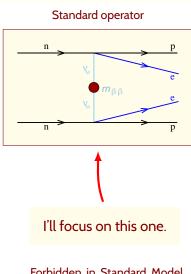
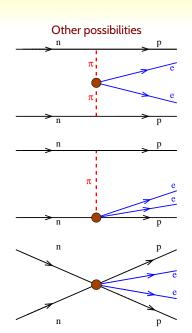
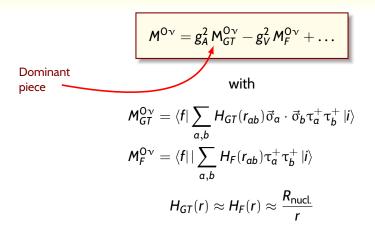


Review of $Ov\beta\beta$ Decay


Standard operator



Forbidden in Standard Model. New physics inside blobs.


Review of $Ov\beta\beta$ Decay

Forbidden in Standard Model. New physics inside blobs.

Nuclear Matrix Element (Simplified)

Nuclear Matrix Element (Simplified)

Dominant piece with
$$M_{GT}^{O\nu} = g_A^2 M_{GT}^{O\nu} - g_V^2 M_F^{O\nu} + \dots$$

$$M_{GT}^{O\nu} = \langle f | \sum_{a,b} H_{GT}(r_{ab}) \vec{\sigma}_a \cdot \vec{\sigma}_b \tau_a^+ \tau_b^+ | i \rangle$$

$$M_F^{O\nu} = \langle f | | \sum_{a,b} H_F(r_{ab}) \tau_a^+ \tau_b^+ | i \rangle$$

$$H_{GT}(r) \approx H_F(r) \approx \frac{R_{\text{nucl}}}{r}$$

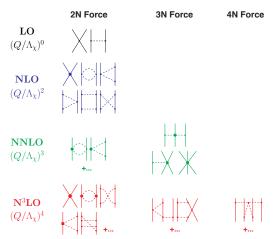
Also:

$$M_{2\nu} = g_A^2 \sum_m rac{\langle f | \sum_{\alpha} \vec{\sigma}_{\alpha} au_{\alpha}^+ | m
angle \cdot \langle m | \sum_{b} \vec{\sigma}_{b} au_{b}^+ | i
angle}{E_m - rac{E_f + E_i}{2}}$$

Nuclear Matrix Element (Simplified)

Dominant piece with
$$M^{OV} = g_A^2 M_{GT}^{OV} - g_V^2 M_F^{OV} + \dots$$
But the idea that there is a single " g_A in medium" is too much of a simplification.
$$H_{GT}(r) \approx H_F(r) \approx \frac{R_{\text{nucl.}}}{r}$$

Also:


$$M_{2\nu} = g_A^2 \, \sum_m \, \frac{\langle f | \sum_a \, \vec{\sigma}_a \tau_a^+ \, | m \rangle \cdot \langle m | \sum_b \, \vec{\sigma}_b \tau_b^+ \, | i \rangle}{E_m - \frac{E_f + E_i}{2}} \label{eq:M2v}$$

Ab Initio Nuclear Structure

Often starts with chiral effective-field theory

Nucleons, pions sufficient below chiral-symmetry breaking scale. Expansion of operators in powers of Q/Λ_{χ} .

 $Q=m_\pi$ or typical nucleon momentum.

All require many CPU-hours.

Quantum Monte Carlo in light nuclei: More or less exact solution of many-body Schrödinger equation.

All require many CPU-hours.

- Quantum Monte Carlo in light nuclei: More or less exact solution of many-body Schrödinger equation.
- Coupled-clusters ansatz:

$$|\Psi
angle = \exp\left(t_{ij}^1 a_i^\dagger a_j + t_{ijkl}^2 a_i^\dagger a_j^\dagger a_k a_l + \dots\right) | \text{Slater det.}
angle$$

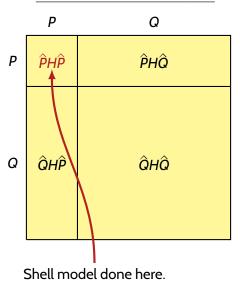
All require many CPU-hours.

- Quantum Monte Carlo in light nuclei: More or less exact solution of many-body Schrödinger equation.
- Coupled-clusters ansatz:

$$|\Psi
angle = \exp\left(t_{ij}^1 a_i^\dagger a_j + t_{ijkl}^2 a_i^\dagger a_j^\dagger a_k a_l + \dots\right) | \text{Slater det.}
angle$$

 In-medium similarity-renormalization group: Flow equations that gradually decouple low-lying states (will explain this).

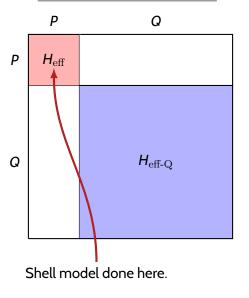
All require many CPU-hours.


- Quantum Monte Carlo in light nuclei: More or less exact solution of many-body Schrödinger equation.
- Coupled-clusters ansatz:

$$|\Psi\rangle = \exp\left(t_{ij}^1 a_i^\dagger a_j + t_{ijkl}^2 a_i^\dagger a_j^\dagger a_k a_l + \dots\right) |\text{Slater det.}\rangle$$

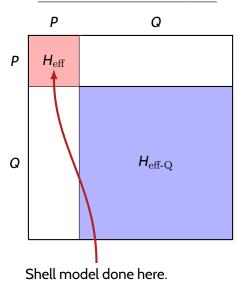
In-medium similarity-renormalization group: Flow equations that gradually decouple low-lying states (will explain this).

)


Partition of Full Hilbert Space

P = valence spaceQ = the rest

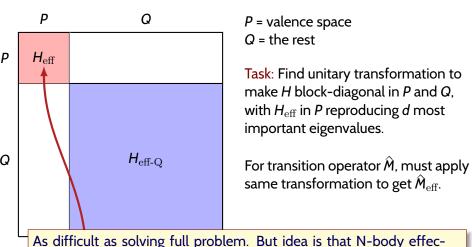
Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing d most important eigenvalues.


Partition of Full Hilbert Space

P = valence spaceQ = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing d most important eigenvalues.

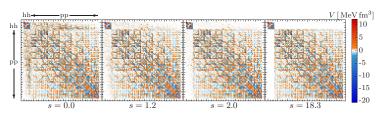
Partition of Full Hilbert Space



P = valence spaceQ = the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\rm eff}$ in P reproducing d most important eigenvalues.

For transition operator \hat{M} , must apply same transformation to get $\hat{M}_{\rm eff}$.



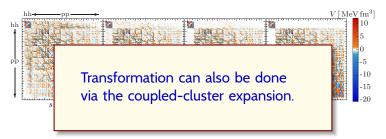
As difficult as solving full problem. But idea is that N-body effective operators beyond N >2 or 3 can be treated approximately.

In-Medium Similarity Renormalization Group

One way to determine the transformation

Flow equation for effective Hamiltonian. Gradually decouples shell-model space.

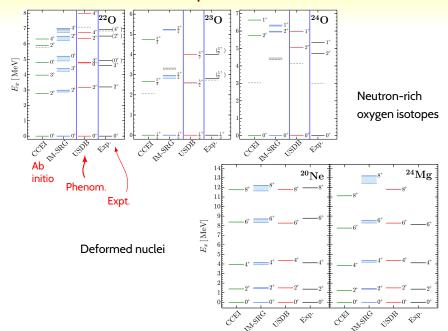
Hergert et al.

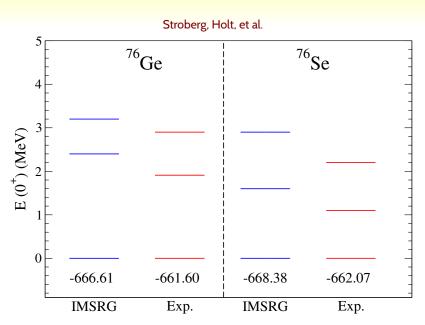

Trick is to keep all 1- and 2-body terms in *H* at each step *after normal ordering* (approximate treatment of 3-, 4-...terms.

If shell-model space contains just a single state, approach yields ground-state energy. If it is a typical valence space, result is effective interaction and operators.

In-Medium Similarity Renormalization Group

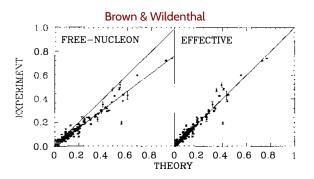
One way to determine the transformation


Flow equation for effective Hamiltonian. Gradually decouples shell-model space.

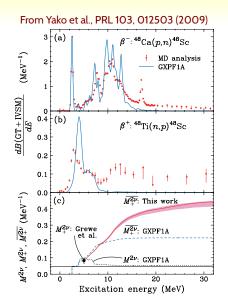

Trick is to keep all 1- and 2-body terms in *H* at each step *after normal ordering* (approximate treatment of 3-, 4- ... terms.

If shell-model space contains just a single state, approach yields ground-state energy. If it is a typical valence space, result is effective interaction and operators.

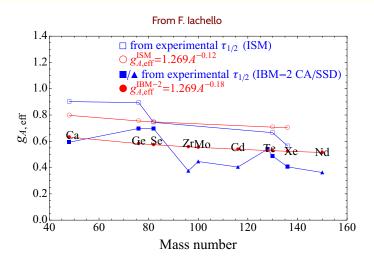
Ab Initio Calculations of Spectra


Ab Initio ⁷⁶Ge and ⁷⁶Se

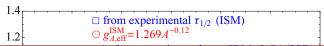
Gamow-Teller β Decay


Leading order decay operator is $\vec{\sigma}\tau_+$.

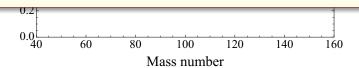
50-Year-Old Problem: Effective g_A needed in all calculations of shell-model (or related) type.


Many suggestions about the cause but, until recently, no consensus.

Other Tests of $\vec{\sigma}\tau$ Strength Also Show Suppression


Only about 2/3 of theoretically expected strength observed.

And $2\nu\beta\beta$ Decay...


And $2\nu\beta\beta$ Decay...

What explains all the over-prediction of matrix elements?

In ab initio calculation with chiral EFT, the answer must be a combination of many-body approximations and truncation of chiral expansion of current operator.

Axial Weak Current in Chiral EFT

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current. Finite-momentum corrections at next order.

Axial Weak Current in Chiral EFT

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current. Finite-momentum corrections at next order.

Higher order:

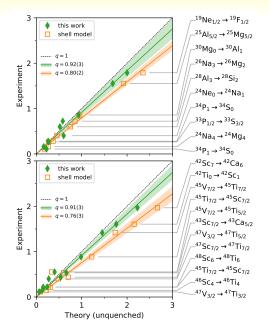
$$\begin{array}{c|c}
n/p & p & p \\
\hline
 & \pi & p & p \\
\hline
 & \Delta + \dots \\
\hline
 & \alpha_1, p & n & p \\
\hline
 & \alpha_1, p & n & p \\
\hline
 & \alpha_2, \alpha_3, \alpha_4$$

Axial Weak Current in Chiral EFT

 β Decay (simplified) with electron lines omitted

Leading order:

Usual β -decay current. Finite-momentum corrections at next order.

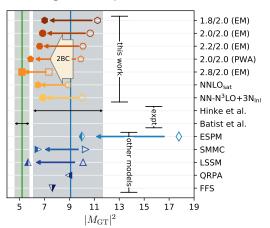

Higher order:

$$n/p$$
 n/p
 n/p

Coefficients same as in three-body interaction:

$$\begin{array}{c|cccc}
n/p & p & p \\
\hline
\pi & \pi \\
n/p & n & n \\
\hline
c_3, c_4
\end{array}$$

Quenching in the sd and pf Shells

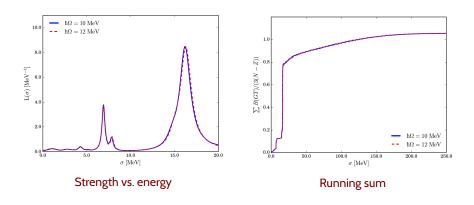

IMSRG calculation, Holt et al, preliminary

Shell model seems to include most correlations. Bulk of quenching comes from two-body current.

...And in 100Sn

Coupled-Cluster Calculation of β Decay

Hagen et al, unpublished

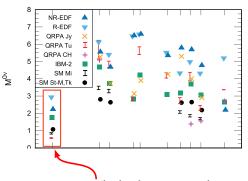


Again, good part of the quenching accounted for by two-body current.

Quenching increases with mass, at least up to Sn.

Spectator nucleons contribute coherently to two-body current.

Gamow-Teller Strength in ¹³²Sn



Almost 20% of strength above 30 MeV and 10% above 50 MeV.

And $Ov\beta\beta$ Decay?

Preliminary results in 48 Ca

Two-body currents not yet included, but preliminary indications are that their effects are not as large as in β decay.

Coupled -clusters result is red bar at bottom.

But ⁴⁸Ca is not typical. ⁷⁶Ge coming soon.

Small Fly in the Ointment

Usual light neutrino exchange:

must be supplemented, at same order in chiral EFT, by short-range operator (representing high-energy ν exchange):

Coefficient of this term is unknown.

Looking for ways to fit to, e.g., pion double-charge exchange

1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.

- 1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.
- Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.

- 1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.
- Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- 3. Application of chiral EFT to $0\nu\beta\beta$ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...

- 1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.
- Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- 3. Application of chiral EFT to $0\nu\beta\beta$ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...
- 4. A similar issue hampers our ability to fully examine effects of the two-body current in $0\nu\beta\beta$ decay, though the part for which we do know coefficients seems to quench very little.

- 1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.
- 2. Quenching of single β decay mostly understood in this framework as due to combination of previously un-captured correlations and two-body current.
- 3. Application of chiral EFT to $0\nu\beta\beta$ decay implies short-range contribution to neutrino exchange with unknown coefficient. We're investigating...
- 4. A similar issue hampers our ability to fully examine effects of the two-body current in $0\nu\beta\beta$ decay, though the part for which we do know coefficients seems to quench very little.
- Coordinated effort on this stuff by U.S. DOE Topical Theory Collaboration. Should make more progress.

1. Chiral EFT + new many-body methods are the tools required to compute matrix elements with controlled uncertainty. Already doing preliminary calculations of $Ov\beta\beta$ matrix elements.

2. Quenching of single β decay mostly understood in this

That's all; thanks.

contribution to neutrino exchange with unknown coefficient. We're investigating...

- 4. A similar issue hampers our ability to fully examine effects of the two-body current in $0\nu\beta\beta$ decay, though the part for which we do know coefficients seems to quench very little.
- Coordinated effort on this stuff by U.S. DOE Topical Theory Collaboration. Should make more progress.