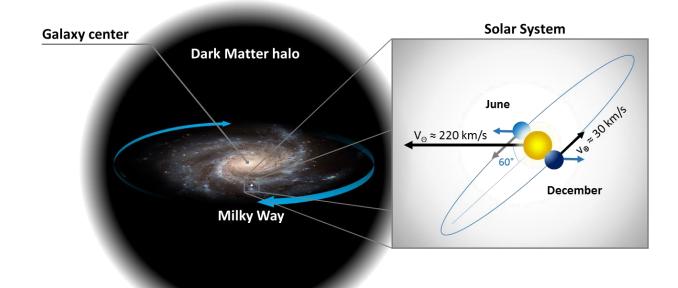


The SABRE experiment

Simone Copello

on behalf of the SABRE collaboration

Outline


- Annual modulation signature
 - The SABRE project
- SABRE Proof of Principle (PoP)
- SABRE PoP status & perspects
 - Conclusions

Dark Matter detection through annual modulation

- Direct Dark Matter detection is based on elastic scattering off nuclei:
 - Single site event
 - For WIMP masses in the rage 10 GeV 1 TeV the typical recoil energy is 1 – 50 keV
 - NUCLEUS 0

 DM PARTICLE

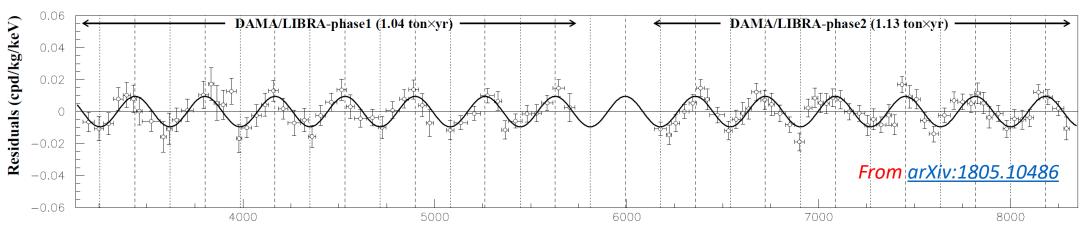
- Expected rates are very low: 10⁻¹ to 10⁻⁶ events/day/kg
 - Very low background
 - Underground laboratory
- Annual modulation is caused by the combination of Earth and Sun velocities.

Dark Matter detection through annual modulation

Ingredients for the annual modulation signal:

- Standard halo model:
 - Spherical halo surrounded the galaxy, with a local mass density of ~0.3 GeV/c²/cm³
- Sun velocity ~220 km/s
 - WIMP velocity (with respect to Earth):

 $[220 + 15 \cos \omega(t-t0)] \text{ km/s}$


 A signal has been observed by the DAMA/LIBRA experiment at LNGS, Italy.

```
Acos[\omega(t-t<sub>0</sub>)]; continuous lines: t<sub>0</sub> = 152.5 d, T = 1.00 y

2-6 keV

A=(0.0095±0.0008) cpd/kg/keV

\chi^2/dof = 71.8/101 11.9\sigma C.L.
```


2-6 keV

Sodium iodide with Active Background REjection

SABRE aims to detect the annual modulation signal by using NaI(TI) crystals, in order to have a direct (model independent) confirmation/confutation of DAMA results.

4 key features:

- 1. High purity crystals: High purity powder and clean crystal growth method
- 2. Active background rejection: active veto of liquid scintillator
- 3. Low energy threshold: High QE Hamamatsu PMTs, directly coupled to the crystals
- 4. Double location: both in Northern and Southern hemispheres

The collaboration

~50 physicists from three countries

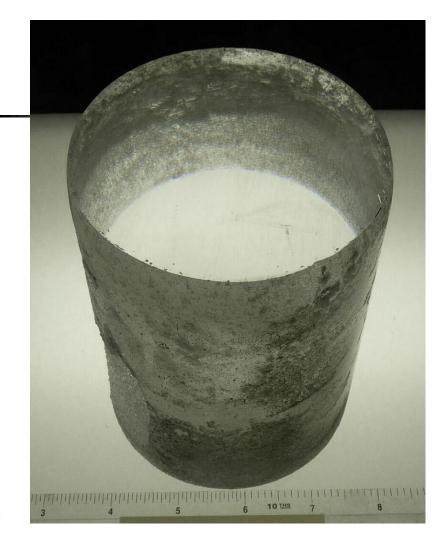
U.S.A

- **Princeton University**
- Lawrence Livermore **National Laboratory** (LLNL)
- **Pacific Northwest National Laboratory** (PNNL)

<u>Italy</u>

- Laboratori Nazionali del Gran Sasso (LNGS)
 - University of Milano and INFN
- University of Roma "Sapienza" and INFN
 - Gran Sasso Science Institute

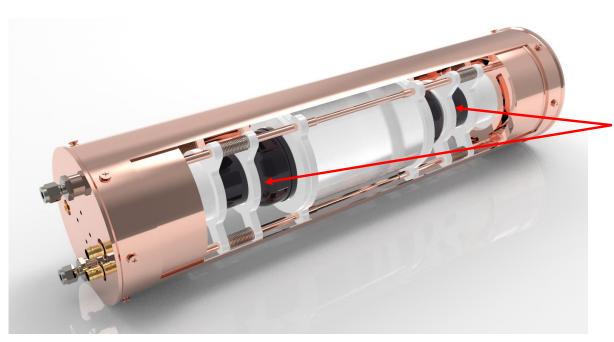
Australia

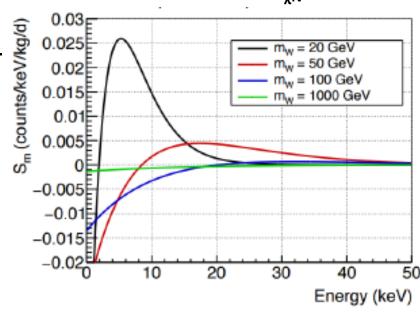

- Australian Nuclear Science and Technology Organization
- Australian National University
- Swinburne University of Technology
- University of Adelaide
- University of Melbourne

High purity crystal

Ultra pure NaI crystal:

- Low contamination Astro Grade Nal powder (by Sigma Aldrich)
- Crystal growth procedure developed by Princeton
 University and Radiation Monitoring Devices in Boston: a
 crystal of 3.6 kg (6 kg before cut) has been produced
 recently (131 mm length x 98 mm diameter)
- Low radioactivity PMTs


Element	DAMA powder	DAMA crystals	Astro-Grade	SABRE crystal
	[ppb]	[ppb]	[ppb]	[ppb]
K	100	~13	9	9
Rb	n.a.	< 0.35	< 0.2	< 0.1
U	~0.02	$0.5 - 7.5 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$
Th	~0.02	$0.7 \text{-} 10 \times 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$


Target crystals are 4" in diameter and 8" in length (mass ~5 kg)

Low energy threshold

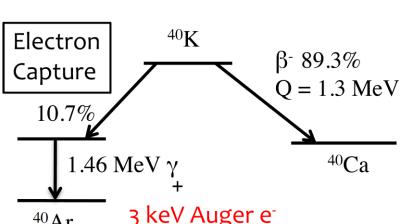
When looking for annual modulation signature, the lowest is the energy threshold the better it is

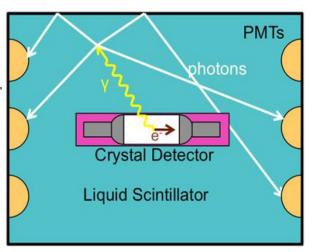
Expected amplitude for $\sigma_{\chi N}$ = 10⁻⁵ pb

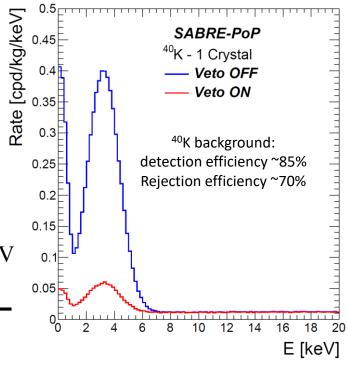
- 2 Hamatsu R11065 3" PMTs per crystal (coincidence)
- High quantum efficiency (~35%)
- PMTs directly coupled to the crystal: no light guides to optimize light collection
- High crystal light yield

Active veto

Achieved by means of:


 Liquid scintillator detector used as active veto for both external and intrinsic background (energy threshold ~100 keV)

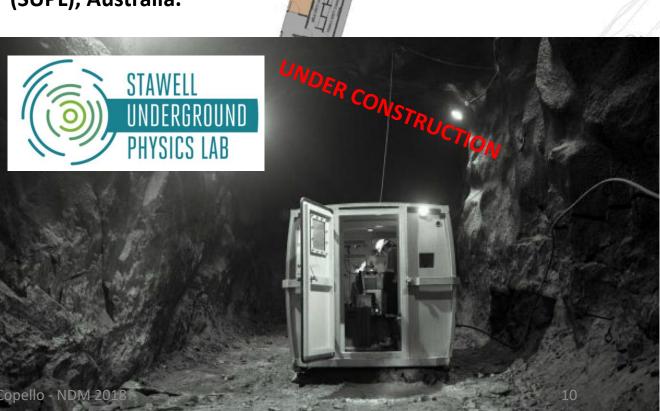

In addition to:


- Additional passive shielding against external backgrounds
- Selection of radiopure materials to reduce intrinsic background
- Low background PMTs
- Underground laboratories against cosmic rays

⁴⁰K has a 10% probability to produce an electron capture followed by an Auger electron (3 keV) and a gamma of 1460 keV.

Other intrinsic background sources are ⁸⁷Rb, ²³²Th (chain), ²³⁸U (chain) and ³H.

Double location


Seasonal effects have opposite phases

Both at ~3000 m.w.e. -> 106 muon flux reduction factor

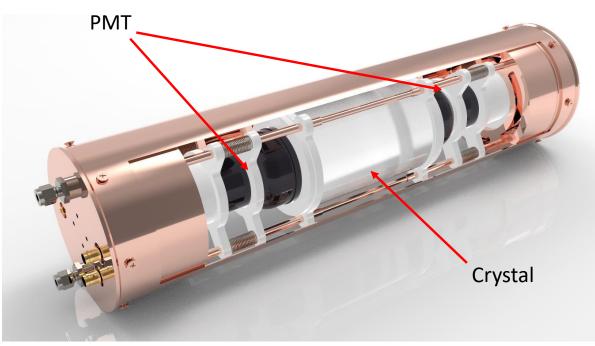
Laboratori Nazionali del Gran Sasso (LNGS), Italy.

NFN Laboratori Nazionali del Gran Sasso

Stawell Underground Physiscs Laboratory (SUPL), Australia.

10 m

34.5 m

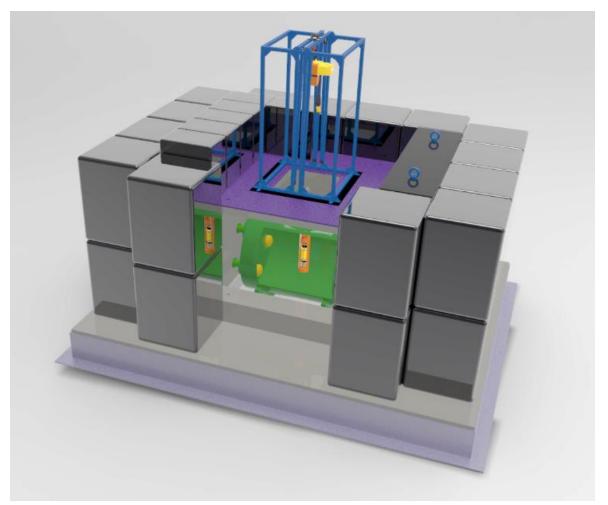

clean room radon

free area

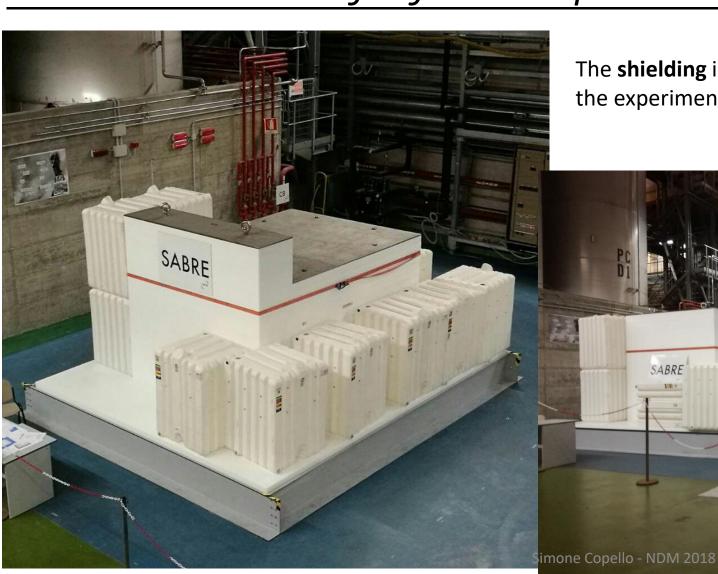
Main goal: validate the crystal growth procedure and the rejection power of the

active veto.

A single detector module will be used



The detector module, placed into the veto detector, will be isolated by the liquid scintillator by means of a copper tube.



• The veto is composed by a tank, filled with ~2 ton of liquid scintillator, equipped with 10 Hamamtsu R5912-100 PMTs.

The tank is surrounded by a shielding of polyethylene (≥40 cm) and water (≥80 cm) placed on a layer of 15 cm of lead.

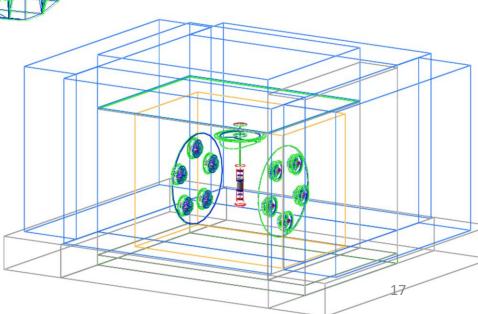
The **shielding** is almost ready in the experimental hall C

SABRE

Next commissioning steps are:

@ LNGS

- The fluid handling system (liquid scintillator)
 - Slow control and safety system
- Readout electronics and DAQ (DAQ already tested)


@ Princeton University

- Crystal preparation: cut and polishing
 - First light yield measurement
 - Detector module assembly

Data taking is expected to start this fall.

Background simulation of PoP

- GEANT4 based simulation code
- Components:
 - Crystal
 - Crystal enclosure:
 - crystal wrapping (PTFE), structure (PTFE and Cu) and PMTs (window, body and feedthrough)
 - Copper tube
 - Veto vessel:
 - stainless steel, liquid scintillator and PMTs
 - Shielding:
 - polyethylene, steel, water and lead

Crystal enclosure

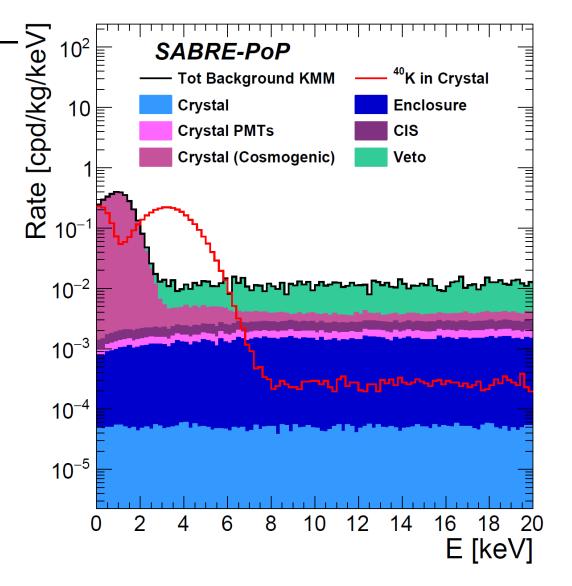
Copper

PMT Quartz Window PMT Ceramic Plate

More detail about SABRE PoP simulations in: <u>arXiv:1806.09344</u>

⁴⁰K measurement

Goal: evaluate the ⁴⁰K content in the crystal


Target: 40K in the crystal, emitting 3 keV Auger e⁻ + 1.46 MeV γ

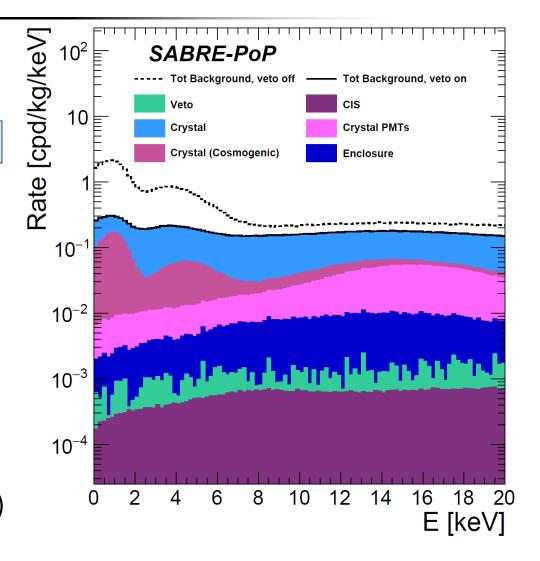
Trigger: E_{veto} in [1280; 1640] keV AND E_{crystal} in [2; 4] keV

	Rate KMM
	$[\mathrm{cpd/kg/keV}]$
Crystal Cosmogenic	$1.8 \cdot 10^{-2}$
Veto	$6.2 \cdot 10^{-3}$
Enclosure	$1.3 \cdot 10^{-3}$
Crystal PMTs	$1.1 \cdot 10^{-3}$
CIS	$7.7 \cdot 10^{-4}$
Crystal (no ⁴⁰ K)	$5.1 \cdot 10^{-5}$
Total	$2.7 \cdot 10^{-2}$
Crystal ⁴⁰ K	$1.9 \cdot 10^{-1}$

^{*} Cosmogenic sources are considered after two months underground

Sensitivity: 10 ppb can be measured, with 1 ppb of precision, in about two months

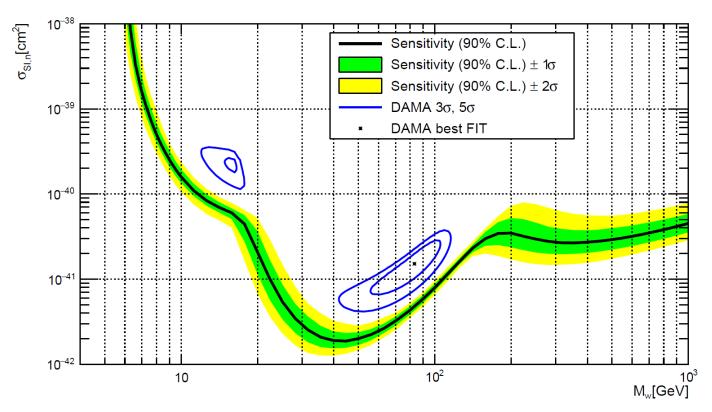
Dark Matter mode


Goal: test the rejection capability of the veto and measure the background in the ROI

Trigger: $E_{\text{veto}} > 100 \text{ keV}$ (anticoincidence) AND E_{crystal} in [2; 6] keV

	Rate, veto OFF	Rate, veto ON
	$[\mathrm{cpd/kg/keV}]$	$[\mathrm{cpd/kg/keV}]$
Crystal	$3.5 \cdot 10^{-1}$	$1.5 \cdot 10^{-1}$
Crystal Cosmogenic	$3.0 \cdot 10^{-1}$	$3.9 \cdot 10^{-2}$
Crystal PMTs	$4.3 \cdot 10^{-2}$	$3.5 \cdot 10^{-2}$
Enclosure	$9.5 \cdot 10^{-3}$	$3.6 \cdot 10^{-3}$
Veto	$3.0 \cdot 10^{-2}$	$5.7 \cdot 10^{-4}$
CIS	$3.7 \cdot 10^{-3}$	$4.6 \cdot 10^{-4}$
Total	$7.4 \cdot 10^{-1}$	$2.2 \cdot 10^{-1}$

Veto rejection efficiency ~70%


Total background in the ROI: 0.22 cpd/keV/kg (~50% due to ⁸⁷Rb)

Expected sensitivity

• Inputs:

- Standard halo model
- 2 keV threshold (ROI is [2;6] keV)
- 50 kg of NaI detectors (~10 crystals)
- 3 years exposure
- Background 0.22 cpd/keV/kg (from MC)
- Quenching: [0.13; 0.21] for Na and 0.09 for I

Results:

- DAMA results can be confirmed at 6σ or rejected at 5σ
- Minimum of exclusion plot close to 10⁻⁴² cm²

Conclusions

- The SABRE project aims to provide a direct confirmation/confutation of DAMA observations, through annual modulation signature.
- The two SABRE detectors, in the two hemispheres, will use ultrapure NaI crystals and active vetos for background reduction.
- The current stage, Proof of Principle, has the purpose to verify the background expectations and the crystal purity in few months.
- SABRE PoP will start data taking this fall at LNGS.

Thank you for your attention!