29 June 2018 to 4 July 2018
IBS HQ, Daejeon, Korea
Asia/Seoul timezone
There will be Welcome Reception at 18:00 on June 28, 2018

Cosmological Lithium Problem

2 Jul 2018, 14:00
30m
Room A (IBS HQ, Daejeon, Korea)

Room A

IBS HQ, Daejeon, Korea

Speaker

Prof. Jianjun He (National Astronomical Observatories, Chinese Academy of Sciences, China)

Description

Big Bang nucleosynthesis (BBN) theory predicts the abundances of the light elements D, $^3$He, $^4$He and $^7$Li produced in the early universe. The primordial abundances of D and $^4$He inferred from observational data are in good agreement with predictions, however, the BBN theory overestimates the primordial $^7$Li abundance by about a factor of three. This is the so-called ``cosmological lithium problem''. Solutions to this problem using conventional astrophysics and nuclear physics have not been successful over the past few decades, probably indicating the presence of new physics during the era of BBN. We have investigated the impact on BBN predictions of adopting a generalized distribution to describe the velocities of nucleons in the framework of Tsallis non-extensive statistics. This generalized velocity distribution is characterized by a parameter $q$, and reduces to the usually assumed Maxwell-Boltzmann distribution for $q$ = 1. We find excellent agreement between predicted and observed primordial abundances of D, $^4$He and $^7$Li for $1.069\leq q \leq 1.082$, suggesting a possible new solution to the cosmological lithium problem.

Primary author

Prof. Jianjun He (National Astronomical Observatories, Chinese Academy of Sciences, China)

Presentation materials