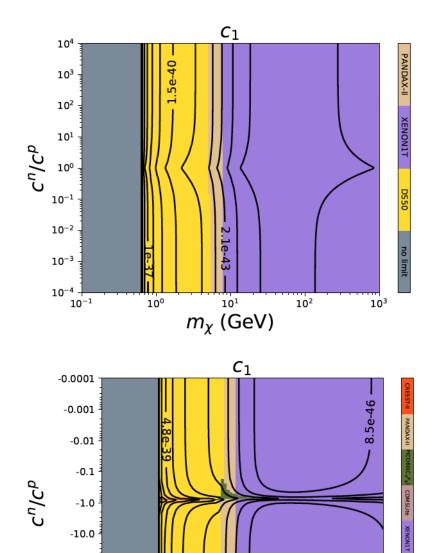


Schematic behaviors of the R_0 functions



- Two free parameters: WIMP mass m_{γ} and $r=c^{n}/c^{p}$
- A different exclusion plot for each cⁿ/c^p
- We show contour plots in the m_χ and c^n/c^p plane of $\sigma_{N,lim}$ also indicate with a different color code the most constraining experiment





10²

 m_{χ} (GeV)

 10^{3}

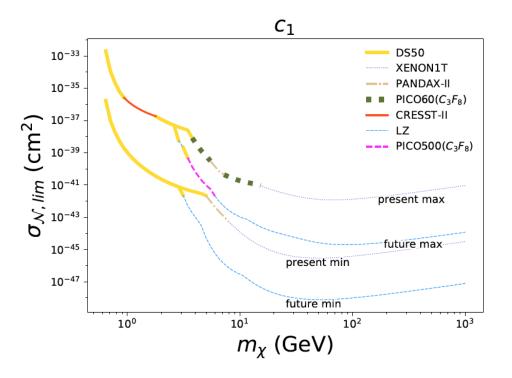
-100.0

-1000.0

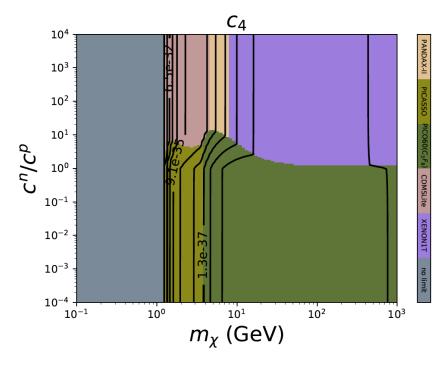
-10000.0

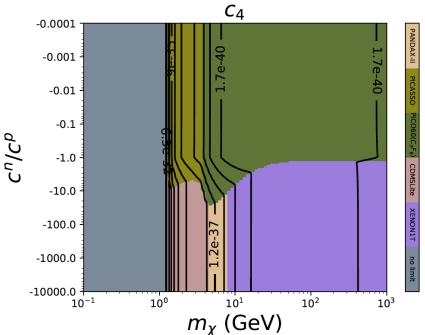
10-1

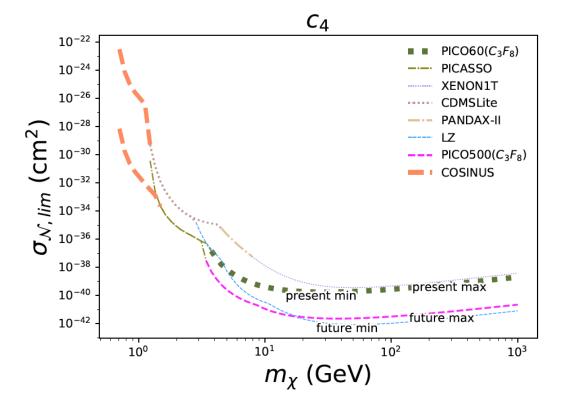
10°



Standard spin-independent coupling M nuclear response No velocity dependence in the cross section Favors heavy nuclei with the exception of low WIMP masses Similar behavior: c_{11} (q²)

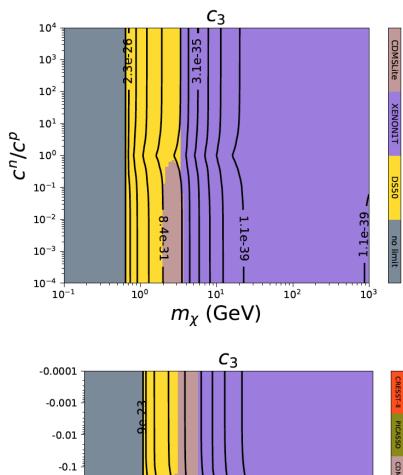


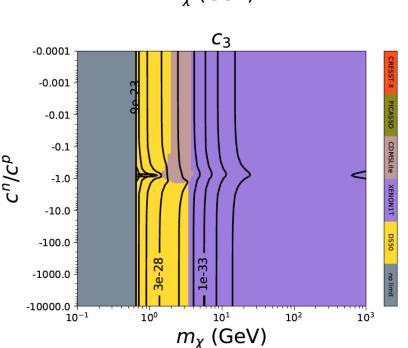


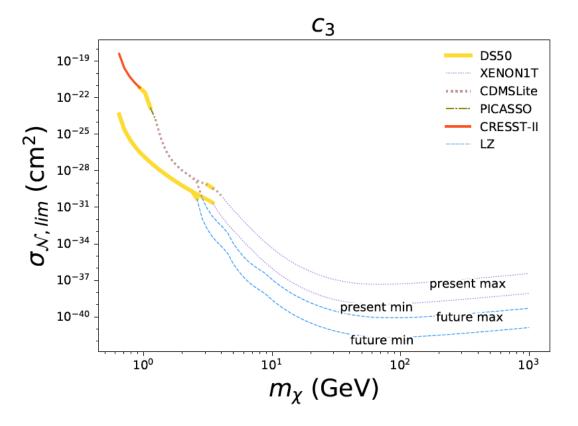


Standard spin-dependent coupling Σ' , Σ'' response functions No velocity dependence in the cross section Favors proton-odd targets (fluorine,iodine) for $c^n/c^p > 1$ and neutron-odd targets (xenon, germanium) for $c^n/c^p > 1$ Similar behavior: c_9 , c_{10} (q^2) and c_{10} (q^4)

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1805.06113





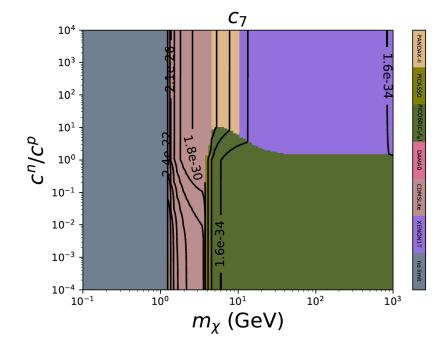


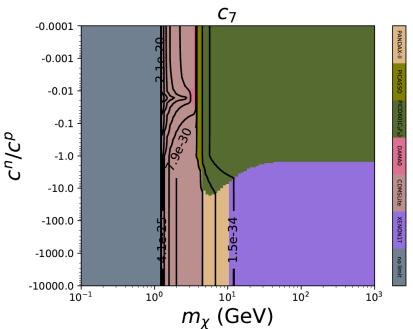
 Φ " response function (related to spin-orbit coupling, non vanishing for all nuclei)

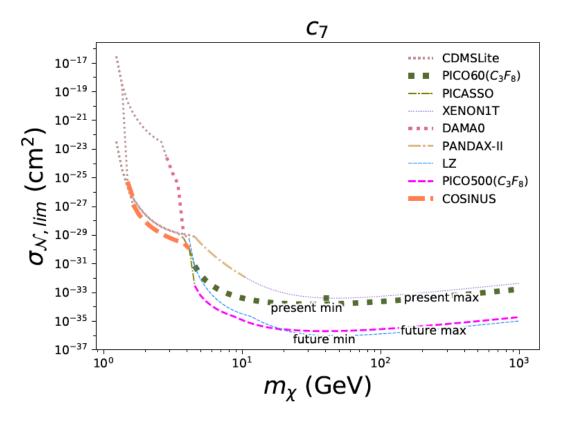
Favors heavier elements (with the exception of low WIMP masses) with large nuclear shell model orbitals not fully occupied Vanishes for semi-magic isotopes (e.g. 72 Ge, explains weakening of CDMSlite bound for $c^n/c^p>1$)

Similar behavior: $c_{12}(q^2)$, $c_{15}(q^6)$

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1805.06113



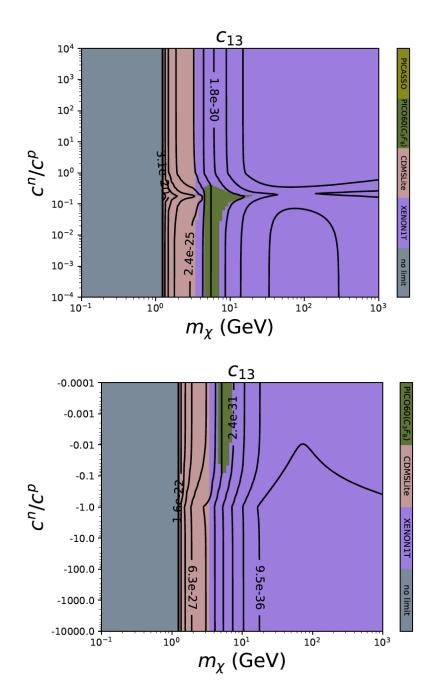


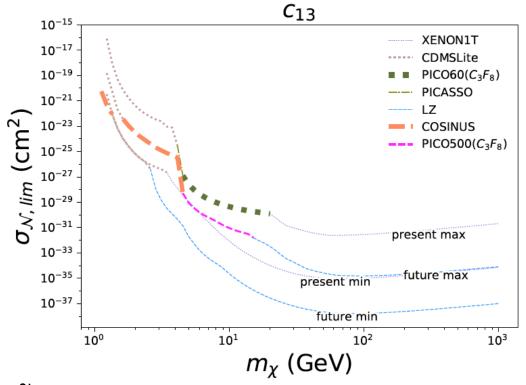


 Σ' response function

Favors proton-odd targets (fluorine,iodine) for $c^n/c^p><$ and neutron-odd targets (xenon, germanium) for $c^n/c^p>1$ Only velocity dependent term in the cross section (cfr. standard SD: low threshold less important, rate dominated by $v>>v_{min}$, explains reduced PICASSO sensitivity at low WIMP mass compared to c_4)

Similar behavior: c_{14} (q²)





 $\overset{\sim}{\Phi}$ " response function in velocity-independent part (related to vector-longitudinal operator that transforms as a tensor under rotations, requires nuclear spin >1/2, non-vanishing only for 23 Na, 73 Ge, 121 I and 131 Xe among available targets) Velocity dependent terms off fluorine competitive to velocity-independent term in xenon, explains PICO60(C₃F₈) competitiveness.

Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1805.06113

Coupling	Present		Future	
	$m_{\chi} \; ({\rm GeV})$	$\sigma_{\mathcal{N},lim}(\mathrm{cm}^2)$	$m_{\chi} \; ({\rm GeV})$	$\sigma_{\mathcal{N},lim}(\mathrm{cm}^2)$
c_1	50.9	2.9×10^{-46}	50.9	7.9×10^{-49}
c_3	67.3	1.1×10^{-39}	81.1	2.1×10^{-42}
c_4	29.1	1.7×10^{-40}	50.8	8.5×10^{-43}
c_5	61.4	2.9×10^{-37}	67.3	7.0×10^{-40}
c_6	73.9	2.1×10^{-35}	89.0	3.3×10^{-38}
c_7	32.0	1.5×10^{-34}	46.4	9.9×10^{-37}
c_8	50.9	1.2×10^{-39}	55.9	3.3×10^{-42}
c_9	55.9	1.9×10^{-37}	55.9	4.9×10^{-40}
c_{10}	61.4	3.3×10^{-38}	81.1	6.9×10^{-41}
c_{11}	61.4	2.8×10^{-43}	67.3	7.1×10^{-46}
c_{12}	61.3	2.6×10^{-41}	67.3	6.1×10^{-44}
c_{13}	67.3	9.5×10^{-36}	89.0	1.7×10^{-38}
c_{14}	55.9	4.2×10^{-31}	61.4	1.1×10^{-33}
c_{15}	73.9	6.3×10^{-37}	89.0	9.1×10^{-40}

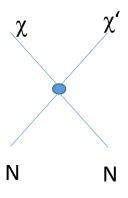
Inelastic Dark Matter

D. Tucker-Smith and N.Weiner, Phys.Rev.D 64, 043502 (2001), hep-ph/0101138

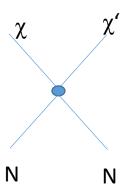
Two mass eigenstates χ and χ ' very close in mass: m_{χ} - $m_{\chi'}$ = δ with χ +N \rightarrow χ +N <u>forbidden</u>

"Endothermic "scattering (δ >0)

"Exothermic" scattering (δ <0)



Kinetic energy needed to "overcome" step \rightarrow rate no longer exponentially decaying with energy, maximum at finite energy E_*

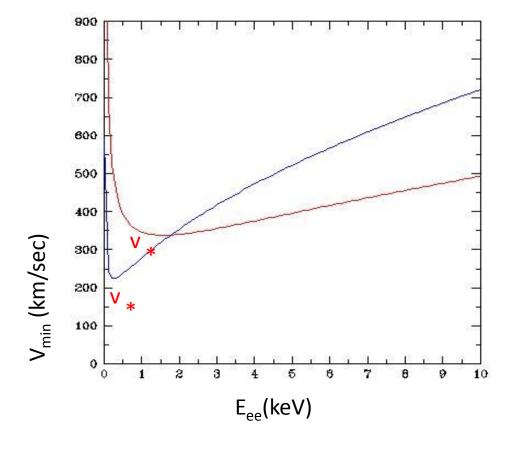


 χ is metastable, δ energy deposited independently on initial kinetic energy (even for WIMPs at rest)

Can easily generalize the analysis **to inelastic scattering** (the response functions do not change, only the mapping between recoil energy and WIMP speed)

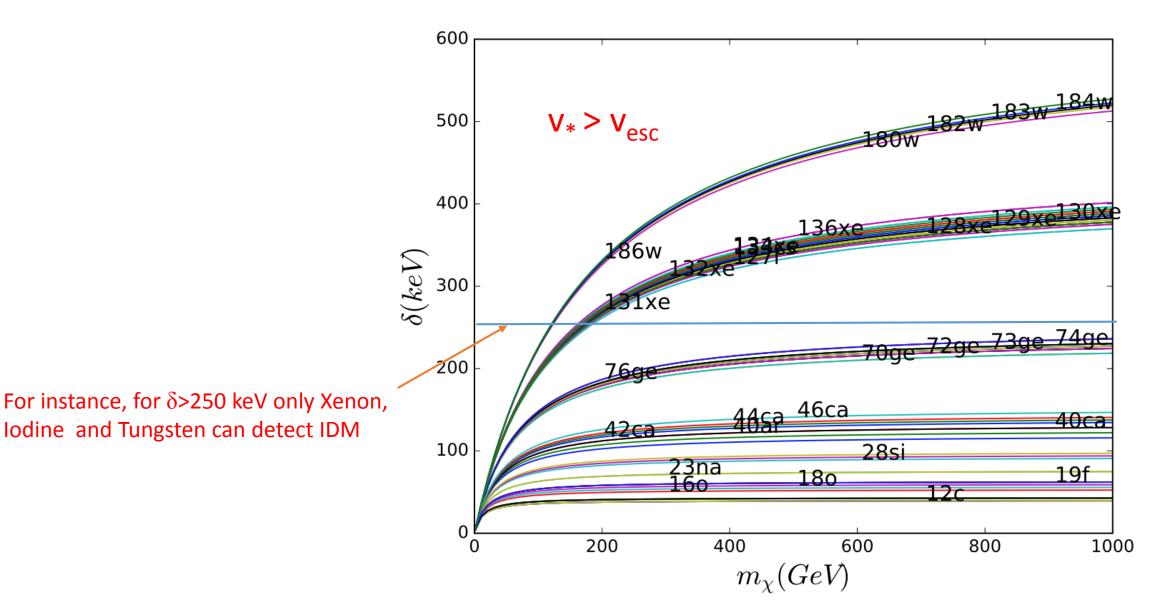
For inelastic DM the recoil energy E_R is no longer monotonically growing with v_{min} , WIMPs need at least the speed min(v_{min})= v_* to produce upscattering to heavy state

$$v_{min} = \frac{1}{\sqrt{2m_N E_R}} \left(\frac{m_N E_R}{\mu} + \delta \right) = a\sqrt{E_r} + \frac{b}{\sqrt{E_R}}$$

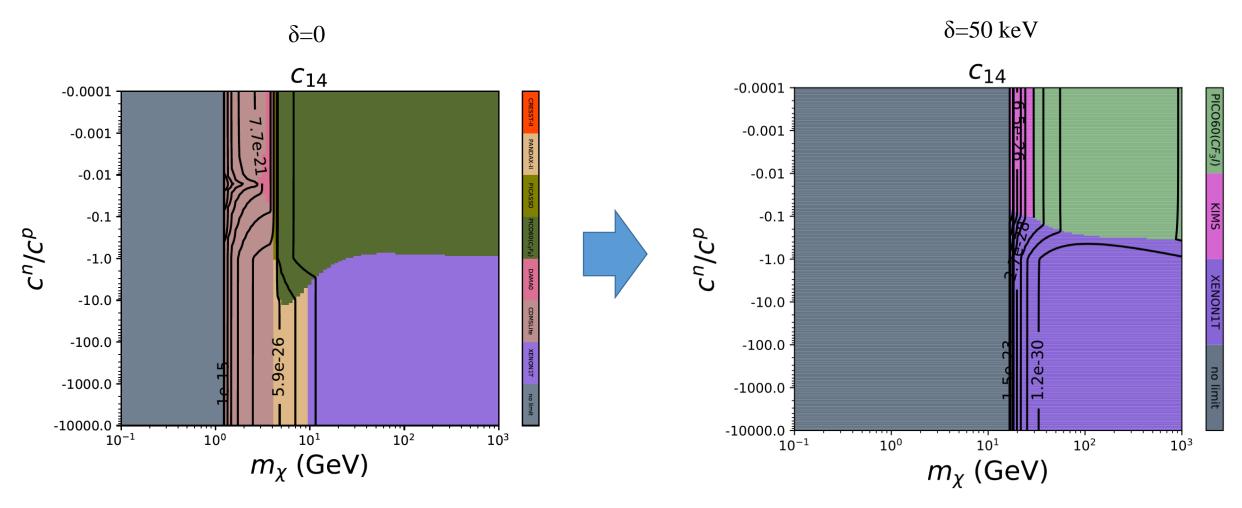


N.B. for δ >0 WIMPs need a minimal absolute incoming speed v_* to upscatter to the heavier state \rightarrow vanishing rate if $v_* > v_{esc}$ (escape velocity)

Inelastic scattering favors heavy elements, for each isotope inelastic upscatters become kinematically forbidden beyond maximal mass splitting δ corresponsing to escape velocity in the Galaxy



Can easily generalize the analysis **to inelastic scattering** (the response functions do not change, only the mapping between recoil energy and WIMP speed)



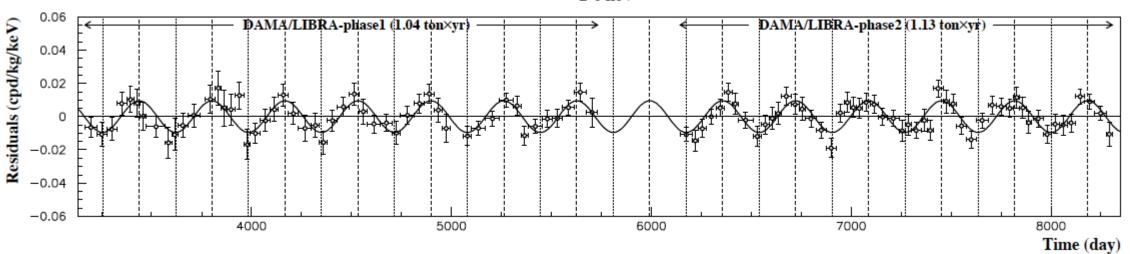
fluorine \rightarrow iodine for cⁿ/c^p>1

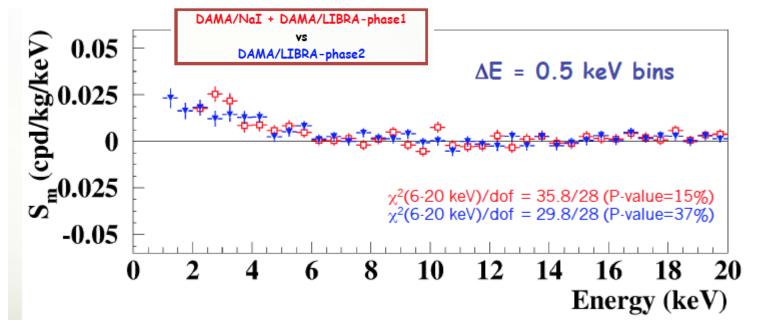
Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, work in progress

- expected reach on $\sigma_{N,lim}$ varies by many orders of magnitude with the effective coupling.
- In most cases it is either driven by a
 - **xenon target**, as for c_1 , c_3 , c_5 , c_8 , c_{11} , c_{12} , $c1_3$ and c_{15} (XENON1T among existing experiments and LZ among future ones)
 - **fluorine target** as for c_4 , and c_7 , (PICO-60 ($C_3 F_8$) among existing experiments and PICO-500 ($C_3 F_8$) among future ones).
- 9 present experiments out of the total of 15 considered provide the most stringent bound on some of the effective couplings for a given choice of m_χ, cⁿ / c^p): XENON1T, PANDAX-II, CDMSlite, PICASSO,PICO-60 (C₃ F₈) (CF₃ I), PICO-60 (C₃ F₈), CRESST-II, DAMA0 (average count rate) and DarkSide-50 → complementarity of
- different target nuclei and/or different combinations of count-rates and energy thresholds when the search of a DM particle is extended to a wide range of possible interactions.
- The variation of the best reach on $\sigma_{N,lim}$ with , c^n / c^p is about:
 - 3 orders of magnitude for c₁, c₁₁ and c₁₃
 - 1 order of magnitude for c_{13} , c_5 , c_8 , c_{12} , c_{15}
 - order one for c_{4} , c_{6} , c_{7} , c_{9} , c_{10} , c_{14}
- For all couplings future experiments could improve the present best reach between two and three orders of magnitude.
- For inelastic DM WIMP-proton scatterings can be kinematically not accessible to Fluorine → Iodine becomes important in this case

- harder energy spectrum of the expected signal compared to the usual exponentially decaying case for non-standard interactions with a cross section which depends explicitly on the momentum transfer q. We included this effect when i) subtracting the background ii) applying the Optimal Interval method.
- Typically background subtraction plays a role in experiments with a low threshold that target light WIMPs. In this case the spectrum depends on the high-speed tail of the velocity distribution and momentum dependence has a limited effect on the spectral shape → limited effect on the exclusion plot.

DAMA phase2 in effective models



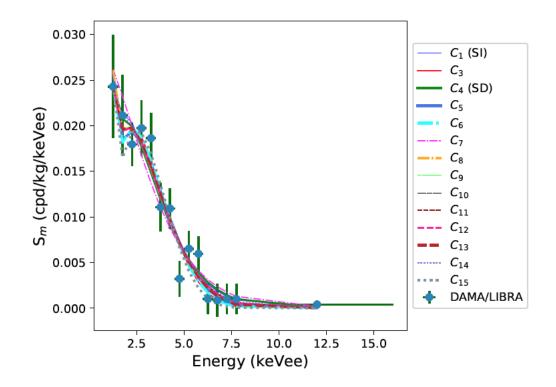


$$R(t) = S_0 + S_m \cos[\omega(t - t_0)]$$

$$\omega = 2\pi/(1 \text{ year})$$

$$t_0 = 152.5 \text{day}$$

- no fit of the DAMA result is available in the literature in terms of non-relativistic EFT models
- in addition to increasing the exposure, the phase2 result also includes a lower energy threshold, and the new spectrum of modulation amplitudes no longer shows a maximum, but is rather monotonically decreasing with energy
- We extended an assessment of the goodness of fit of the new DAMA result to NREFT scenarios
- Assume a standard Maxwellian for the WIMP velocity distribution in the Galaxy

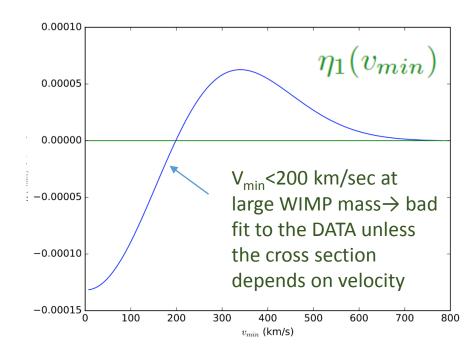


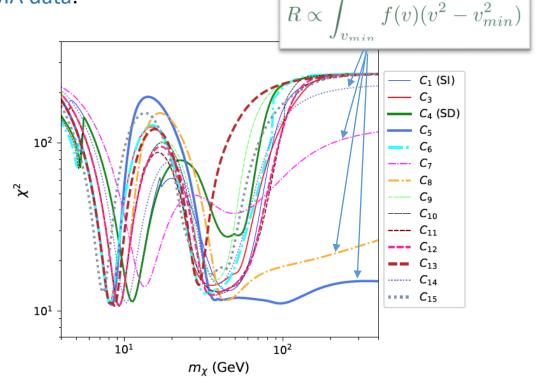
3-parameter fit (WIMP mass m_{χ} , WIMPproton cross section σ_p , $r=c^n/c^p$) assuming that one of the EFT couplings dominates

- With a lower threshold now DAMA is sensitive to WIMP-lodine scatterings also at low mass
- In the SI case Iodine contribution is large and steeply decaying with energy \rightarrow need to tune cⁿ/c^p to suppress Iodine contribution (S. Baum, K. Freese and C. Kelso, 1804.01231)
- if the WIMP–nucleus cross section is driven by other operators the fine tuning required to suppress iodine is reduced and/or the hierarchy between the WIMP–iodine and the WIMP–sodium cross section is less pronounced in the first place

• effective models for which the cross section depends explicitly on the WIMP incoming velocity show a different phase of the modulation amplitudes at large values of the WIMP mass compared to the standard velocity—

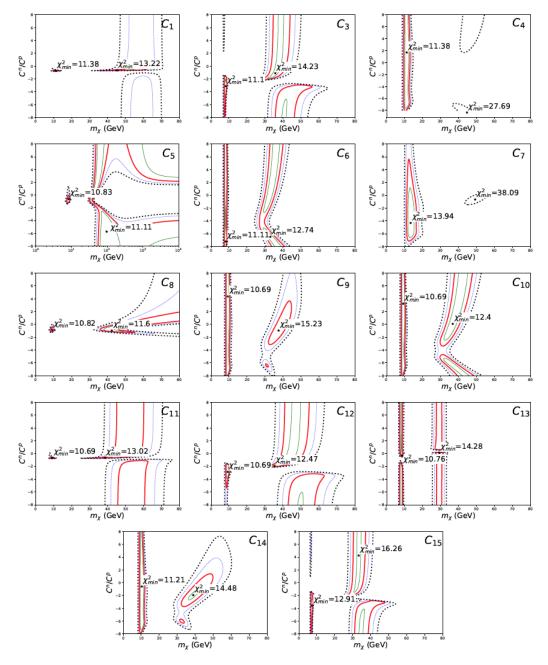
independent cross-section, allowing to get a better fit of the DAMA data.





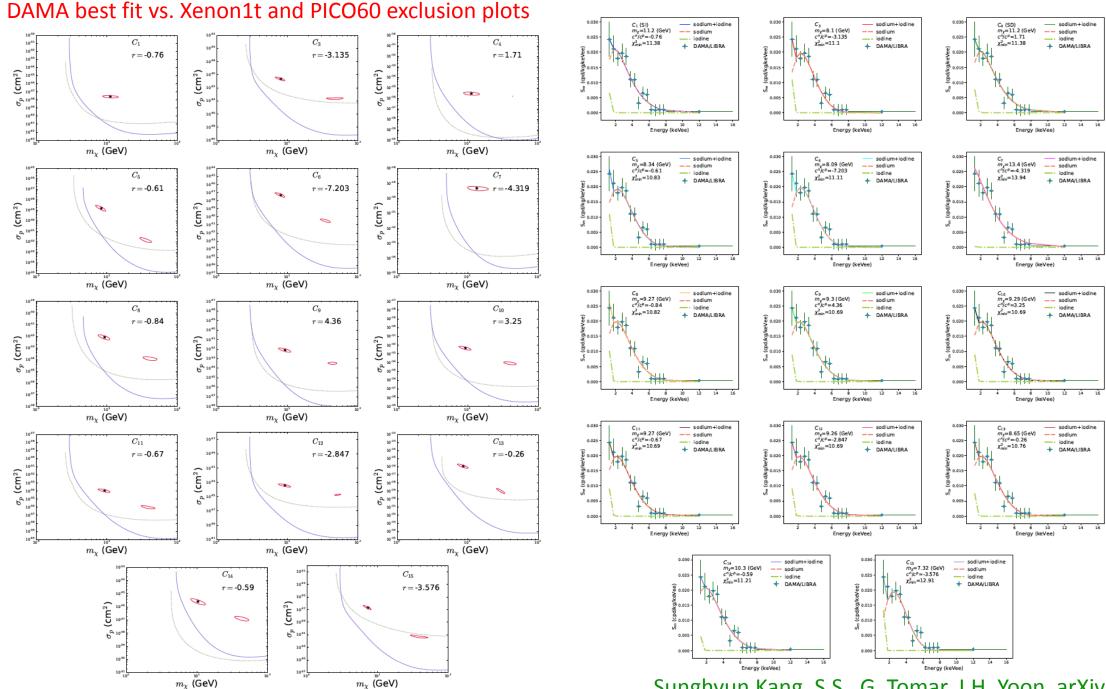
Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1804.07528

$\mathbf{c_{j}}$	${ m m}_{\chi,{ m min}}~({ m GeV})$	${ m r}_{\chi,{ m min}}$	$\sigma~({\rm cm^2})$	χ^2_{\min}
c_1	11.17	-0.76	2.67e-38	11.38
	45.19	-0.66	1.60e-39	13.22
c_3	8.10	-3.14	2.27e-31	11.1
	35.68	-1.10	9.27e-35	14.23
0.	11.22	1.71	2.95e-36	11.38
c_4	44.71	-8.34	5.96e-36	27.7
c_5	8.34	-0.61	1.62e-29	10.83
	96.13	-5.74	3.63e-34	11.11
c_6	8.09	-7.20	5.05e-28	11.11
	32.9	-6.48	5.18e-31	12.74
_	13.41	-4.32	4.75e-30	13.94
c_7	49.24	-0.65	1.35e-30	38.09
c_8	9.27	-0.84	8.67e-33	10.82
	42.33	-0.96	1.30e-34	11.6
0-	9.3	4.36	8.29e-33	10.69
c_9	37.51	-0.94	1.07e-33	15.23
c_{10}	9.29	3.25	4.74e-33	10.69
	36.81	0.09	2.25e-34	12.40
c_{11}	9.27	-0.67	1.15e-34	10.69
	38.51	-0.66	9.17e-37	13.02
c_{12}	9.26	-2.85	3.92e-34	10.69
	35.22	-1.93	2.40e-35	12.47
c_{13}	8.65	-0.26	1.21e-26	10.76
	29.42	0.10	5.88e-29	14.28
c_{14}	10.28	-0.59	2.61e-26	11.21
	38.88	-1.93	2.19e-27	14.48
c_{15}	7.32	-3.58	2.04e-27	12.91
	33.28	4.25	2.05e-33	16.26



Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1804.07528

- all models yield an acceptable χ²
- in the worst case, i.e. c $_7$, $(\chi^2)_{min}$ =13.74, with p-value $\simeq 0.25$ with 14-3 degrees of freedom.
- for all of them with the exception of c $_7$ and c $_{15}$ the absolute minimum of the χ^2 is below or equal to that corresponding the standard SI interaction c $_1$
- All bet-fit minima are in tension with the bounds from XENON1T and PICO60



Sunghyun Kang, S.S., G. Tomar, J.H. Yoon, arXiv:1804.07528